碳纳米管天线效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料被誉为21世纪的重要材料,碳纳米管则是纳米材料中最富代表性,并且是性能最优异的材料之一。由于碳纳米管体积小、重量轻的特点及其独特的电学性质,用碳纳米管制成的天线具有广阔的应用前景,如光纤通信、无线纳米互联、THz和红外线检波器、太阳能转换等领域。
     本文从计算机模拟及理论推导的角度出发,研究了THz波段和可见光波段碳纳米管天线的性能。首先,利用CST微波工作室电磁场仿真软件对碳纳米管天线建模并进行仿真计算,将计算结果与已有的实验结果比较,验证仿真软件对碳纳米管天线仿真结果的可信性。
     在THz波段,利用CST微波工作室对单根及阵列碳纳米管天线进行仿真,研究了碳纳米管的几何尺寸,包括直径、长度、阵元间距对碳纳米管天线性能的影响,通过对仿真结果的分析表明,使碳纳米管THz天线阵列获得较高增益的方法是:增加阵元数量、选择适当的阵元间距,同时控制各阵元的长度在一定范围内,各阵元的直径对碳纳米管增益的影响不大。
     在可见光波段,我们假设碳纳米管天线是由终端开路的双传输线张开而成的对称振子天线,基于传统的传输线理论,通过理论推导,得到不同入射角φ(入射波与天线轴的夹角)时,碳纳米管接收天线上的电流分布函数,以及再辐射方向性函数;并再利用CST微波工作室对碳纳米管接收天线进行模拟,得到不同入射角φ时,碳纳米管天线的再辐射方向图。理论和模拟计算结果与已有实验结果是一致的,这些结果表明,当碳纳米管的长度远大于入射波长时,其上感应电流的再辐射主瓣方向随入射波和天线轴夹角即入射角φ不同而不同,并在反射角(180°-φ)方向上强度最大,碳纳米管接收天线上感应电流的再辐射波瓣密度随天线长度的增加而增加,碳纳米管接收天线阵列的再辐射波瓣密度随阵元密度的增加而减小。
Carbon nanotube as antennas have expansive prospect of application, because of the small size, light weight and good electronic properties. For example, it can be used in the fields of optic fiber communication, wireless inter-connection to nanosystems, THz and infrared detectors, solar energy conversion and so on.
     In this paper, based on the computer simulation and theoretic study, the capabilities of carbon nanotube antennas in the wave band of THz and visible light have been investigated. A model of carbon nanotube antenna has been simulated by CST Microwave Studio. The simulation results agree with the experimental results.
     Using CST Microwaves Studio, the THz carbon nanotube antenna has been proposed and simulated for the single and array antenna, the structure of carbon nanotube, included the diameter, length, and inter-tube distance would affect its capabilities. To increase the gain should increase density of the nanotubes arrays, and an appropriate inter-tube distance, mean while control the length of carbon nanotube array. The diameter of each array elements has little effect to the gain of carbon nanotube antenna arrays.
     In the visible light wave band, a carbon nanaotube antenna has be regarded as a center fed antenna which was been formed by two transmission line with terminal open circuit. Based on the classic transmission line theory, the function of current distribution and re-radiation pattern of carbon nanotube with different incidence angleΦhave been obtained by theoretic study. The re-radiation pattern with different incidence angleΦhas been simulated by CST Microwave Studio. The theory and simulation results agree with the experimental results which have been proved by others. When the length of carbon nanotube antenna is as several times as wavelength of incidence wave, the main lobe direction of re-radiation pattern should be varied with the incidence angleΦ, and the strongest radiation should be at the angle of reflection(180°-Φ). The lobe density of re-radiation pattern should be increased with the increase of carbon nanotubes'length, and the lobe density of re-radiation should be decreased with the increase of carbon nanotube antenna arrays'inter-tube distance.
引文
[1] Y. Wang, K. Kempa, Z. F. Ren, et al. Receiving and transmitting light like waves: Antenna effect in arrays of aligned carbon nanotube. Appl. Phys. Lett, 2004, 85(13): 2607-2609
    [2] M. S. Dresselhaus, Nanotube antennas. Nature, 2004, 432: 959
    [3] 成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002,27-132
    [4] M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of carbon nanotube. Carbon, 1995, 33(7): 883-891
    [5] Valentin N. Popov. Carbon nanotubes: Properties and application. Materials Science and Engineering R, 2004, 43: 61-102
    [6] Tokio Yamabe. Recent development of carbon nanotube. Synthetic Metals, 1995, 70: 1511-1518
    [7] 蒋美丽.碳纳米管的制备.塑料科技,2004,4:5-9
    [8] 张崇辉.硅基碳纳米管阵列的制备及表征:[硕士学位论文].西安:西北大学,2006,9-19
    [9] 罗勇,应鹏展,苏慧仙,等.碳纳米管的制备方法概况.煤矿机械,2004,8:7-8
    [10] Ajiayan P M, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265: 1212-1214
    [11] Heer de W A, Bacsa W S, Chatelain A, et al. Aligned carbon nanotube film: Production and optical and electronic properties. Science, 1995, 268: 845-847
    [12] Y. Tu, Z. P. Huang, Z. F. Ren, et al. Growth of aligned carbon nanotube with controlled site density. Appl. Phys. Lett, 2002, 80(21): 4018-4020
    [13] Z. H. Yuan, H. Huang, H. Y. Dang, et al. Field emission property of highly ordered monodispersed carbon nanotube arrays. Appl. Phys. Lett, 2001, 79(20): 3127-3129
    [14] Shoushan Fan, Michael G Chapline, Nathan R Franklin, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Emission Properties. Science, 1999, 283: 512-514
    [15] 解思深,潘正伟.超长定向碳纳米管列阵的制备.物理,1999,1:1-3
    [16] 陈新,胡征,王喜章,等.微波等离子体辅助化学气相沉积法低温合成定向碳纳米管阵列.高等学校化学学报,2001,22(5):731-733
    [17] Dongsheng Xu, Guolin Guo, Linlin Gui, et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett, 1999, 75: 481-483
    [18] R Andrews, D Jacques, A M Rao, et al. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett, 1999, 303: 467-474
    [19] B C Satishkumar, A Govindaraj, C N R Rao. Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chem. Phys. Lett, 1999, 307: 158-162
    [20] Ph Mauron, Ch Emmenegger, A Zuttel, et al. Synthesis of oriented nanotube films by chemical vapor deposition. Carbon, 2002, 40: 1339-1344
    [21] Minjae Jung, Kwang Yong Eun, Young-Joon Baik, et al. Effect of NH3 environment gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2. Thin solid films, 2001, 398: 150-155
    [22] Chris Bower, Wei Zhu, Sungho Jin, et al. Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett, 2000, 77: 830-832
    [23] 樊志琴.碳纳米管膜的制备及场发射特性研究:[博士学位论文].郑州:郑州大学,2004.38-112
    [24] 张立德,解思深.纳米材料和纳米结构-国家重大基础研究项目新进展.北京:化学工业出版社,2005,20-29
    [25] K. Kempa, J. Rybczynski, Z. P. Huang, et al. Carbon nanotube as optical antennae. Advanced Materials, In press
    [26] Peter Burke, Christopher Rutherglen, Zhen Yu. Carbon Nanotube Antennas. Proc. of SPIE, 2006, 6328(6): 1-5
    [27] P. J. Burke, S. Li, Z. Yu. Quantitative Theory of Nanowire and Nanotube Antenna Performance. Nanotechnology, IEEE Transaction on, 2006, 5(4): 314-334
    [28] Zhu Qi, Wang Rui. Research on the possibility of nano-tube antenna. Antennas and Propagation Society International Symposium, 2004, 2: 1927-1930
    [29] 朱旗,陈畅,丁文武,等.利用纳米技术研制纳米管阵列天线的可能性.电子学报,2005,33(9):1698-1701
    [30] 张敏.CST微波工作室~(?)用户全书.成都:电子科技大学出版社,2004
    [31] 王秀敏,徐新龙,李福利.THz技术进展.首都师范大学学报(自然科学版),2003,24(3):17-24
    [32] Peter H. Siegel. Terahertz Technology. IEEE Transactions on Antennas and Propagation, 2002, 50: 910-924
    [33]John D.gxaus,RonMd J.Marthefka.天线(,张文勋).北京:电子工业出版社,2005
    [34] 郭硕鸿.电动力学.北京:高等教育出版社,1997
    [35] K. Kaneto, M. Tsuruta, G. Sakai, et al. Electrical conductivities of multi-wall carbon nano tubes. Synthetic Metals, 1999, 103: 2543-2546
    [36] Y. Ando, X. Zhao, H. Shimoyama, et al. Physical properties of multiwalled carbon nanotubes. Journal of Inorganic Materials, 1999, 1: 77-82
    [37] M. Buongiorno Nardelli, J. -L. Fattebert, D. Orlikowski, et al. Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon, 2000, 38: 1703-1711
    [38] 吴鸿钧.无线电波传播及天线馈电设备(下册).哈尔滨:解放军军事工程学院,1956,44-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700