特高含水期单管通球不加热集油工艺适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国多数油田的开发已经进入到高含水期,其中大庆油田的部分老厂区已经进入特高含水期阶段,综合含水率已经达到95%,在集输过程中,掺入大量的热水造成转油站耗气量,耗电量急剧增加,因此,对油井实施不加热集输便成为主要节能降耗措施之一。本文主要探讨的34口单井处于大庆油田第一采油厂,开发层系属于断东井网重构、PⅠ1、3-7层,该层系经过多年开采,综合含水率已经达到95%以上,且该34口油井集输管道采用胆管深埋敷设,油井产液量高,集油半径小等特点,经过室内剪切试验,该区块含水原油具备单管不加热集输条件。但在实际生产运行中,增加通球设施可进一步保障不加热集输的顺利开展。因此针对该区块的生产实际,对单管不加热集输适应性的探讨,将会起到降低原油生产成本,从而为实现油田地面生产的节能降耗提供技术支持。
     本文在基于该区块的原油物性以及油水乳状液的低温流变性分析的基础上,基于一套成型的室内集输试验装置,开展室内模拟试验。通过对低温流变性实验结果的分析以及对集输过程中的温降的计算,确定了相应工况条件下的安全回油温度界限,并结合现场实际生产数据进行校核,进而确定该区块的低温集输工艺运行参数。
     在室内模拟试验的基础上,结合现场实际生产运行情况,开展了现场试验。现场试验结果表明,该区块所辖油井基本具备开展不加热集输的可行性,定期投球通管能够安全回油。这一技术可在部分区块全面开展。
Nowadays, most oilfields have entered into the high water-cut stage in our country. Andsome old plants in Daqing oilfield has already accessed into the ultra-high water cut stage, thetotal water cut has reached95%. In the process of gathering, gas and electricity consumptionincreased sharply because of the hot water incorporation. So, the implement of gatheringwithout heat has been one of the mainly measures for lowering energy consumption. The34wells this paper discussed are in the No.1Oil Production Company of Daqing, and the layerseries of development belong to the east broken well pattern reconstruction, layer of PⅠ1、3-7.This layer has been exploited for many years, and the total water cut has reached more than95%. The deep laying of buried duct has been used in these gathering pipelines, combiningthe characteristics with high oil well liquid-producing and tiny radius of oil gathering, it isknown that the water cut crude oil in this block has the condition of pipeline gatheringwithout heat, according to the indoor sheering test. But in the practical operation, it can bedeveloped smoothly by adding the facility of pigging to further protest the gathering withoutheat. Therefore, it will decrease the production cost of crude oil by developing theadaptability of pipeline gathering without heat. Then offer the technical support to realizingthe lowering energy consumption of oilfield ground production.
     On the basis of the crude oil properties and the analysis of low temperature rheologicalproperty of oil-water emulsion in this block, we developed an indoor simulation test with a setof indoor gathering tester. According to the analysis of low temperature rheological propertytest result and the calculation of temperature drop during the process of gathering,temperature limit of oil return security is worked out under the corresponding workingcondition. And by checking the actual production data in site, the operating parameters of lowtemperature gathering process in the block are received.
     On the foundation of the indoor simulation experiment, combining with the actualproduction data in site, a field test is developed. The results indicate that wells in this blockhave the feasibility of gathering without heat, and security of oil return can be realized bypigging regularly. This technology can be widely used in some blocks.
引文
[1]周彦霞,陈毅喆.喇嘛甸油田不加热集输配套技术研究与应用[J].科学技术与工程,2010,10(32):8034-8037
    [2]冯叔初.油气集输[M].东营:石油大学出版社,1988:1-1
    [3]成志刚,徐树民.原油集输过程中能耗分析[J].浙江化工,2002,35(4):32-34.
    [4]苗承武.高效油气集输及处理技术[M].北京:石油工业出版社,2002:17-18.
    [5]成志刚,徐树民.原油集输过程中能耗分析[J].浙江化工,2002,35(4):32-34.
    [6]王常莲等.大庆油田原油集输系统集输耗气预测研究[J].油气田地面工程,2001,20(5)
    [7]胡博仲,李昌连,宋承毅.大庆高寒地区不加热集油集输回顾与展望[J].石油规划设计,1995,2:32~33
    [8]刘立君,刘扬,魏立新等.油田管网系统效率测算及能耗分析[J].油田地面工程,2005,24(11):31
    [9]龙凤乐,杨肖曦,李松岩.油气集输系统能量分析[J].油气储运,2005,24(12):58~60
    [10]张兰双,魏立新,王文秀等.原油集输系统效率计算与能耗分析软件开发[J].油气田地面工程,2005,24(11):14~15
    [11]吴国忠.埋地输油管道非稳态传热的解析解及应用[J].油田气地面工程,1999,20(6):6~7
    [12]黄宪春.低温集输技术应用效果[J].集输处理,2011,30(8)59~60
    [13]罗升荣,杨建展,季寞,康建波.大庆萨南油田不加热集油技术的实践与认识[J].应用能源技术,2001,(71):3~5.
    [14]杨建展,曹云芳,季寞.浅谈萨南油田不加热集油技术[J].油气田地面工程,1998,17(6):20~22
    [15]张海峰.不加热集油技术的应用及探讨[J].生产一线:104
    [16]乔晶鹏,梁志武,樊文杰等.特高含水期油井常温输送新途径[J].石油规划设计,2003,14(2):28~30
    [17]王鸿膺,寇杰.河口稠油掺水降粘输送试验研究[J].油气储运,2005,24(3):35~38
    [18]张付生.我国原油流动性改进剂的发展现状及存在问题[J].油气田地面工程,2000(6)
    [19]陈李斌.国内外含蜡原油管输工艺的现状和新进展[J].中国石油和化工,2004(7)
    [20]贾宗贤.中原油田中高含水期油气常温输送技术研究与应用[J].断块油气田,1994(2)
    [21]王为民.国内外石油管道输送技术发展综述[J].管道技术与设备,1997(4)
    [22]魏立新.基于智能计算的油田地面管网优化技术研究[D].大庆:大庆石油学院,2005
    [23]司先锋.在役联合站集输系统主体设备节能降耗改进方法研究[D].成都:西南石油大学,2006
    [24]刘保君.高含水油田不加热集输界限及运行管理方法[D].大庆:大庆石油学院,2005
    [25]岳永会.大庆油田集输工艺低温集输技术试验研究[J].油气田地面工程,2009,28(2):25-26
    [26]杨淑芹,吴长利,安秉威.单管环状流程“三不”集油技术浅析IJ].石油规划设计,1999,10(2):12一13.
    [27]柳瑞海,苏杰.特高含水井常年单管不加热集油技术[J].油气田地面工程2005,24(8):20.
    [28]张劲军,朱英如,李鸿英,等.含蜡原油特征温度实验研究[J].石油学报.2007,28(4):112一114.
    [29]J.J.C.Hsu,M.M.Santamaria.Wax Deposition of Waxy Live Crudes Under Turbulent FlowConditions[R],SPE28480,1994.
    [30]Wang Zhihua,Si Minglin.The Experimental Study on the Wax-Deposit LawinHigh-Pour-Point Crude Oi1Transportation[A],2009International Conference OnEnergy and Environment Technology,October16-18,2009[C].Gulin:IEEE Power&Energy Society,2009.
    [31]G.P.van Engelen,C.L.Kaul,B.Vos,et al.Study of Flow Improvers for Transportation ofBombay High Crude Oil Through Submarine Pipelines[J].Offshore TechnologyConference,1981:2539-2544.
    [32]时京.热分析在原油析蜡过程研究方面的应用[J].油气储运.1993,12(3):6-10.
    [33]李鸿英,黄启玉,张帆,等.用差示扫描量热法确定原油的含蜡量[J].石油大学学报(自然科学版).2003,27(1):60-62.
    [34]PIERRE Claudy,et al.Crude oils and their distillates:characterization by differentialscanning calorimetry[J].Fuel,1988,67(1):58-61.
    [35]J.Li,et al. Investigation of the Oxidation Behaviour of Hydrocarbon and Crude OilSamples Utilizing DSC Thermal Techniques[R].2004.
    [36]李长俊,曾自强.埋地输油管道的温度计算[J].国外油田工程,1999:59-62.
    [37]计兴国,王为民,耿德江.埋地管道土壤温度场的数值模拟[J].内蒙古石油化工,2010,(15):49-51.
    [38]王志华.宋芳屯油田低温集输工艺参数优化研究[D].黑龙江:东北石油大学,2010,17-29.
    [39]王凯,吴明.热油管道输送含蜡原油的轴向温降计算[J].管道技术与设备,2005,(2):8-9.
    [40]蔡均猛,张国忠.用差压新方法确定模型环道蜡沉积厚度[J].石油大学学报.2003,27(6):64-71.
    [41]黄启玉,张劲军,高学峰,等.大庆原油蜡沉积规律研究[J].石油学报.2006,27(4):124-129.
    [42]宫敬,王玮,于达.稠油—水两相水平管流流型实验研究[J].石油学报.2007,28(3):140-142.
    [43]J.J.C. Hsu, M.M. Santamaria. Wax Deposition of Waxy Live Crudes Under TurbulentFlow Conditions[R], SPE28480,1994.
    [44]Wang Zhihua, Si Minglin. The Experimental Study on the Wax-Deposit Law inHigh-Pour-Point Crude Oi1Transportation[A],2009International Conference On Energyand Environment Technology, October16-18,2009[C]. Gulin: IEEE Power&EnergySociety,2009.
    [45]魏立新,王志华,刘扬,等.环状掺水集输工艺模拟试验装置研制与应用[J].石油矿场机械.2009,38(9):63-66.
    [46]吴明,杨惠达,邓秋远.热油管道停输过程中土壤温度变化规律研究[J].西安石油学院学报(自然科学版),2002,17(4):51-55.
    [47]刘定志.多相混输技术的研究及其应用[D].四川:西南石油学院,2003,57-83.
    [48]R Marcano,X.T.Chen and C.Sarica. A Stuy of Slug Characteristics for Two-PhaseHorizontal flow[J]. Society of Petroleum Engineering of Aime,1996
    [49]M. Bonizzi, R. I. Issa and G. F. Hewitt. Studies of Three Phase Oil-Water Flow inPipelines [J]. Multiphase Technology,2003,407~423
    [50]M. Ihssrss, K Yanai and S. Takao. Two-Phase Flow in Horizontial Wells[J]. Society ofPetroleum Engineering of Aime,1992
    [51]张友波,李长俊.多相流管道压降组合模型的建立[J].油气储运,2005,24(7):4-5.
    [52]葛腾泽.单、双管集油工艺流程适应条件研究[J].油气田地面工程,2009,28(6):12-14.
    [53]马立国,胡国元,米宏云,等.油田高含水期常温集输技术[J].内蒙古石油化工,2004;30(J):119—121
    [54]杨筱蘅.输油管道设计与管理[M].东营:中国石油大学出版社,2006:77-101.
    [55]中国石油天然气总公司.油田地面工程设计[M].东营:石油大学出版社,1995,97-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700