反应性膨胀型阻燃剂的制备及阻燃HDPE的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度聚乙烯(HDPE)是一种大品种通用塑料,由于其良好的综合性能,被广泛用于生产生活的很多方面。但是由于其氧指数低,易燃,燃烧速度快且产生大量的熔滴,从而带来较大的火灾隐患,因此,对HDPE阻燃的研究显得格外重要。随着目前阻燃领域绿色环保的呼声日益高涨,传统的卤系阻燃剂被许多国家禁止使用,开发环保的无卤阻燃高密度聚乙烯具有重要意义。
     膨胀型阻燃剂(IFR)具有无毒,无熔滴,发烟少等优点而受到广泛关注,近年来膨胀型阻燃剂在阻燃领域的应用取得了明显的效果,特别是用于聚烯烃阻燃。但是其也存在与基体相容性差,易吸湿,往往导致聚烯烃基复合材料力学性能明显下降等问题。针对膨胀型阻燃体系存在问题,本工作先从分子设计出发,设计一种集炭源,酸源和气源于一体的大分子阻燃剂为基体,使其带上可以和HDPE反应的双键官能团,使阻燃剂能键接在HDPE大分子上,从而改善阻燃剂分子和HDPE的相容性;为了进一步增强rIFR和HDPE的界面结合,再采用硅氧烷偶联剂对rIFR进行表面改性。将rIFR与HDPE进行热机械反应性共混,在熔融挤出的过程中使rIFR和HDPE发生化学反应,形成结合力强的适度柔性界面,制备出具有良好阻燃效果且力学性能较良的HDPE基复合材料。对rIFR的合成工艺、化学结构、热稳定性和HDPE/rIFR复合材料的化学结构、形态结构、阻燃性能、力学性能、熔体流动性、阻燃机理等进行了研究。得到以下主要结果和结论:
     (1)磷酸和季戊四醇按照摩尔比为2.5:1,得到中间体PEDP; PEDP与三聚氰氨(MA)、丙烯酰胺改性三聚氰胺-脲醛树脂(MUF-AM)的摩尔比为1/1/1时,制备得到的反应性膨胀型阻燃剂rIFR的收率达到56.5%,残炭率为47.52%。
     (2) rIFR起始分解温度为220℃,其分解温度区间也覆盖了HDPE热分解温度范围,与HDPE的加工及热降解温度相匹配。
     (3) rIFR和HDPE基体形成了化学键连接,改善了两相的相容性。
     (4)随着rIFR含量的增加,HDPE/rIFR复合材料的极限氧指数LOI逐渐提高,水平燃烧速度逐渐降低,当rIFR由Owt%增加到30wt%,LOI由18.5%提高到24.5%,水平燃烧速率由33.6mm/min降低到21mm/min;对rIFR进行表面处理使复合材料的阻燃性能稍有降低,而偶联剂用量对阻燃性能影响不大。
     (5)随着rIFR含量的增加,HDPE/rIFR复合材料的拉伸屈服应力(TYS)基本不变,弯曲弹性模量(FM)逐渐提高,悬臂梁缺口冲击强度(NIIS)逐渐降低,当rIFR含量为30wt%时,复合材料FM提高到纯HDPE的1.40倍,TYS和NIIS分别为原料HDPE的104%,71%;采用硅氧烷偶联剂对rIFR进行表面改性后,复合材料的NIIS随着偶联剂用量的增加先增加然后基本保持不变,而TYS和FM变化不大,当偶联剂用量为rIFR的2.5wt%时,复合材料NIIS、TYS和FM分别为原料HDPE的95%,104%和140%。
     (6) HDPE/rIFR在燃烧时能形成膨胀型炭层,但是由于炭层不够致密牢固,导致火焰能透过炭层,引燃内层基体,使材料持续燃烧,因而阻燃性能有限。
High Density Polyethylene(HDPE) has been widely used in many fields as general plastic due to its good comprehensive properties. However, there is a hidden fire trouble because it is rather flammable with low limited oxygen index (LOI), the burning is too fast and will generate a lot of melt dripping,thus it is particularly important to do research on resisting flammability of HDPE. As more and more requires of environmental protection in flame-retardant field and forbid use of conventional halogen-containing flame retardants, the research of halogen-free flame retardant HDPE is of important value.
     A great deal of attention has been paid to intumescent flame retardants(IFRs) due to they have advantages like no toxicity, less smoke, no melt dripping and so on. In recent years, the application of IFRs have achieved significant results in flame-retardant field, especially used in polyolefin. However, there are some disadvantantages of IFR systems, such as weak compatibility with resin, easy moisture absorption and so on.To solve the existence problems of IFR systems,this work based on molecular scale, design a macromolecular flame retatdant which is composed of three components---an acid source,a carbon source and a gas source, then make it graft p-bond which can react with HDPE, thus improving the compatibility of rIFR in HDPE matrix; In order to further enhance interfacial combination between the two phases, rIFR was surface-modified with siloxane coupling agent(KH570). Then HDPE/rIFR composites with good flame retardant properties and mechanical properties were prepared by thermol-mechanical blending. Subsequently, we studied the synthesis process,chemical structure, thermal stability of rIFR and the chemical structure,fracture morphology,flame retardant properties, mechanical properties, melt flow rate and flame retardancy mechanism of HDPE/rIFR composites. The main results and conclusions were summarized as follows:
     (1) We synthesized Pentaerythritol phosphate ester (PEDP) on the basis of Phosphoric acid and pentaerythritol with the mole ratio 2.5:1. Then the Reactive-type intumescent flame retardant(rIFR) was gotten with 47.52% of carbon residue and 56.5% of yield with the mole ratio of PEDP/MA/MUF-AM=1:1:1.
     (2) The initial decomposition temperature of rIFR was 220℃, and the decomposition temperature range of rIFR also covered the pyrolysis temperature range of HDPE, so rIFR well matched with HDPE.
     (3) There was chemical connection between rIFR and HDPE matrix, which improved the compatibility of two phases.
     (4) LOI of HDPE/rIFR composite materials increased with the content of rIFR increasing, the horizontal buring rate continuously decreased.When the content of rIFR increased from 0% to 30wt%,LOI of composites incresed from 18.5% to 24.5%, and horizontal buring rate reduced from 33.6mm/min to 21mm/min;The flame retanrdant properties of composites slightly reduced after surface treatment for rIFR,and the effect of the content of coupling agent wasn't evident for flame-retardant properties of HDPE/rIFR.
     (5) The tensile yield strength(TYS) of HDPE/rIFR had no obvious viration with the content of rIFR increasing,flexural modulus(FM) of composites increased, notched izod impact strength(NIIS)of composites gradually decreased, when the content of rIFR was 30wt%,the FM got to 1.40 times that of pure HDPE, and TYS and NIIS were 104% and 71% respectively that of pure HDPE; However, after surfacial modification of rIFR by siloxane coupling agent,the NIIS of composites had maximum value which was maintained 95% that of pure HDPE when the content of coupling angent reached 2.5wt% of rIFR, and the TYS and FM got to 1.04 and 1.40 times respectively that of pure HDPE.
     (6) HDPE/rIFR can form intumescent carbon layer during the process of burning, however, because the char layer wasn't thick and solid,heat and flammable volatiles could easily penetrate the char layer into the flame zone, this caused HDPE/rIFR composites had limited flame retardancy.
引文
[1]韩红丽,李巧玲,崔丽丽.尼龙-66的无卤阻燃研究与进展[J].合成技术与应用,2007,22(3):34-36
    [2]F.Laoutid, L.Bonnaud, M.Alexandre, et al. New prospects in flame retardant polymer materials:From fundamentals to nanocomposites[J]. Materials Science and Engineering R, 2009,63:100-125
    [3]王克智.塑料助剂的开发及应用——阻燃剂[J].塑料科技,1996,6:46-55
    [4]杨建伟.P、N系列阻燃剂的合成及应用[D].[硕十学位论文].南京:南京师范大学,2004
    [5]王海军,陈立新,缪桦.氮系阻燃剂的研究及应用概况[J].固性树脂,2005,20(4):36-41
    [6]李杰,刘渊,王琪.三聚氰胺氰尿酸盐/聚氨酯复合阻燃剂阻燃PA66的研究[J].塑料工艺,2006(12):16-18
    [7]Zhiyong Wu, Wei Xu, Jinkui Xia, et al. Flame retardant polymamide 6 by in suit polymerization of e-carprolaction in the presence of melamine derivations[J]. Chinese Chemical Letter,2008,19:241-244
    [8]钱立军,韩鑫磊等.APP/MCA复合阻燃增强聚丙烯的研究[J].中国塑料,2010,24(5):81-84
    [9]李旭,吴向阳等.三嗪类成炭剂的合成及对聚丙烯的阻燃[J].现代塑料加工应用,2009,21(2):49-52
    [10]丁向东,李绍文.微胶囊化红磷阻燃剂的应用[J].安徽化工,2004(2):31-33
    [11]孙秀茹.中国塑料[J],1999,13(9):70-72
    [12]E. Feyz, Y. Jahani, M. Esfandeh. Effect of a Nanoclay/Triphenyl Phosphate Hybrid System on the Fire Retardancy of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blend[J]. Journal of Applied Polymer Science,2011,120:3435-3442
    [13]Fabienne Samyn, Serge Bourbigot, Charafeddine Jama, et al. Fire retardancy of polymer clay nanocomposites:Is there an influence of the nanomorphology[J]. Polymer Degradation and Stability,2008,93:2019-2024
    [14]杨宁,桂大勇,田军.蒙脱土插层尼龙66及其合金力学性能研究[J].塑料,2004,33(3):1-3
    [15]Lei Song, Yuan Hu, et al. Study on Crystallization,Thermal and Flame Retardant Properties of Nylon66/Organoclay Nanocomposites by in situ Polymerization [J]. Journal of Fire Sciences,2008,26:475-489
    [16]Huaili Qin, Quansheng Su, et al. Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites [J]. Polymer,2003,44:7533-7538
    [17]毛文英.无卤阻燃尼龙66/OMMT/SiO2纳米复合材料的研究[D].[硕十学位论文].太原:中北大学,2007
    [18]Xiaohua Huang, et al. Investigation on interficial interaction of flame retarded and glass fiber reinforced PA66 composites by IGC/DSC/SEM[J]. Polymer,2008,49:1049-1055
    [19]Tang,Y., Lewin.M., Pearee,E.M. Effects of annealing on the migration behavior of PA6/clay nanocomposites[J]. Macromolecular Rapid Communications,2006,27:693-696
    [20]Qin H L, Zhang S M, Zhao G G, et al. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene[J]. Polymer,2005,46:8386-8395
    [21]Zhu J, Morgan A B, Lamelas F J, et al. Fire properties of polystyrene-clay nanocomposites [J]. Chemistry of Materials,2001,13:4649-4654
    [22]HuaGui, XiaohongZhang, YiqunLiu, et al. Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites[J]. Composites Science and Technology,2007,67:974-980
    [23]Xingui Zhang, Fen Guo, et al. Investigation of interfacial modication for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites[J]. Polymer Degradation and Stability,2005,87:411-418
    [24]杜建新,郝建薇,王建祺.SiO2和A1203对PP/APP/PER膨胀阻燃体系的协同作用[J].高分子材料科学与工程,2004,20(1):165-167
    [25]彭治汉.材料阻燃新技术新品种[M].北京:化学工业出版社,2004
    [26]Lingyao Li, Guohua Chen, Wei Liu, et al. The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric [J]. Polymer Degradation and Stability,2009,94:996-1000
    [27]何庆东.膨胀型阻燃聚丙烯及其母料的性能研究[D].[硕士学位论文].广州:广东工业大学,2008
    [28]Liping Li, et al. Influence of maleic anhydride-grafted EPDM and flame retardant on interficial interaction of glass fiber reinforced PA-66[J]. European Polymer Journal,2007, 43:2604-2611
    [29]黄小东.膨胀型阻燃剂的合成与应用[D].[硕士学位论文].南京:南京师范大学,2006
    [30]刘百炼,阮明波等.“三位一体”膨胀型阻燃剂的研究进展[J].精细化中间体,2008,3(38):8-11
    [31]周顺.膨胀阻燃和硅烷接枝交联聚丙烯及其三元乙丙橡胶材料的制备和性能研究[D].[博士学位论文].武汉:中国科学技术大学,2009:19-53
    [32]赵爱明,董延茂,鲍治宇.磷酸三聚氰胺硼酸盐阻燃剂的合成[J].山东化工,2009,38(12):1-6
    [33]Zhang-Yu Wang, Zhi-Qiang Feng, et al. Flame Retarding Glass Fibers Reinforced Polyamide 6 by Melamine Polyphosphate/Polyurethane-Encapsulated Solid Acid[J]. Journal of Applied Polymer Science,2007,105:3317-3322
    [34]王洋.有机磷系阻燃剂的合成与应用研究[D].[硕士论文].大连:大连理工大学,2007
    [35]Yuan Liu, Zhiqiang Feng, Qi Wang. The Investigation of Intumescent Flame-Retardant Polypropylene Using a New Macromolecular Charring Agent Polyamide 11[J]. Polymer composites,2009:221-225
    [36]Yixuan Zhang, Yuan Liu, Qi Wang. Synergistic Effect of Melamine Polyphosphate with Macromolecular Charring Agent Novolac in Wollastonite Filled PA66[J]. Journal of Applied Polymer Science,2010,116:45-49
    [37]Shibin Nie, Yuan Hu, Lei Song, et al. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene[J]. Polymer for Advanced Technologies,2008,19:1077-1083
    [38]Bin Li, He Jia, Limin Guan, et al. A Novel Intumescent Flame-Retardant System forFlame-Retarded LLDPE/EVA Composites[J]. Journal of Applied Polymer Science,2009, 114:3626-3635
    [39]宦双燕.含1,3,2-二氧磷杂环己烷结构的磷-氮系膨胀型阻燃剂的合成和阻燃性能研究[D].[硕十论文].武汉:华中师范大学,2001
    [40]Wheeler JW, Zhang Y, Tebby J C. The use of organophosphorus functionality to modify the thermal and fire retardant behaviour of polyamides[J]. Fire Retardancy of Polymers-The Use of Intumescence,1998:253-257
    [41]Jing Zhan, Lei Song, Shibin Nie, Yuan Hu. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant[J]. Polymer Degradation and Stability,2009,94:291-296
    [42]马海云.膨胀阻燃及纳米阻燃ABS树脂的研究[D].[博十论文].杭州:浙江大学,2007
    [43]刘畅.新型磷氮系阻燃剂的合成,结构及阻燃性能研究[D].[硕十论文].武汉:华中师范大学,2006
    [44]Li-Ping Gao, De-Yi Wang, Yu-Zhong Wang, et al. A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties[]. Polymer Degradation and Stability,2008,93:1308-1315
    [45]Yuji E, Reiko M. Method for manufacturing optically active hydroxyketone. JP2004-000175, 2204
    [46]Wang T S, Parng J K, Shau M D. The synthesis and properties of new epoxy resine containing phosphorus and nitrogen groups for flame retardaney[J]. J Appl Polym Sei,1999, 74 (2):413-421
    [47]黄彦瑜,杜瑛.含磷尼龙66界面缩合及阻燃性能研究[J].湖北化工,2001,3
    [48]Xiaofeng Yang, Qiaoling Li, et al. Fabrication and thermal stability studies of polyamide 66 containing triaryl phosphine oxide[J]. Indian Academy of Sciences,2009,32 (4):375-380
    [49]熊奇,张强,黄年华.新型含磷阻燃剂DOPO-ITA-EG的合成与表征[J].武汉科技学院学报,2007,20(2):49-51
    [50]黄年华,张强,李治华.新型侧基含磷共聚酯的合成、表征及性能[J].功能高分子学报.2008,21(2):200-205
    [51]Wan-Jung Chou, Guo-An Wang, Cheng-Chien Wang, et al. Thermal degradation kinetics and mechanisms of PMEPP and MEPP/MMA copolymer[J]. Polymer,2009:1-9
    [52]Guo-An Wang, Cheng-Chien Wang, Chuh-Yung Chen. The flame-retardant material-1. Studies on thermal characteristics and flame retardance behavior of phosphorus-containing copolymer of methy methacrylate with 2-methacryloxyethyl phenyl phosphate[J]. Polymer Degradation and Stability,2006,91:2683-2690
    [53]Shengwu Zhu, Wenfang Shi. Flame retardance of UV cured epoxy acrylate blended with different states of phosphated methacrylate Polymer[J]. Degradation and Stability,2003,82: 435-439
    [54]Hongbo Liang, Anila Asif, Wenfang Shi. Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings[J]. Polymer Degradation and Stability,2005,87:495-501
    [55]Kazuki Daimatsu, Hideki Sugimoto, Yasunori Kato, et al. Preparation and physical properties of flame retardant acrylic resin containing nano-sized aluminum hydroxide[J]. Polymer Degradation and Stability,2007,92:1433-1438
    [56]陈一,赵芳,杨军红.纳米氢氧化镁及复合体系阻燃改性HDPE研究[J].湖南工业大学学报,2009,23(4):33-37
    [57]樊晓娜,陈朝辉,林新花等.Al (OH)3/胺取代三嗪磷酸盐对HDPE阻燃性能的影响[J].合成材料老化与应用,2010,39(2):1-5
    [58]段芳勇,于杰,秦军等.HDPE/APP阻燃型复合材料性能的研究[J].化学推进剂与高分子材料,2011,9(2):85-89
    [59]赵杰,秦军,解田等.不同成炭剂对阻燃复合材料的性能影响研究[J].塑料工业,2010,38(11):69-71
    [60]Hongdian Lu, Yuan Hu, Ming Li, et al. Effects of Charring Agents on the Thermal and Flammability Properties of Intumescent Flame-Retardant HDPE-based Clay Nanocomposites[J]. Polymer-Plastics Technology and Engineering,2008,47:152-156
    [61]王勋章,姜丹蕾,李美荣等.无卤阻燃剂季戊四醇双磷酸蜜胺盐的合成与应用[J].阻燃材料与技术,2007,(3):8-11
    [62]罗长宏,杨延钊,韩健等.新型膨胀型阻燃剂的合成[J].塑料助剂,2006,(2):23-26
    [63]闫晓红,孟烨,赵庭栋.一种磷氮系膨胀型阻燃剂的制备方法[P].中国,CN 10157351A
    [64]周箭,杨辉,陈日新.分步碱液滴加法合成膨胀型阻燃剂b-MAP.化工进展,2005,24(6):651-655
    [65]苏野.新型含氮阻燃剂的制备及应用研究[D].[硕十论文].南京:南京理工大学,2009
    [66]崔举庆,周兆兵,张洋.丙烯酰胺-甲醛-尿素共聚木塑相容剂的制备与表征[C].第二届中国林业学术大会-S11木材及生物质资源高效增值利用与木材安全论文集,2009:142-146
    [67]高明,杨荣杰.氨基树脂型膨胀阻燃剂的合成及应用研究.北京理工大学学报,2008,28(5):450-455
    [68]Ming Gao, Shousheng Yang. A Novel Intumescent Flame-Retardant Epoxy Resins System[J]. Journal of Applied Polymer Science,2010,115:2346-2351
    [69]吴昆.膨胀型阻燃剂核-壳结构的设计、制备及阻燃性能的研究[D].[博十学位论文].合肥:中国科学技术大学,2009
    [70]宋平安.膨胀阻燃、纳米阻燃及协同阻燃聚丙烯的研究[D].[博十学位论文].杭州:浙江大学,2009
    [71]卜俊芬.自云母、硅灰石及POE增强增韧PP复合材料性能的研究[D].[硕士学位论文].武汉:武汉理工大学,2008
    [72]苏瑞彩,李文芳,彭继华等.硅烷偶联剂KH570对纳米Si02的表面i改性及其分散稳定性[J].化工进展,2009,28(9):1596-1599
    [73]刘梅芳.三聚氰胺磷酸盐/复合成炭剂阻燃聚烯烃的研究[D].[硕十学位论文].成都:四川大学,2007
    [74]Wang Jun, Jiangsong Yi, Xu-Fu Cai. Synergistic Effect of a Novel Charring Agent and Ammonium Polyphosphate on the Flame Retardancy of Acrylonitrile Butadiene Styrene[J]. Journal of Applied Polymer Science,2011,120:968-973
    [75]钱丹,苑会林,张胜.熔融接枝法提高膨胀型阻燃聚丙烯的相容性和阻燃性能[J].高分子材料科学与工程,2009,25(6):92-97
    [76]Bin Li, Miaojun Xu. Effect of a novel charringefoaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene[J]. Polymer Degradation and Stability,2006,91:1380-1386
    [77]Hongfang Zhu, Qiliang Zhu, Juan Li, et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide[J]. Polymer Degradation and Stability,2011,96 (2):183-189
    [78]徐定红,秦军,于杰等.不同聚合度聚磷酸铵对HDPE阻燃性能影响研究[J].贵州工业大学学报(自然科学版),2008,37(5):68-70
    [79]戴进峰.三嗪系成炭-发泡剂的合成及在聚丙烯中的阻燃机理研究[D].[硕十学位论文].哈尔滨:东北林业大学,2009
    [80]朱善农编著.高分子材料的剖析[M].第一版.北京:材料科学出版社,1988:317-344
    [81]奚强,常亮,邝生鲁.硅偶联剂对聚磷酸铵表面改性的研究.粘接[J].2005,26(6):19-20
    [82]王经武.塑料改性技术[M].北京:化学工业出版社,2004
    [83]韩跃新,陈旭,印万忠.碱式硫酸镁晶须填充聚丙烯的研究[J].有色矿冶,2007,23(5):4246
    [84]何曼君,陈维孝,董西伙编.高分子物理(修订版)[M].上海:复旦大学出版社,1993
    [85]陈一,黄宇刚,李祥刚.油酸钠表面改性纳米氢氧化镁阻燃HDPE[J].塑料,2010,3(1):80-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700