玉米醇溶蛋白/聚丁二酸丁二醇酯复合纳米纤维膜支架的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在改善静电纺玉米醇溶蛋白(zein)纳米纤维膜力学性能的不足,通过共混和同轴静电纺丝制备出力学性能较好的zein/PBS(聚丁二酸丁二醇酯)复合纳米纤维膜支架,通过生物学评价可以获得具有良好细胞相容性的zein/PBS组织工程支架,以扩大静电纺玉米醇溶蛋白在组织工程支架材料领域的应用。
     首先通过静电纺丝技术制备出zein和PBS不同共混比例的复合纳米纤维膜,并对不同比例下所得复合纤维的形貌、结构、热性能、力学性能及亲水性进行研究。结果表明,PBS的加入提高了zein的可纺性,随着PBS共混质量比的增加,纤维平均直径增加,纳米纤维膜的结晶性能逐渐变好,且整个纳米纤维膜的熔融热增加。力学性能测试表明,随着PBS含量从25%增加到75%,复合纳米纤维膜的最大拉伸强度和应变逐渐增加,力学性能得到显著改善。通过亲水性实验得出,zein/PBS共混纤维膜的亲水性得到明显提高。
     为改善聚丁二酸丁二醇酯(PBS)的性能以满足不同组织工程支架的要求,将多壁碳纳米管(MWNTs)作为增强填料混合到PBS溶液中制备电纺MWNTs/PBS复合纳米纤维膜。研究了不同含量的MWNTs对PBS纤维各项性能的影响。结果表明:MWNTs分散于PBS纤维中,MWNTs的添加使纤维平均直径减小,热稳定性随着随MWNTs含量的增加而提高,透射电镜和力学性能结果显示当PBS中MWNTs的含量为1.5%时,MWNTs在PBS基体中分散良好,此时MWNTs/PBS复合纳米纤维拉伸强度和应变达到最大值。
     通过同轴静电纺丝法成功制备出zein-PBS皮芯结构复合纳米纤维膜,探讨芯层PBS含量、皮层zein含量、皮层纺丝流率对复合纳米纤维膜形貌、结构和力学性能的影响。结果表明:当皮层zein含量固定时,芯层PBS浓度偏高或偏低均不利于同轴静电纺丝过程的稳定性,当芯层PBS为6%时,皮芯结构复合纳米纤维具有较高的力学强度。固定芯层PBS浓度,纤维直径随着皮层纺丝液浓度的增加而变大,所得皮芯结构静电纺膜的拉伸强度和断裂伸长率均增大。在皮芯层纺丝速率均为0.006ml/min时能够得到形貌均匀、皮芯结构完整的复合纳米纤维。当芯层加入少量MWNTs,复合纤维整体直径降低且纤维变得更加均匀,纤维膜的力学性能和热性能均有提高。
     最后,通过体外小鼠成纤细胞(L929)培养,对纳米纤维支架进行生物性能评价。结果表明,细胞能够很好地在静电纺zein、zein/PBS、皮(zein)-芯(PBS)、皮(zein)-芯(PBS/MWNTs)结构复合纳米纤维支架上生长繁殖,其对细胞无毒害作用,具有良好的生物相容性。芯层MWNTs的加入不会对细胞生长繁殖造成不利影响。同轴静电纺丝制备的结构复合纳米纤维支架有明显优势,其OD值高于共混zein/PBS的OD值,体现了皮芯结构在细胞相容性方面的优势,结合力学性能可知,两种支架材料作为组织工程支架均具有很好的应用前景。
In this thesis, the zein/Poly(butylene succinate)(PBS) composite nanofibrous membranescaffold with improved tensile strength were fabricated by the blend and coaxial electrospinning inorder to synchronously enhance the mechanical property of zein, and also obtain zein/PBScomposite tissue engineering scaffolds, which possess a better cytocompatibility depending onbiological evaluation, and finally extend the application field of zein in biomaterials.
     Zein/PBS blends with different mass ratios were prepared to fabricate composite nanofibrousmembrane scaffold by electrospinning, and the morphology, structure, thermal performance,mechanical properties and hydrophilicity of composite fibers were studied. The results showed theelectrospun spinnability of zein was improved by PBS. The average diameter of zein/PBScomposite fibers increased and the crystallinity of composite nanofibrous membrane scaffoldincreased with the addition of PBS content. The mechanical properties were improved effectively.At the same time hydrophilicity of composite nanofibrous membrane scaffold was greatlyimproved.
     In order to improve the properties of PBS, Multi-walled carbon nanotubes (MWNTs) wasmixed with PBS solution to prepare electrospun MWNTs/PBS composite nanofibous scaffold fordifferent tissue engineering scaffolds. The performance of PBS fibers with different contentMWNTs was researched. The results showed that MWNTs have been dispersed in PBS fibers, thediameter of the fibers decrease due to the addition of MWNTs, with the increase of MWNTs thethermal stability was enhanced. When the content of MWNTs is1.5%, it disperses well in PBSmatrix and the composite nanofibous membrane scaffold have the best failure strength and failureelongation.
     Sheath(zein)-core(PBS) composite nanofibrous membrane scaffold were successfully preparedby coaxial electrospinning. The effects of core and sheath concentrations and flow rate of the outerzein fluid on its morphology, structure and mechanical properties were investigated. The resultsrevealed that fixed sheath concentration, however higher or lower one can resist co-electrospinningstability.When the core concentration was6%, the composite nanofiber membrane scaffold had better mechanical properties. The composite fiber diameter increased and mechanical properties ofsheath-core structured composite fibers became more higher with increasing of sheath concentrationunder unchanged core concentration. The composite nanofibers with uniform morphology andintegrated sheath-core structure were obtained when both of the core and sheath spinning rates were0.006ml/min. After adding MWNTs into the core solution, the morphology ultrafine fibrousmembranes was well and the fiber diameter decreased, and the failure strength and thermalproperties became increased.
     Finally, through in vitro cell culture experiment, the cyto-biological of the five compositenanofibrous membrane scaffolds was investigated. The results showed that the L929mousefibroblasts proliferated well on zein, PBS, zein/PBS, sheath(zein)-core(PBS) and sheath(zein)-core(PBS/MWNTs) composite nanofibrous membrane scaffolds.. The five scaffolds werenon-toxic, and the cytocompatibility were fabourable. MWNTs added to core did not influence cellgrowth and proliferation. The two sheath-core ultrafine composite fibrous scaffolds had morecytocompatibility than zein/PBS composite nanofibrous memberane scaffolds. Their OD values arehigher than that of zein/PBS composite nanofibrous scaffolds, and the mechanical properties werebetter., so they have great application potential in tissue engineering scaffolds.
引文
[1] Ramakrishna S, Fujihara K, Teo W, et al. An Introduction to electrospinning andnanofibers[M]. Singapore: World Scientific Publishing Co. Pte. Ltd,2005:15.
    [2] Gopal R, Kaur S, Ma Z, et al. Electrospun nanofibrous filtration membrane[J]. Journal ofMembrane Science.2006,281(1-2):581-586.
    [3] Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: Designing the next generationof tissue engineering scaffolds[J]. Advanced Drug Delivery Reviews.2007,59(14):1413-1433.
    [4] Liang D H, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedicalapplications[J]. Advanced Drug Delivery Reviews,2007,59:1392-1412.
    [5] Ren G L, Xu X H, Liu Q, et al. Electrospun poly(vinyl alcohol)/glucose oxidasebiocomposite membranes for biosensor applications[J]. Reactive and Functional Polymers.2006,66(12):1559-1564.
    [6] Dong J, Sun Q, Wang J. Basic study of corn protein, zein, as a biomaterial in tissueengineering, surface morphology and biocompatibility[J]. Biomaterials,2004,25(19):4691-4697.
    [7] Wang H J, Lin Z X, Liu X M, et al. Heparin-loaded zein microsphere film andhemocompatibility[J]. Journal of Controlled Release.2005,105(1-2):120-131.
    [8]左秀霞,王小青.聚丁二酸丁二醇酯在生物材料领域的研究进展[J].中国塑料,2007,21(7):06-09.
    [9]廖才智.生物降解性塑料PBS的研究进展[J].塑料科技,2010,38(7):93-98.
    [10] Agarwal S, Wendorff J H, Greiner A. Use of electrospinning technique for biomedicalapplications[J]. Polymer,2008,49:5603-5621.
    [11] Kim B S, Mooney D J. Development of biocompatible synthetic extra cellular matrices fortissue engineering [J]. Trends Biotechnol.1998,16(5):224-226.
    [12] Slukinam i Y, Okuno M. Okuno, Bioresorable devices made of forged composites ofhydroxyapatite particles and poly-L-lactide[J]. Biomaterials,1999;20:859
    [13]房乾,陈登龙,姚清华,等.静电纺丝在组织工程支架材料制备中的应用[J].福建师范大学学报(自然科学版),2008,24(1):103-107.
    [14] Wang B, Liu W, Zhang Y, et al. Engineering of extensor tendon complex by an ex vivoapproach [J]. Biomaterials,2008,29(20):2954-2961.
    [15] Cao D, Liu W, Wei X, et al. Invitro tendon engineering with avian tenocytes andpolyglycolic acids apreliminary report[J]. Tissue Eng,2006,12(5):1369-1377.
    [16] Formhals A. Process and apparatus for preparing artificial threads[P]. US,1975504,1934.
    [17]何创龙,黄争鸣,张彦中,等.静电纺丝法制备组织工程纳-微米纤维支架[J].自然科学进展,2005,15(10):1175-1182.
    [18] Theron S A, Zussman E, Yarin A L, Experimental investigation of the governing parametersin the electrospinning of polymer solutions[J]. Polymer,2004,45:2017-2030.
    [20] Varesano A, Carletto R A., Mazzuchetti G. Experimental investigations on the multi-jetelectrospinning process[J]. Journal of Materials Processing Technology,2009,209:5178-5185.
    [21]何晨光,高永娟,赵莉,等.静电纺丝的主要参数对PLGA纤维支架形貌和纤维直径的影响米[J].中国生物工程杂志,2007,27(8):46-52.
    [22] Geng X Y, Kwon O H, Jang J. Electrospinning of chitosan dissolved in concentrated aceticacid solution[J].2005,26(27):5427-5432.
    [23] Larrondo, Manley R. Electrostatic fiber spinning from polymer melts, II.Examination of theflow field in an electrically driven jet[J].J Polymer Sci:Polymer Physics Ed,1981,19:921-932.
    [24] Fong H, Reneker D H, et al. Elastomeric nanofibers of styrene-butadiene-styrene triblockcopolymer[J]. J Polym Sci B:Polym Phys,1999,37(24):3488-3496.
    [25]张锡玮,夏禾等.静电纺丝法制纳米级聚丙烯睛纤维毡[J].纳米材料,2002,29;16-19.
    [26] CHU B, HSIAO B S, FANG D F. Apparatus and methods for electrospinning polymericfibers and membranes: US,6713011[P].2002:11-21.
    [27] DNG B, KIMURAA E, SATOA T, et al. Fabrication of blend biodegradable nanofibrousnonwoven mats via multi-jet electrospinning [J]. Polymer,2004,45:1895.
    [28] DOSUNMU O O, CHASE G G, KATAPH INAN W, et al. Electrospinning of polymernanofibres from multiple jets on a porous tubular surface[J]. Nanotechnology,2006,17:1123-1127.
    [29] YARN A L, ZUSSMAN E. Upward needleless electrospinning of multiple nanofibers [J].Polymer,2004,45:2977-2980.
    [30]杨翠茹,贾志东,刘嘉楠等,静电纺丝系统中有序纤维收集的探讨高电压技术[J].纳米材料,2009,35:192-196.
    [31] G H Kim. J.Polym. Sci. B, Polym. Phys.,2006,44:1426-1433.
    [32] Yang D Y, Lu B, Zhao Y, et al. Adv Mater,2007,19(21):3702-3706.
    [33] W E Teo, S Ramakrishna. Nanotechnology,2005,16:1878-1884.
    [34] Zhang Y Z, Ouyang H W. Lim C T, Ramakrishna S. Huang Z M. Electrospinning of gelatinfibers and gelatin/PCL cornposite fibrous scaffolds[J]. J Biomed Mater Res Part B:ApplBiomater,2005,72B:156-165.
    [35] Wang M, Jing N, Su CB, et al. Electrospinning of silica nanochannels for single moleculedetection. Applied Physics Letters,2006,88(3):033106.
    [36] Jiang Hongliang, Hu Yingqian, Li Yan, et a1. A facile technique to prepare biodegradablecoaxial electrospun nanofibers for controlled release of bioactive agents[J]. Journal ofControlled Release,2005,108:237-243.
    [37] Zhao Y, Cao XY, Jiang L.Bio-mimic multichannel microtubes by a facile method.Journal ofthe American Chemical Society,2007,129(4):764-765.
    [38] Cao H Q, Liu T, Chew S Y, The application of nanofibrous scaffolds in neural tissueengineering[J]. Advanced Drug Delivery Reviews,2009,61:1055-1064.
    [39] Nair L S, Bhattacharyya S, Laurencin C T, et al. Development of novel tissue engineeringscaffolds via electrospinning. Expert Opin Biol Ther.2004,4(5):659-668.
    [40]鲍扬波,王家俊,胡巧玲.聚合物静电纺及在组织工程支架中的应用[J].纺织学报,2008,28:124-128.
    [41] Duan B, Yuan X Y, Zhu Yi, et a1. A nanofibrous composite membrane ofPLGA-chitosan/PVA prepared by electrospinning[J].European Polymer Journal,2006,42(9):2013-2022.
    [42] Blackwood K A, Mckean R, Canton I, et al.Development of biodegradable electrospunscaffolds for dermal replacement[J]. Biomaterials,2008,29:3091
    [43] Shin M, Isbll O, Sueda T, et al. Contractile cardiac grafts using a novel nanofibrous mesh.Biomaterials,2004,25(17):3717-3723.
    [44] Xu C Y, Yang F, Wang S, et a1. In vitro study of human vascular endothelial cel1functionon materials with various surface roughness[J]. J Biomed Mater Res,2004,71:154
    [45] Li C, et al.Electrospun silk-BMP-2scaffolds for bone tissue engineering [J]. Biomaterials,2006,27:3115.
    [46] Jiang H L, Hu Y Q, Zhao P C, et a1. Modulation of protein release from biodegradablecore-shell structured fibers prepared by coaxial electrospinning[J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2006,79(1):50-57.
    [47] Shukla R, Cheryan M. Zein: the industrial protein from corn[J]. Industrial Crops andProducts.2001,13(3):171-192.
    [48] Wang H J, Lin Z X, Liu X M, et al. Heparin-loaded zein microsphere film andhemocompatibility[J]. Journal of Controlled Release.2005,105(1-2):120-131.
    [49] Saowakon W, Paranat T, Narupol I,et al. Effect of Glycerol on Solution PropertiesGoverning Morphology, Glass Transition Temperature, and Tensile Properties ofElectrospun Zein Film[J].Journal of Applied Polymer Science,2010(118):910-919.
    [50] Miyoshi T, Toyohara K, Minematsu H. Preparation of ultrafme fibrous zein membranes viaelectrospinning[J]. Polymer International,2005,54(8): l187-l190.
    [51] Gordon W. Selling, Atanu Biswas, Alpa Patel, et al. Impact of Solvent on Electrospinning ofZein and Analysis of Resulting Fibers[J]. Macromol. Chem. Phys,2007,208(9):1002-1010.
    [52] Torres-Ginera S, Ginemezb E, Lagaron J M. Characterization of themorphology and thermalproperties of zein prolamine nanostructures obtained by electrospinning[J]. FoodHydrocolloids,2007,22(4):601-614.
    [53] Chen yao, Xinsong Li, Tangying Song. Preparation of zein/poly(lactide-co-glycolide)continuous nanofiber yarns by coupled electrospinning[J]. Polymer Preprints,2007,48(2):112-118.
    [54] Chen Yao, Xinsong Li, Tangying Song, et al. Biodegradable nanofibrous membrane ofzein/silk fibroin by electrospinning[J]. Polymer Internet,2009,58(4):396-402.
    [55] Sergio Torres-Giner, Maria Jose Ocio, Jose Maria Lagaron. Novel antimicrobial ultrathinstructures of zein/chitosan blends obtained by electrospinning[J]. Carbohydrate Polymers,2009,77(2):261-266.
    [56] Hongliang Jiang, Pengchang Zhao, Kangjie Zhu. Fabrication and characterization ofzein-based nanofibrous scaffolds by an electrospinning method[J]. MacromolecularBioscience,2007(7):517-525.
    [57] Gordon W. Selling, Kristen Kruger Woods, David Sessa, et al. Electrospun zein fibers usingglutaraldehyde as the cross-linking reagent-effect of time and temperature[J]. Macromol.Chem. Phys,2008,209(10):1003-1011.
    [58] Xu W J, Karst D, Yang W, et al. Novel zein-based eletrospun fibers with the water stabilityand strength necessary for various applications[J]. Polyer Int,2008(57):1110-1117.
    [59] Qiuran Jiang, Narendra Reddy, Yiqi Yang, et al. Cytocompatible cross-linking ofelectrospun zein fibers for the development of water-stable tissue engineering scaffolds[J]Acta Biomaterialia,2010(6):4042-4051.
    [60] Hongme Zeng, Investigation on the PreParation and ProPerties of e1ectrospunPoly(butylenesuceinate)(PBS) nanofibers,2007.10.
    [61] Daming Zhang, Jiang Chang, Yi Zeng, Fabrication of fibrous poly(butylenesuccinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimeticprocess[J].J Master Sci:Mater Med(2008)19:443-449.
    [62] Sasipim Sutthiphong, Prasit Pavasantl, Pitt Supaphol, Electrospun1,6-diisocyanatohexane-extended poly (1,4-butylene succinate) fiber mats and their potentialfor use as bone scaffolds[J]. Polymer2009:1548-1558
    [63]宋亮,聚丁二酸丁二醇醋/多壁碳纳米管复合材料的制备和性能[D],北京化工大学,2009.
    [64]曲微微,俞建勇,刘丽芳,等,可降解黄麻/PBS复合材料的结构与力学性能,纺织学报,2008.8
    [65] Wang H Y, Ji J H, Zhang W, et al. biocompatibility and bioactivity plasma-treatedbiodegradable poly(butylene succinate)[J]. Acta Biomaterialia,2009,5:279-287.
    [66] Tang X J, Wu Q Y, Mesenchymal stem cellular adhesion and cytotoxicity study of randombiopolyester scaffolds for tissue engineering[J]. J Mater Sci: Mater Med2006,17:627–632.
    [67] Shukla R, Cheryan M. Zein: the industrial protein from corn[J]. Industrial Crops andProducts.2001,13(3):171-192.
    [68] Yao C, Li X S, Song T Y. Preparation of zein/poly(lactide-co-glycolide) continuousnanofiber yarns by coupled electrospinning[J]. Polymer Preprints,2007:112-118.
    [69]李珍,王军.电纺丝可纺性影响因素的研究成果[J].合成纤维,2008,9:6-11.
    [70] Deitzel J M,kleinmeyer J,Harris D,et al.The effect of prosessing variables on themorphology of electrospun nanafibers and textiles[J]. Polymer.2001.42:261.
    [71]常丽娜,张幼珠,张晓东.静电纺丝工艺参数对丝素/壳聚糖纳米纤维的形貌及直径的影响,合成纤维,2006,2:14-17.
    [72]潘倩倩,陶然,程丝.共混聚合物体系的静电纺丝及其混容性研究[J].合成纤维工业,2010,33(3):22-25.
    [73] Jeong E H, Im S S, Youk J H. Electrospinning and structural characterization of ultrafinepoly(butylene succinate) fibers[J]. Polymer,2005,46:9538-9543.
    [74]王群旺,熊杰,张红萍,等.聚丁二酸丁二醇酯调控丝素蛋白超细纤维膜形貌及其力学性能[J]复合材料学报,2010,27(5):25-28.
    [75] Kim Y J, Park O O. Miscibility and biodegradability of poly(butylenesuccinate)/poly(butylene terephthalate) blend[J]. Journal of Environmental PolymerDegradation,1999,7(1):53-66.
    [76]张红萍,熊杰,李妮,等.共混聚乳酸调控玉米醇溶蛋白超细纤维膜的形貌与性能[J].高分子材料科学与工程,2011,27(8):57-60.
    [77]王群旺.丝素蛋白与聚丁二酸丁二醇酯复合纳米纤维膜的制备及性能研究[D],浙江理工大学,2010.
    [78] Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of Bombyx mori silk byelectrospinning. Part3: characterization of electrospun nonwoven mat[J]. Polymer.2005,46(5):1625-1634.
    [79] Hosei Shinoda, Yuliko Asoua, Takeshi Kashimaa, et al. Amphiphilic. BiodegradableCopolymer, Poly(aspartic acid-co-lactide):Acceleration of Degradation Rate andImprovement of Thermal Stability for Poly(lactic acid), Poly(butylene succinate) andPoly(ε-caprolactone)[J]. Poly Degradation and Stability,2003,80(2):241-250.
    [80] Shiping Zhang, Jing Yang, Xiaoyun Liu, et al. Synthesis and Characterization of Poly(butylenes-co-butylene malate)[J]. Biomacromolecules,2003,4(2);437-445.
    [81] CHEN D,LIUT X,ZHOU XP,et al.Electrospinning fabrication of high strength and strengthand toughness polyimide nanofiber membranes containing multiwalled carbonnanotubes[J].Journal of Physical Chemistry B,2009,113(29):9741-9748.
    [82] Kathy L Elias,Rachel L Price,Thomas J Webster.Enhanced functions of osteoblasts onnanometer diameter carbon fibers[J].Biomaterials,2002,23:3279-3287.
    [83]康诗钊,万玉青,严会娟,等.含有碳纳米管复合材料的细胞亲和性[J].科学通报,2004,16:1614-1616.
    [84] Shth Y, Chen L, Jeng R. Preparation and properties of biodegradable PBS/multi-walledcarbon nanotube nanocomposites [J].Polylner,2008,49(21):4602-4611.
    [85]赵敏丽,隋刚,杨小平,等.左旋聚乳酸/多壁碳纳米管/羟基磷灰石电纺丝纳米纤维的形态及生物降解性能[J].高分子材料科学与工程,2007,23(1):112-116.
    [86] Saeed K, Park S Y, Lee H J,et al. Preparation of electrospun nanofibers of carbonnanotube/polycaprolactone nanocomposite [J]. Polymer,2006,47:8019-8025.
    [87] J.S.JEONG,J.S.Monn,et al.Mechanical properties of electrospun PVA/MWNTs compositenanofibers[J].Thin Solid Films,2007,515:5136-5141.
    [88] Salvetat J P, Briggs A D, Bonard J M, et al. Elastic and Shear Moduli of Single-WalledCarbon Nanotube Ropes. Phys. Rev. Lett,1999,82:944-947.
    [89] Dong H, Nyame V, et al. Polyaniline/Poly(methy1methacrylate) Coaxial Fibers: TheFabrication and Effects of the Solution Properties on the Morphology of Electrospun CoreFibers[J].Journal of Polymer science:PartB:Polymer Physies,2004,42:3934-3942.
    [90] McCann J T, Marquez M, Xia Y. Melt coaxial electrospinning: a versatile method for theencapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters,2006,6(12):2868-2872.
    [91] Loscertales I G, Barrero A,Marquez M, et al. Electrically forced coaxial nanojets forone-step hollow nanofiber design[J]. Journal of the American Chemical Society,2004,126(17):5376-5377.
    [92] Li M, Mondrinos M J, Chen X S, et al. Co-electrospun poly(lactide-co-glycolide), gelatin,and elastin blends for tissue engineering scaffolds[J]. Biomaterials,2006,79:963-973.
    [93] Shin Y M, Hohman M M, Brenner M P, et al. Experimental characterization ofelectrospinning: the electrically forced jet and instabilities[J]. Polymer,2001,42(25):9955-9967.
    [94] Díaz J E, Barrero A, Márquez M, et al. Controlled encapsulation of hydrophobic liquids inhydrophilic polymer nanofibers by co-electrospinning[J]. Adv Funct Mater,2006,16(16):2110-2116.
    [95] Sun B, Duan B, Yuan X Y. Preparation of Core/Shell PVP/PLA Ultrafine Fibers by CoaxialElectrospinning[J]. Journal of Applied Polymer Science.2006,102(1):39-45.
    [96] Sell S A, McClure M J, Barnes C P, et al. Electrospun polydioxanone–elastin blends:potential for bioresorbable vascular grafts[J]. Biomedical Materials.2006,1(2):72-80.
    [97] Tan S H, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabricationvia electrospinning process[J]. Polymer,2005,46(16):6128-6134.
    [98] G Lewis, Key issues involved with the use of miniature specimens in the characterization ofthe mechanical behavior of polymeric biomaterials-a review [J]. J Biomed Mater Res,2002,63(5):455-466.
    [99] R Johnsson, B Stromqvist, P Aspenberg, Randomized radiostereometric study comparingosteogenic protein-1(BMP-7) and autograft bone in human noninstrumented posterolaterallumbar fusion:2002Volvo Award in clinical studies [J]. Spine,2002,27(23):2654-2661.
    [100] Mosmaan T.Colorimetric assay cellular growth and survival:Application to proliferationand cytotoxity assays.J Immunol Methods,1983,65(11):55.
    [101] Macieira C A, Berumen L,Avrameas S. Properties of protein polymers as substratum forcell growth in vitro[J]. J Cell Physiol,1974,83(3):379-388.
    [102] Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv ColloidInterface Sci,1998,74:69-117.
    [103] Baek H S. Enhanced chondrogenic responses of articular chondrocytes onto porous silkfbroin scaffolds treated with microwave-induced argon plasma[J]. Surface and CoatingsTechnology,2008,202:5794-5797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700