基于高光谱数据的果树理化性状信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以渭北旱塬上的几种代表果树为研究对象,分别基于其冠层或单鲜叶片尺度上的反射光谱数据,对果树的树种、病虫害情、冻害害情、挂果数量、三大营养元素(TN、TP、TK)含量、四种微量元素(Fe、Mn、Cu、Zn)含量等生物理化性状信息进行了探索性提取研究。此研究试图探寻利用地面光谱测试数据对果树理化性状信息进行有效监测、识别的方法与途径,并为我国今后利用机载、星载高(超)光谱传感器来对果树相关理化性状信息进行快速监测做一理论准备。
     主要研究内容及结论如下:
     1.基于处于开花期的7种果树(砂红桃、酥梨、金太阳杏以及秦冠、红嘎那、黄元帅、红富士苹果树)的冠层光谱反射率,探寻了利用地面光谱测试数据对处于开花期的多种果树树种进行有效识别的方法与途径。首先对比分析了各种果树的反射光谱特征;其后通过光谱数据重采样、植被指数求算等相关数据处理,对比分析了6种卫星传感器、4种植被指数分别对7种果树树种的识别效能,并对其识别效能进行了排序;最后在光谱反射率及其22种变式数据中,优选了最佳的数据形式,并在优化模型参数的基础上,建立了识别花期多种果树树种的3层BP神经网络模型。
     主要结论为:(1)6种卫星传感器识别果树树种的效能由强到弱的排列顺序为:MODIS、ETM+、QUICKBIRD、IKONOS、HRG、ASTER;(2)在4种植被指数中,RVI对果树树种的识别效能最强,其次是NDVI,SAVI与DVI的识别效能相对较弱;(3)用MODIS或ETM+传感器的近红外通道与蓝光通道上的反射率数据,求算的RVI与NDVI对果树树种的识别效能相对较强;(4)在R_λ及其22种变换数据中,波长间隔设为9 nm的d~1[㏒(1/R_λ)],是建立BP神经网络模型的首选数据形式;(5)利用波长间隔设为9 nm的d~1[㏒(1/R_λ)]这一数据形式,建立了识别果树树种的3层BP神经网络模型。
     2.基于处于果实成熟期的7种挂果果树(酥梨、满天红柿子、大红袍石榴以及秦冠、黄元帅、套袋红富士、未套袋红富士苹果)的冠层光谱反射率,探寻了利用地面光谱测试数据对处于果实成熟期的多种果树树种进行有效识别的方法与途径。首先对比分析了各种挂果果树的反射光谱特征;其后通过光谱数据重采样、植被指数求算等相关数据处理,对比分析了6种卫星传感器、4种植被指数分别对处于果实成熟期的多种果树树种的识别效能,并分别对其识别效能进行了排序;最后在光谱反射率及其22种变式数据中,优选了最佳的数据形式,并在优化模型参数的基础上,建立了识别处于果实成熟期的多种果树树种的3层BP神经网络模型。
     主要结论为:(1)6种卫星传感器识别果树树种的效能由强到弱的排列顺序为:MODIS、ASTER、ETM+、HRG、QUICKBIRD、IKONOS;(2)在4种植被指数中,RVI对果树树种的识别效能最强,其次是NDVI,SAVI与DVI的识别效能相对较弱;(3)用MODIS或ETM+传感器的近红外通道与红光通道上的反射率数据,求算的RVI与NDVI对果树树种的识别效能相对较强;(4)在R_λ及其22种变换数据中,波长间隔设为9 nm的d1[㏒(1/R_λ)],是建立BP神经网络模型的首选数据形式;(5)利用波长间隔设为9 nm的d1[㏒(1/R_λ)]这一数据形式,建立了识别果树树种的3层BP神经网络模型。
     3.基于3种果树(即酥梨树与秦冠、红富士苹果树,它们是研究区内三大主要果树树种)分别在5个不同时相(开花期、6月中旬、8月中旬、果实成熟期、果实采摘后)中的冠层光谱反射率,分析研究了利用高光谱数据对研究区内三大主要果树树种进行有效识别的最佳时相选取问题。首先对光谱数据进行了预处理,并对3种果树分别在各个时相中的反射光谱特征及其差异进行了对比分析;其后对处于各时相中的3种果树的光谱反射率,求算出其在每一波长处的标准差,并依据与各时相对应的反射率的标准差的大小及其波动变化情形,分析得出了利用高光谱数据对果树树种进行有效识别的最佳时相。
     主要结论为:(1)在5个时相中,3种果树反射率的标准差在各波长处相对较大且波动变化较大者要属开花期和果实成熟期;(2)在果实成熟期中,3种果树反射率的标准差的波动变化相对最大;(3)依据利用多、高光谱遥感影像数据对地物进行分类的先验知识可知,果实成熟期是利用高光谱数据对果树树种进行识别的最佳时相。
     4.基于3种果树(即酥梨、砂红桃、红富士苹果树)4个受冻级别的花朵的光谱反射率数据,对比分析了每种果树各级受冻花朵的光谱特征;利用一阶微分波谱在特征波段区间内的积分求值,分别对3种果树花朵的受冻级别建立了定量化评估模型。
     主要结论为:(1)每种果树各级受冻花朵的反射波谱均在360 nm附近出现了最低谷区,而在360~440 nm的波段区间均出现了坡度最大的陡坎,陡坎坡度的大小顺序为:未受冻级别>轻度受冻级别>中度受冻级别>重度受冻级别,并且陡坎的最大坡度均出现在400 nm附近;(2)当波长间隔同时设为9 nm时,酥梨、砂红桃、红富士苹果树的各级受冻花朵的一阶微分波谱分别在396±20,400±20,410±20 nm波段区间内的积分求值差异最大;(3)利用上述的3组积分值,分别对3种果树花朵的受冻级别建立了定量化评估模型。
     5.基于患有不同程度的红蜘蛛虫害或黄叶病害的红富士苹果树的冠层反射光谱,探寻了红富士苹果树在各级红蜘蛛虫害、黄叶病害胁迫下的反射光谱特征以及利用高光谱数据对果树病、虫害情进行有效测评的方法与途径。首先,分别对各级红蜘蛛虫害、黄叶病害胁迫下的果树的反射光谱特征进行了分析;其后,建立了定量化测评相应病、虫害程度的数学模型。
     主要结论为:(1)各级红蜘蛛虫害对应的反射波谱在630~695 nm波段,R_(重度)>R中度>R_(轻度)>R_(正常),四者在684 nm处变异系数最大;在730~950 nm波段,R_(重度)R_(中度)>R_(轻度)>R_(正常),四者在603 nm处变异系数最大;在740~950 nm波段,R_(重度)     6.以红富士苹果树为例,基于不同挂果量的果树的冠层反射光谱,探寻了不同挂果量的果树的反射波谱特征以及利用光谱数据对果树挂果量进行有效测评的方法与途径。在此子研究中,对比分析了不同挂果量的果树的反射光谱特征,并在优选光谱指数的基础上,建立了测评果实面积比(或果实总重量)的数学模型。
     主要结论为:(1)在560~673,760~950 nm两个波段内,5个级别挂果量分别对应的反射率的大小差异较大,且其反射率分别在634 ,760 nm处变异系数较大。在592,655,696 nm附近的波段内,5条反射波谱的一阶微分值的差异均较大;(2)反射波谱的“红边”位置随果树挂果量(或果实面积比)的增加而依次发生“蓝移”;(3)建立了优选的光谱指数与果实面积比(或果实总重量)之间的数量关系模型。
     7.以红富士苹果树为例,利用其单鲜叶片的光谱反射率以及叶片中的TN、TP、TK含量数据,探试了光谱分析手段估测果树N、P、K营养元素含量的精度与应用潜力。首先对果树叶片中的TN、TP、TK含量与叶片的光谱反射率(R_λ)及其多种变式数据(1/R_λ、lg(1/R_λ)、d1R_λ、d2R_λ、d1[lg(1/R_λ)]、d2[lg(1/R_λ)]、lg(1/BNC)、?′(R_λ)、Dn)之间的相关性强弱分别进行了分析对比,找出了与每种元素含量相关性最强的光谱数据形式;其后采用逐步回归法对每种元素含量和与其相关性最强的光谱数据形式进行了回归分析,得到了入选波长;最后利用入选的波长,进行了基于最小误差平方和的偏最小二乘回归建模。
     主要结论为:(1)叶片TN、TK含量与波长间隔设为5 nm的d1R_λ的相关性最强,TP含量与波长间隔设为9 nm的d1[lg(1/R_λ)]的相关性最强;(2)利用入选的特征波长,建立的估测模型均具有较好的线性趋势,R2均在0.8以上;(3)光谱分析手段对果树N、P、K营养元素含量的估测精度较高,具有一定的应用潜力。
     8.以红富士苹果树为例,利用其单鲜叶片的光谱反射率和叶片中的Fe、Mn、Cu、Zn 4种元素含量数据,探试了光谱分析手段估测果树微量元素含量的精度与应用潜力。首先对果树叶片中的Fe、Mn、Cu、Zn含量与叶片的光谱反射率(R_λ)及其多种变式数据(1/R_λ、lg(1/R_λ)、d1R_λ、d2R_λ、d1[lg(1/R_λ)]、d2[lg(1/R_λ)]、lg(1/BNC)、?′(R_λ)、Dn)之间的相关性强弱分别进行了分析对比,找出了与每种元素含量相关性最强的光谱数据形式;其后采用逐步回归法对每种元素含量和与其相关性最强的光谱数据形式进行了回归分析,得到了入选波长;最后利用入选的波长,进行了基于最小误差平方和的偏最小二乘回归建模。
     主要结论为: (1)叶片Fe、Mn、Cu、Zn含量都与R_λ的相关性较弱,而分别与四点差分的一阶微分光谱?′(R_λ)、波长间隔设为17 nm的d1R_λ、波长间隔设为25 nm的d1R_λ、波长间隔设为15 nm的d1R_λ的相关性最强;(2)用入选的波长建立的估测模型均具有较好的线性趋势,R2均在0.8以上;(3)光谱分析手段估测果树叶片Fe、Mn、Cu、Zn元素含量的精度较高,具有一定的应用潜力。
The paper takes fruit trees as the research object, bases on reflectance spectroscopy of canopy or single leaf of fruit trees, exploratory research on Extraction of the information of Physical and chemical properties of fruit trees(the species of Fruit trees; the characteristics of the spectral reflectance of fuji apple trees which are intimidated by disease or insect pest; the characteristics of the spectral reflectance of fruit trees blossoms suffered frost with different degrees; the relation between the fruit quantity and the spectral reflectance of fuji apple tree; the three major nutrients〈TN, TP, TK〉content, 4 kinds of trace elements〈Fe, Mn, Cu, Zn〉content),the study attempts to explore the effective ways and means to monitor or identify the information of physical and chemical properties of fruit trees.
     The main research content and conclusions are as follows:
     1. Using the spectral reflectance data (R_λ) of canopies, the paper identifis seven species of fruit trees during flowering period. Firstly, it compares the identification capacity of six kinds of satellite sensors and four kinds of vegetation index on the basis of resampling the spectral data with Six kinds of pre-defined filter function and calculating vegetation index. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R_λand optimizing the model parameters.
     The main conclusions are:(1) The order of the identification capacity of Six kinds of satellite sensors from power to weak are : MODIS、ETM+、QUICKBIRD、IKONOS、HRG、ASTER; (2) Among four kinds of vegetation index, the identification capacity of RVI is the most powerful, next is NDVI, the identification capacity of SAVI or DVI is relatively weak; (3) The identification capacity of RVI and NDVI that are calculated with the reflectances of near-infrared and blue channels of ETM + or MODIS sensor are relatively powerful;(4) Among R_λand it`s 22 kinds of transformation data, d1[㏒(1/R_λ)]( derivative gap is set 9 nm) is the best transformation for structuring BP neural network model.
     2. Using the spectral reflectance data (R_λ) of canopies, the paper identifies seven species of fruit trees bearing fruit in the fruit mature period. Firstly, it compares the fruit tree species identification capability of six kinds of satellite sensors and four kinds of vegetation index through re-sampling the spectral data with six kinds of pre-defined filter function and the related data processing of calculating vegetation indexes. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R_λand optimizing the model parameters.
     The main conclusions are: (1) the order of the identification capability of six kinds of satellite sensors from strong to weak is : MODIS, ASTER, ETM +, HRG, QUICKBIRD, IKONOS; (2) among four kinds of vegetation indexes, the identification capability of RVI is the most powerful, the next is NDVI, the identification capability of SAVI or DVI is relatively weak; (3) The identification capability of RVI and NDVI those are calculated with the reflectance of near-infrared and red channels of ETM + or MODIS sensor are relatively powerful;(4) Among R_λand it’s 22 kinds of transformation data, d1[㏒(1/R_λ)]( derivative gap is set 9 nm) is the best transformation for structuring BP neural network model; (5) The paper structures a 3-layer BP neural network model for identifying seven species of fruit trees using the best transformation of R_λwhich is d1[㏒(1/R_λ)]( derivative gap is set 9 nm).
     3. Basing on the spectral reflectance of three species of fruit trees which are in five different period of time, the study Analyses the problem of the best period of time to identify the species of fruit trees, the main conclusions are: the period of autumn is the best period of time to identify the species of fruit trees.
     4. The study attempts to explore the characteristics of the spectral reflectance of fruit trees blossoms suffered frost with different degrees, and try to evaluate quantitatively the levels of fruit trees blossoms suffered frost by spectra data . Firstly, we pretreat the spectra reflectance data of the blossoms of three species of fruit trees suffered frost with four levels , and analyze the spectra characteristics of the frosted fruit trees blossoms .Subsequently, we transform the spectra data by the first derivative with nine kinds of different wavelength intervals, and find out the special wavelength and Special wavelength range, and Select three groups of specific derivative Spectra in the transformation results. Finally, we build the quantitative assessment models for the frosted blossoms of the three Species of fruit trees using the integral values which are calculated by the selected three groups of specific differential Spectra within the corresponding Special wavelength range respectively.
     The main conclusions are:(1) the reflectance spectroscopy of the blossoms suffered frost at each level of each species of the fruit trees emerges the lowest Valley area near 360 nm, and emerges the Scarp with the largest slope within the Wavelength range from 360 nm to 440 nm, the order of the slopes is: no suffered frost >suffered frost lightly >suffered frost moderate > suffered frost severe, the largest slopes of the four Scarps are all near 400 nm;(2) when the wavelength interval is set at 9 nm, the integral values that are calculated by the derivative spectra of the frosted blossoms at all levels of Crisp Pear, Shahong Peach, Fuji apple trees within the Wavelength range 396±20 nm, 400±20 nm, 410±20 nm are respectively the largest; (3) we establish respectively quantitative evaluation models based on the three groups of integral values which mentioned in (2).
     5. Yellow Leaves Disease and Red Mite Insect Pest of FuJi Apple Tree were used as Samples, the research attempts to explore the characteristics of the spectral reflectance of fuji apple trees which are intimidated by disease or insect pest, and try to evaluate quantitatively the degrees of disease or insect pest stress by spectra data.
     The main conclusions are: (1) The Spectral reflectance of each level of red mite insect pest within the wavelength range from 630 to 695 nm, R_(severe)>R_(moderate)>R_(lightly)>R_(normal),the largest Coefficients of variation of the four Reflectances is at 684 nm, within the wavelength range from 730 to 950 nm, Rsevere < R_(moderate) < R_(lightly) R_(lightly)>R_(normal),the largest Coefficients of variation of the four Reflectances is at 603 nm,within the wavelength range from 740 to 950 nm, Rsevere < R_(moderate) < R_(lightly)      6. Red Fuji Apple Tree was used as object of the study, based on the spectra reflectance of apple tree which hanging on the quantity of fruit were not equal, The research attempts to explore the relation between the fruit quantity and the spectral reflectance of fuji apple tree, and try to evaluate quantitatively the fruit quantity with spectra data.
     The main conclusions are: (1) within the wavelength range from 560 to 673 nm, or from 760 to 950 nm, the difference of R_λof five levels of fruit quantity are large, the coefficient of variation of R_λof five levels of fruit quantity is larger when wavelength is 634 or 760 nm. the wavelength range nearby 592 or 655 or 696 nm, the difference of the first derivative spectral reflectance of five levels of fruit quantity is larger. (2) The red border position of the Spectral Reflectance of fruit trees moves to shortwave with the fruit quantity increasing.(3) the quantitive relation model between the optimal spectra index and area ratio of fruit is constructed.
     7.Red Fuji Apple Tree was used as object of study, the spectral reflectance (R_λ) of fresh leaves of fruit trees and the leaves total nitrogen (TN), total phosphorus (TP), total potassium (TK) contents were measured, and analyze the statistical correlation between the each element content and R_λas well as its several transformations (1/R_λ、lg(1/R_λ)、d~1R_λ、d~2R_λ、d~1[lg(1/R_λ)]、 d~2[lg(1/R_λ)]、lg(1/BNC)、f′(R_λ)、Dn) within the wavelength range from 400 nm to 900 nm by factor analysis method, and discover the spectral reflectance variant of the highest correlation coefficient . Subsequently, we carry on the regression analysis of each element content and the corresponding spectral reflectance variant of the highest correlation coefficient by stepwise regression method, and choose the eigenvalue wavelengths with which to carry on partial least squares regression modeling based on the least square error. The research is expected to evaluate the possibility and application potential of the method of spectral analysis on predicting the nutritional element of fruit trees.
     The results show : (1) The correlation coefficientis the highest between the leaves TN or TK content and the first derivative of spectral reflectance with derivative gap = 5 nm; the correlation coefficient is the highest between the leaves TP content and d~1[lg(1/R_λ)] with derivative gap = 9 nm; (2) The regression models that are established using the wavelengths selected by stepwise regression method when Sig(Tt′s a Probability numerical Higher than F detection value) is set to 0.02 and Ramoval is set to 0.03 have the better linear trend , and R2 values are higher than 0.8; (3) The method of spectral analysis have some applications potential to predict TN、TP、TK element of fruit trees .
     8. Red Fuji Apple Tree was used as object of study, the spectral reflectance (R_λ) of fresh leaves of fruit trees and the Fe,Mn,Cu,Zn element contents in the leaves were measured, and analyze the statistical correlation between the each element content and R_λas well as its several transformations (1/R_λ、lg(1/R_λ)、d~1R_λ、d~2R_λ、d~1[lg(1/R_λ)]、d~2[lg(1/R_λ)]、lg(1/BNC)、f′(R_λ)、Dn)within the wavelength range from 400 nm to 900 nm by factor analysis method, and respectively find out the spectral reflectance Variant, which has the highest absolute value of the correlation coefficient with each of the element’s content. Subsequently, we carry on the regression analysis to each element content and the corresponding spectral reflectance variant of the highest Correlation coefficient through the stepwise regression method, and choose the eigenvalue wavelengths with which to carry on partial least squares regression modeling based on the least error square sum. The research is expected to evaluate the possibility and application potential of the method of spectral analysis on predicting trace elements of fruit trees.
     The results show: (1) The correlation between the Fe, Mn, Cu, Zn elements content with R_λis rather weak and the correlation coefficient is the highest between the leaves Fe content and the first derivative of 4 points Difference of spectral reflectance f′(R_λ), or between the leaves Mn content and the first derivative of spectral reflectance with derivative gap = 17 nm d~1R_λ, or between the leaves Cu content and the first derivative of spectral reflectance with derivative gap = 25 nm d~1R_λ, or between the leaves Zn content and the first derivative of spectral reflectance with derivative gap = 15 nm d~1R_λ; (2) The result also show that the regression models that are established using the wavelengths selected when Sig(it′s a Probability numerical Higher than F detection value) is set to 0.01 and Ramoval is set to 0.02 have the better linear trend, and R2 values are higher than 0.8; (3) The method of spectral analysis have some applications potential to predict trace elements of fruit trees .
引文
[1]王宇霖.从世界苹果、梨生产及发展趋势与国际贸易看我国苹果、梨产业存在的问题[J].果树学报, 2001,18(3):127-132.
    [2]汪良驹,章镇,姜卫兵.加入WTO后中国果树业发展对策[J].果树学报, 2001,18(5): 295-299.
    [3]陕西果业发展统计(监测)公报.陕西省统计局. 2003年.
    [4]安贵阳.苹果叶营养元素含量的标准值及其影响因素研究[D].西北农林科技大学硕士研究生论文,2004年5月.
    [5]阿依先木,努尔尼沙.新疆地区红富士苹果栽培中存在的问题与解决途径[J].河北林业科技, 2005,2:34-35.
    [6]李会民,程雪绒.咸阳苹果园土壤养分状况调查及对策[J].北方果树,2002,6: 20-21.
    [7]牛自勉,卜万锁.我国果树发展中应注意的几个趋向性问题[J].山西果树, 1997,3: 2.
    [8]张英利,马爱生,杨岩荣,等.陕西苹果产区土壤养分状况研究初报[J].土壤肥料, 2003,5: 41-42.
    [9]赵世华,潘永祥.宁夏苹果质量偏低的原因与改进措施[J].宁夏农林科技, 1997,5: 27-28.
    [10]扈惠灵,李桂荣,周俊国,等.豫北地区果园土壤硼营养状况调查[J].河南农业科学,2005,11: 82-83.
    [11]姜远茂,彭福田,张宏彦,等.山东省苹果园土壤有机质及养分状况研究[J].土壤通报,2001,32(4):167-169.
    [12]段泽敏,王贤萍,边小虎,等.山西果园土壤肥力状况初步分析[J].山西果树,2000, 3:30.
    [13]刘侯俊.陕西省果园养分状况和钾肥肥效研究[D].西北农林科技大学硕士研究生学位论文,2002年5月.
    [14]马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5):334-339.
    [15]施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究[J].遥感学报,2005,9(1):1-7.
    [16]施润和,庄大方,牛铮,等.叶肉结构对叶片光谱及生化组分定量反演的影响[J].中国科学院研究生院学报,2005,22(5):589-595.
    [17]颜春燕,刘强,牛铮,王长耀.植被生化组分的遥感反演方法研究[J].遥感学报,2004,8(4):300-308.
    [18] Kuusk A. Monitoring of Vegetation Parameters on Large Areas by The Inversion of a Canopy Reflectance Model[J]. Int.J.Remote Sensing, 1998,19(15): 2893-2905.
    [19] Andrieu B, Baret F, Jacquemoud S, et al. Evaluation of an Improved Version of SAIL Model for Simulating Bidirectional Reflectance of Sugar Beet Canopies[J].Remote Sens.Environ, 1997,60:247-257.
    [20] Ganapol B D, Johnson L F, Hammer P D. LEAFMOD: A New Within-Leaf Radiative Transfer Model[J].Remote Sens.Environ, 1998,63:182-193.
    [21] Terence P Dawson, Paul J Curran, Stephen E Plum-mer. LIBERTY-Modeling the Effects of Leaf Biochem-ical Concentration on Reflectance Spectra[J].Remote Sens.Environ, 1998,65:50-60.
    [22] Badwhar G D. Use of LANDSAT-derived profile features for spring small-grains classification[J].Int J Remote Sensing, 1993,7: 65-82.
    [23] Boyd D S, Ripple W J . Potential vegatation indices for determing global forest cover[J].Int J RemoteSensing, 1997, 18(6): 1395-1401.
    [24] Martin M E, Newman J D Aberet ,Congalton R C.De-terming Forest Species Composition Using High Spectral Resolution Remote Sensing Data[J].Remote Sens Environ,1998,65:249-254.
    [25] Atkinson P M, Emery D R. Exploring the relation between spatial structure and wavelength: implications for sampling reflectance in the field[J].Int J Remote Sensing, 1999, 20(13):2663-2678.
    [26] Dungan J. Spatial prediction of vegetation quantities using ground and image data[J].Int J Remote Sensing, 1998, 19(2): 267-285.
    [27] Roberts D A, Gardner M, Church R. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J].Remote Sens Environ,1997,65:267-79.
    [28] Sader S A. Accurcy of Landsat-TM and GIS Rule -based metehods for forest wetland classification in Maine[J].Remote Sens Environ, 1995, 53:133-144.
    [29]牛铮,陈永华,隋智洪.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [30] Curran P J. Remote sensing of foliar chemistry[J]. Remote Sensing Environ,1989,30: 271-278.
    [31] Zagloski F, Pinel V. Forest canopy chemistry with high spectral resolution remote sensing [J]. Int. J. Remote Sensing,1996,17(6):1107-1128.
    [32]王珂,沈掌泉,王人潮,等.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997,13(4):211-214.
    [33]唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004,8(2):185-192.
    [34]刘伟东,项月琴,郑兰芬,童庆禧,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283.
    [35]任红艳,潘剑君,张佳宝.高光谱遥感技术的铅污染监测应用研究[J].遥感信息. 2005,3:34-38.
    [36]杨可明,郭达志,陈云浩.高光谱植被遥感数据光谱特征分析[J].计算机工程与应用, 2006,31:213-222.
    [37]沈艳,牛铮,王汶.基于导数光谱位置变量的干叶片生化组分反演[J].遥感信息.2005,4:7-9.
    [38]张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003, 7(3):176-181.
    [39]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284.
    [40]阮伟利,牛铮.利用统计和物理模型反演植物生化组分的比较[J].中国科学院研究生院学报,2004,21(1):78-83.
    [41]童庆禧,张兵,郑兰芳.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:4.
    [42]常庆瑞,蒋平安,周勇,等.遥感技术导论[M].北京:科学出版社,2004:29
    [43]童庆禧,张兵,郑兰芳.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:55.
    [44]谭昌伟,王纪华,黄文江,等.高光谱遥感在植被理化信息提取中的应用动态[J].西北农林科技大学学报(自然科学版),2005,33(5):151-156.
    [45] PEN Shao-lin, GUO Zhi-hua, WANG Bo-sun.Applications of RS and GIS on Terrestrial Vegetation Ecology[J].Chinese Journal of Ecology.1999,18(5):52-64.
    [46]申广荣,王人潮.植被光谱遥感数据的研究现状及其展望[J].浙江大学学报(农业与生命科学版). 2001,27(6):682-690.
    [47] Purevdor J T, Tateishi R, Ishiyama T, et al. Relationshios between percent vegetation cover andvegetation indices[J].Int J Remote Sensing, 1998,19(18):3519-3535.
    [48] Hurcom S J, Harrison A R. The NDVI and spectral decomposition for semi-arid vegetation abundance estimation [J].Int J Remote Sensing, 1998, 19 (16):3109-3125.
    [49] Toby N, Carlson, David A Ripley. On the Relation between NDVI ,Fractional Vegetation Cover and Leaf Area Index[J].Remote Sens.Environ, 1997, 62:241-252.
    [50] ZHANG Liang-pei, ZHEN Lan-fen, TONG Qin-xi. The Estimation of Vegetation Variables Based on High Resolution Spectra[J].Journal of Remote Sensing,1997,1(2):111-114.
    [51] Michael D Steven. The Sensitivity of the OSAVI Vegetation Index to Observational Parameters[J].Remote Sens.Environ, 1998,63:49-60.
    [52] Qiu J, GAO W, Lesht B M. Inverting optical reflectance to estimate surface properties of vegetation canopies[J].Int J Remote Sensing, 1998,19(4): 641-656.
    [53] Andrew J. Quantifying Vegetation Change in Semiarid Environments:Precision and Accuracy of Spedtral Mixture Analysis and the Normalizde Difference Vegetation Index[J].Remote Sens Environ, 2000, 73: 87-102.
    [54] Badwhar G D. Use of LANDSAT-derived profile features for spring small-grains classification[J].Int J Remote Sensing, 1993,7: 65-82.
    [55] Boyd D S, Ripple W J . Potential vegatation indices for determing global forest cover[J].Int J Remote Sensing, 1997, 18(6): 1395-1401.
    [56] Martin M E, Newman J D Aberet ,Congalton R C.Determing Forest Species Composition Using High Spectral Resolution Remote Sensing Data[J].Remote Sens Environ,1998,65:249-254.
    [57] Atkinson P M, Emery D R. Exploring the relation between spatial structure and wavelength: implications for sampling reflectance in the field[J].Int J Remote Sensing, 1999, 20(13):2663-2678.
    [58] Dungan J. Spatial prediction of vegetation quantities using ground and image data[J].Int J Remote Sensing, 1998, 19(2): 267-285.
    [59] Roberts D A, Gardner M, Church R. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J].Remote Sens Environ,1997,65:267-79.
    [60]宫鹏,浦瑞良,郁斌.不同季相针叶林树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
    [61] TONG Qing-xi, ZHENG Lan-fen,WANG Jin-nian. Hyperspectral remote sensing in China[Z].Wuhan:Multispectral and Hyperspectral Image Acquisition and Processing,Proceedings of SPIE,2001.
    [62] ZHAO Yong-chao,ZHANG Bing,TONG Qing-xi. New Vegetation models for hyperspectral remote sensing,progress of agricultural information technology[A].Beijing:International Academic Publishers,2000.294-300.
    [63] ZHANG Bing,ZHAO Yong-chao,TONG Qing-xi.Hyperspectral remote sensing applied on precision agriculture in China[Z].Beijing: ICAST,Information Technology of Agriculture,2001.
    [64]王长耀,刘正军,颜春燕.成像光谱数据特征选择及小麦品种识别实验研究[J].遥感学报,2006,10(2):249-255.
    [65]邹尚辉.植被资源调查中最佳时相遥感图象的选择研究[J].植物学报, 1985, 27(5): 525-531.
    [66]黄敬峰.新疆植被遥感最佳时相选择研究[J].遥感技术与应用,1993, 8(4): 7-10.
    [67]汪逢熙.棉花遥感识别的最佳时相及地面模式[M].环境监测与作物估产的遥感研究论文集,北京:北京大学出版社, 1991: 86-91.
    [68]黎泽文.棉花种植面积监测方法的研究[J].环境监测与作物估产的遥感研究论文集,北京:北京大学出版社, 1991: 92-98.
    [69]李登科.遥感技术在病虫害调查中的应用[J].陕西气象,1998,3:27-30.
    [70]易玲,杨小唤,江东,等.农作物病虫害遥感监测研究进展[J].甘肃科学学报,2003,15(3):58-63.
    [71]闫峰,李茂松,王艳姣,等.遥感技术在农业灾害监测中的应用[J].自然灾害学报,2006, 15(6):131-136.
    [72]寇有观,萧术.农业遥感[M].北京:农业出版社,1988, 5:222-233.
    [73]林培.农业遥感[M].北京:北京农业大学出版社,1990, 8,228-238.
    [74]金瑞华,张宏民,林培.浅谈生物灾害遥感监测[J].遥感信息,1991,(3),35-37.
    [75]雷莉萍.胡德永,江平,等.森虫害的遥感监测模式研究[J].遥感信息,1995,( 8):228-238.
    [76]戴昌达,唐伶俐,陈刚,等.应用TM图像监测及评估林火、虫灾和洪涝灾害的理论和实践[J].环境遥感,1993,8(2):102-110.
    [77]武红敢,乔彦友.利用陆地卫星TM数据评估森林病虫害[J].遥感技术与应用,1994, 9(4):46-51.
    [78]戴昌达,雷莉平.卫星遥感监测松毛虫[J].遥感信息.1991,(3):32-34.
    [79] Miller J R. Quantitative Characterization of the Vegetation Red Edge Reflectance 1.An inverted-Gaussian Reflectance Model[J].Int J Remote Sensing,1990.11(10):1755-1773.
    [80] G.A.Carter. Ratios of Leaf Reflectance in Narrow Wave bands as Indicators of Plant Stress〔J〕.Int J Remote Sensing,1994,15(3):697-703.
    [81] S.G.Reddy. Influence of Plant Pigments on Spectral Reflectance of Maize.Groundnut and soybean Grown in Semi-arid Environments[J].Inter J Remote Sensing.2001,22(17):3373-3380.
    [82]吴继友,倪健.松毛虫危害的光谱特征与虫害早期探测模式[J].环境遥感.1995,10(4):250-258.
    [83]刘良云,黄木易.利用多时相的高光谱航空图像监测冬小麦条锈病[J].遥感学报,2004,8(3):275-281.
    [84] Rinehart G L, Cathoun J H. Remote sensing of stripe patch and dillar spot on creeping bent-grass and annual blue-grass turfusing visible and near-infrared spectroscopy[J]. Australian Turf-grass Management, 2002, 04:23-27.
    [85]黄木易,王纪华,黄文江,等.冬小麦条锈病的光谱特征及遥感监测[J].农业工程学报,2003,19(6):154-158.
    [86]高娜,石韧,颉耀文.落叶松早落病危害的光谱特征及与叶绿素浓度的关系研究[J].遥感技术与应用, 2007,22(6): 710-714.
    [87]蒋金豹,陈云浩,黄文江.病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究[J].光谱学与光谱分析,2007,27(7):1363-1367.
    [88]乔红波,蒋金炜,程登发.烟蚜为害特征的高光谱比较[J].昆虫知识, 2007,44(1):57-61.
    [89]杨可明,郭达志.植被高光谱特征分析及其病害信息提取研究[J].地理与地理信息科学,2006, 22(4):31-34.
    [90] Malthus T J, Maderia A C. High Resolution Spectral diometry: Spectral Reflectance of Field Bean Leaves Infected by Botrytis Fabae〔J〕. Remote Sens Environ, 1993, 45:107-116.
    [91]闫峰,李茂松,王艳姣,等.遥感技术在农业灾害监测中的应用[J].自然灾害学报, 2006,15(6):131-136.
    [92]张雪芬,陈怀亮,郑有飞,等.冬小麦冻害遥感监测应用研究[J].南京气象学院学报,2006, 29( 1):94-100.
    [93]杨邦杰,王茂新,裴志远.冬小麦冻害遥感监测[J].农业工程学报, 2002, 18(2): 136-140
    [94]王连喜,秦其明,张晓煜.水稻低温冷害遥感监测技术与方法进展[J].气象, 2003, 29(10): 3-7.
    [95]张晓煜,陈豫英,苏占胜,等.宁夏主要作物霜冻遥感监测研究[J],遥感技术与应用,2001,01:56-59.
    [96]郭其乐,张雪芬,余卫东,等. ArcGIS支持下的河南省冬小麦晚霜冻害遥感监测与评估业务系统[J].科技信息(学术研究),2008,23:23-27.
    [97]李章成.作物冻害高光谱曲线特征及其遥感监测[D].北京:中国农业科学院,2008.
    [98]樊科研,田丽萍,薛琳.遥感在农作物估产中的应用与发展[J].安徽农学通报,2006,12(11):145-147.
    [99]江东,王乃斌,杨小唤.我国粮食作物卫星遥感估产的研究[J].自然杂志, 21(6):351-355.
    [100] Idso S B, Pinter P J, Jackson R D, et al. Estimation of Grain Yields by Remote Sensing of Crop Senescence Rates [J].Remote Sens Environ,1980, 9: 87-91.
    [101] Patel N K, Singh T P, Sahai B, et al. Spectral Response of Rice Crop and Its Relation to Yield and Yield Attributes [J]. International Journal of Remote Sensing, 1985, 6(5): 657-664.
    [102] Pinter P J. Infrared the mometry: a remote sensing technique for predicting yield in water stressed cotton [J]. Agricultural Water Management, 1983, 6: 385-395
    [103] Wiegand C L. Vegetation indixes in crop assessments [J]. Remote Sensing of Environment, 1991, 35: 105-119
    [104]吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997, 8(4):519-512.
    [105]黄敬峰,杨忠恩,王人潮,等.基于GIS的水稻遥感估产模型研究[J].遥感技术与应用,2002,17(3):125-128.
    [106]黄敬峰,王人潮,王秀珍,等.冬小麦遥感估产多种模型研究[J].浙江大学学报(农业与生命科学版), 1999,25(5):519-523.
    [107]李建龙,蒋平,戴若兰.RS、GPS和GIS集成系统在新疆北部天然草地估产技术中的应用进展[J].生态学报,1998,18(5): 504-510.
    [108]吕庆喆.农作物遥感估产方法介绍(下) [M].中国统计, 2001,6:55-56.
    [109]颜春燕,刘强,牛铮,等.植被生化组分的遥感反演方法研究[J].遥感学报,2004,. 8( 4): 300-308.
    [110] Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements [J]. Agronomy Journal, 1972(64):11-13.
    [111] Fernandez S, Vidal D, Simon E, et al. Radiometric characteristics of triticum aestivum . astral under water nitrogen stress [J]. International Journal of Remote Sensing ,1994,15(9):1867-1884. [1112] Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus) [J]. Weed Science, 1987, 35 (2): 295-302.
    [113]王人潮,陈铭臻,蒋亨显。水稻估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报,1993,19(增刊):7-14.
    [114]周启发,王人潮.水稻氮素营养水平与光谱特征的关系[J].浙江农业大学学报,1993,19(增刊):40-46.
    [115] Stone, M L, Solie J B, Raun W R, et al. Use of spectral radiance for correctiong in-season fertilizer nitrogen deficiencies in winter wheat[J].Transaction of the ASAE,1996,39(5):1623-1631.
    [116]薛利红,曹卫星,罗卫红,等.小麦叶片氮素状况与光谱特性的相关性研究[J].植物生态学报,2004,28(2):172-177.
    [117] Munden R, Curran P G, Catt J A. The relationship between red edge and chlorophyll concentration in the broad balk winter wheat experiment at Rothamsted[J]. International Journal of Remote Sensing, 1994(15): 705-709.
    [118] Brog N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002(81): 45-57.
    [119]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006(10):3463-3469.
    [120]牛铮,陈永华,隋洪智等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2): 125-130.
    [121]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版), 2001,27(3): 301-306.
    [122] Jensen A, Lorenzen B. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels[J]. International Journal of Remote Sensing, 1990, 11(10): 1809-1820.
    [123] Filella I, Serrano L, Serra J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis[J]. Crop Science, 1995, (35):1400-1405.
    [124] Xue L H, Cao W X, Luo W H, et al. Correlation between leaf nitrogen status and canopy spectral characteristics in wheat[J]. Acta Phytoecologica Sinica,2004, 28(2):172-177.
    [125] Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400~2500 nm) at leaf and canopy scales[J].Remote Sensing of Environment, 1995(53):199-211.
    [126] Lee T, Raja K, Reddy G. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J]. Crop Science, 2000(40):1814-1819.
    [127] Raymond E E J, Remmie B. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status[J]. International Journal of Applied Earth Observation and Geo-information, 2004(5): 205-218.
    [128] Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration [J].Remote Sensing of Environment, 2001(75):153-161.
    [129] Blackmer T M, Schepers J S, Varvel G E, et al. Nitrogen deficiency detection using short wave radiation from irrigated corn canopies[J]. Agrnomy Journal,1996(88):1-5.
    [130]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报, 2003,7(4):277-284.
    [131] Curran P J, Dungan J L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J].Remote Sensing of Environment,2002(39):153-166.
    [139]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:186-228.
    [133]王珂,沈掌泉,王人潮.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997,13(4):211-214.
    [134] Baker A J M.Accumlators and excluders:stradegies in the response of plants to heavy metdals[J].Jounrnal plant Nutrient,1992,3:643-654.
    [135] Ferrier G.. pplication of image spectrometer data in identifying environmental pollution caused by mining at Rdaquilar[J]. Remote sens.Eviron.1999,68:125-137.
    [136] Schwaller M R, Tkack S J.Premature leaf senescence as: remote sensing detection and utility forgeobiochemical prospecting[J]. Econ Geol, 1985,80:250-255.
    [137] Mars J C, Crowley J K. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff southeast Idaho using AVIRIS imagery and digital elevation data[J]. Remote sens.Eviron,2003,84:422-436.
    [138]马跃良,徐瑞松.遥感生物地球化学在找矿勘探中的应用与效果[J].地质与勘探,1999,35(5):39-43.
    [139] Swayze G A.Using imaging spectroscopy to map acidic mine waste[J].Environmental Science and Technology,2000,34:47-54.
    [140]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006.
    [141]田国良,包佩丽,李建军,等.土壤中镉、铜伤害对水稻光谱特性的影响[J],环境遥感,1990, 5(2):140—149.
    [142]郭世忠,田国良.二氧化硫和重金属镉、铜等物质对植物光谱特性的影响[J],环境科学,1984,5(6): 13-18.
    [143]马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5):334-339.
    [144]甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学----中国地质大学学报,2004,29(1):119-126.
    [1]邵咏妮,何勇.可见/近红外光谱预测杨梅汁酸度的方法研究[J]..红外与毫米波学报,2006,25(6):478-480.
    [2] Malthus T J, Maderia A C. spectral reflectance of field bean leaves infected by botrytis fabae [J]. Remote Sens. Environ, 1993,45:107-116.
    [3]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
    [4]牛铮,陈永华,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [5] Grossman Y L, Ustin S L. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information From leaf reflectance data[J].Remote Sensing Environ,1996,56: 182-193.
    [6]高娜,石韧,颉耀文.落叶松早落病危害的光谱特征及与叶绿素浓度的关系研究[J].遥感技术与应用, 2007,22(6): 710-714.
    [7]安贵阳.苹果叶营养元素含量的标准值及其影响因素研究[M].陕西杨凌:西北农林科技大学,2004.
    [8]李港丽,苏润宇,沈隽.几种落叶果树叶内矿质元素含量标准值的研究[J].园艺学报,1987, 14,1987,14(2):81-89.
    [9]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:263-268.
    [10]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006:123.
    [11] Dury S J, Wallis I R, Foley W J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis[J]. Remote Sensing of Environment.2004,3(1-2):18-29.
    [12] Kokaly R F, Clark R N. Spectroscopic determination of leaf bio-chemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J].Remote Sensing of Environment, 1999(67):267-287
    [13]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:278.
    [14]韦玉春,陈锁忠.地理建模原理与方法[M].北京:科学出版社,2007(第二版).
    [15]王志龙,袁勇,潘有江. BP神经网络在水质检测中的应用[J].云南大学学报(自然科学版), 2008,30 (S2): 250-252..
    [16]赵琛,瞿海斌,程翼宇.虫草氨基酸的人工神经网络-近红外光谱快速测定方法[J].光谱学与光谱分析, 2004 ,24 (1) : 50-53.
    [17]武妍,万伟.基于遗传算法设计和训练人工神经网络的方法[J].红外与毫米波学报,2007,26(1):65-68.
    [18]邵咏妮,曹芳,何勇.基于独立组分分析和BP神经网络的可见/近红外光谱稻谷年份的鉴别[J].红外与毫米波学报,2007,26(6):433-436.
    [19] PENG Tao-tao,YAO Jian-bin,DU Li-ming(庞涛涛,姚建斌,杜黎明). Spectroscopy and Spectral Analysis (光谱学与光谱分析) , 2007 ,27 (7) : 1337..
    [20] HUANG Min,HE Yong,CEN Hai-yuan,HU Xing-yue(黄敏,何勇,岑海燕,胡兴越). Spectroscopy and Spectral Analysis (光谱学与光谱分析) , 2007 ,27 (5) : 917.
    [1]童庆禧,张兵,郑兰芳.高光谱遥感的多学科应用[M].北京:电子工业出版社.2006:55.
    [2]安贵阳.苹果叶营养元素含量的标准值及其影响因素研究[D].陕西杨凌:西北农林科技大,2004.
    [3]赵琛,瞿海斌,程翼宇.虫草氨基酸的人工神经网络-近红外光谱快速测定方法[J].光谱学与光谱分析, 2004 ,24 (1) : 50-53.
    [4]武妍,万伟.基于遗传算法设计和训练人工神经网络的方法[J].红外与毫米波学报,2007,26(1):65-68.
    [5]邵咏妮,曹芳,何勇.基于独立组分分析和BP神经网络的可见/近红外光谱稻谷年份的鉴别[J].红外与毫米波学报,2007,26(6):433-436.
    [6] PENG Tao-tao,YAO Jian-bin,DU Li-ming(庞涛涛,姚建斌,杜黎明). Spectroscopy and Spectral Analysis (光谱学与光谱分析) , 2007 ,27 (7) : 1337..
    [7] HUANG Min,HE Yong,CEN Hai-yuan,HU Xing-yue(黄敏,何勇,岑海燕,胡兴越). Spectroscopy and Spectral Analysis (光谱学与光谱分析) , 2007 ,27 (5) : 917.
    [8]邹尚辉.植被资源调查中最佳时相遥感图象的选择研究[J].植物学报, 1985, 27(5): 525-531.
    [9]黄敬峰.新疆植被遥感最佳时相选择研究[J].遥感技术与应用,1993, 8(4): 7-10.
    [10]汪逢熙.棉花遥感识别的最佳时相及地面模式[M].环境监测与作物估产的遥感研究论文集,北京:北京大学出版社, 1991: 86-91.
    [11]黎泽文.棉花种植面积监测方法的研究[J].环境监测与作物估产的遥感研究论文集,北京:北京大学出版社, 1991: 92-98.
    [1]王玉堂.果树晚期霜冻及预防措施[J].河北果树, 2006,02:45-50.
    [2]潘换来.果树晚霜冻害的前后防御[J].北京农业, 2001,01:56-58.
    [3]李民赞.光谱分析技术及其应用[M].北京:科学出版社.2006.177.
    [4]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006:123.
    [5] Dury S J, Wallis I R, Foley W J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis [J].Remote Sensing of Environment. 1993(1-2):18-29.
    [6] Kokaly R F, Clark R N. Spectroscopic Determination of Leaf Bio-chemistry Using Banddepth Analysis of Absorption Features and Stepwise Multiple Linear Regression [J].Remote Sensing of Environ-ment,1999(67):267-287.
    [7] Kokaly R F. Investigating a Physical Basis for Spectroscopic Estimates of Leaf nitrogen Concentration[J].Remote Sensing of Environment,2001(75):153-161.
    [1]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:2-4.
    [2]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000: 2.
    [3] Rinehart G L, Cathoun J H. Remote sensing of stripe patch and dillar spot on creeping bent-grass and annual blue-grass turfusing visible and near-infrared spectroscopy[J]. Australian Turf-grass Management,2002, 04:23-27.
    [4]黄木易,王纪华,黄文江,等.冬小麦条锈病的光谱特征及遥感监测[J].农业工程学报,2003,19(6):154-158.
    [5]高娜,石韧,颉耀文.落叶松早落病危害的光谱特征及与叶绿素浓度的关系研究[J].遥感技术与应用, 2007,22(6): 710-714.
    [6]蒋金豹,陈云浩,黄文江.病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究[J].光谱学与光谱分析,2007,27(7):1363-1367.
    [7]乔红波,蒋金炜,程登发.烟蚜为害特征的高光谱比较[J].昆虫知识, 2007,44(1):57-61.
    [8]杨可明,郭达志.植被高光谱特征分析及其病害信息提取研究[J].地理与地理信息科学,2006,22(4):31-34.
    [9] Malthus T J, Maderia A C. High Resolution Spectral diometry: Spectral Reflectance of Field Bean Leaves Infected by Botrytis Fabae〔J〕. Remote Sens Environ, 1993, 45:107-116.
    [10]吴继友,倪健.松毛虫危害的光谱特征与虫害早期探测模式[J].环境遥感,1995,10(4):250-258.
    [11]刘良云,黄木易,黄文江.利用多时相的高光谱航空图像监测冬小麦条锈病[J].遥感学报,2004,8(3):275-281.
    [12]吴彤,倪绍祥,李云梅.基于地面高光谱数据的东亚飞蝗危害程度监测[J].遥感学报,2007,11(1): 103-108.
    [1] Idso S B, Pinter P J, Jackson R D, et al. Estimation of Grain Yields by Remote Sensing of Crop Senescence Rates[J].Remote Sens Environ,1980, 9: 87-91.
    [2] Patel N K, Singh T P, Sahai B, et al. Spectral Response of Rice Crop and Its Relation to Yield and Yield Attributes [J].International Journal of Remote Sensing, 1985, 6(5): 657-664.
    [3] Pinter P J. Infrared the mometry: a remote sensing technique for predicting yield in water stressed cotton [J].Agricultural Water Management, 1983, 6: 385-395
    [4] Wiegand C L. Vegetation indixes in crop assessments [J]. Remote Sensing of Environment, 1991, 35: 105-119
    [5]吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997, 8(4):519-512.
    [6]黄敬峰,杨忠恩,王人潮,等.基于GIS的水稻遥感估产模型研究[J].遥感技术与应用,2002,17(3):125-128.
    [7]蒋金豹,陈云浩,黄文江.病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究[J].光谱学与光谱分析,2007,27(7):1363-1367.
    [8]刘良云,黄木易,黄文江.利用多时相的高光谱航空图像监测冬小麦条锈病[J].遥感学报,2004,8(3):275-281.
    [9]吴彤,倪绍祥,李云梅.基于地面高光谱数据的东亚飞蝗危害程度监测[J].遥感学报,2007,11(1):103-108.
    [1] Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements [J]. Agronomy Journal, 1972(64):11-13.
    [2] Fernandez S, Vidal D, Simon E, et al. Radiometric characteristics of triticum aestivum . astral under water nitrogen stress [J]. International Journal of Remote Sensing ,1994,15(9):1867-1884.
    [3] Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus) [J]. Weed Science, 1987, 35 (2): 295-302.
    [4] Wang R C, Chen M Z, Jiang H X. Studies on agronomic mechanism of the rice yield estimation by remote sensing. The rice reflectance characteristics of different nitrogen levels and the selection of their sensitive bands [J]. Journal of Zhejiang Agricultural University, 1993(19): 7-14.
    [5] Zhou Q F, Wang R C. A preliminary study on the relationship between the nitrogen levels and the spectral characteristics. Journal of Zhejiang Agricultural University, 1993(19): 40-46.
    [6] Stone, M L, Solie J B, Raun W R, et al. Use of spectral radiance for correctiong in-season fertilizer nitrogen deficiencies in winter wheat[J].Transaction of the ASAE,1996,39(5):1623-1631.
    [7]薛利红,曹卫星,罗卫红,等.小麦叶片氮素状况与光谱特性的相关性研究[J].植物生态学报,2004,28(2):172-177.
    [8] Munden R, Curran P G, Catt J A. The relationship between red edge and chlorophyll concentration in the broad balk winter wheat experiment at Rothamsted[J]. International Journal of Remote Sensing, 1994(15): 705-709.
    [9] Brog N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002(81): 45-57.
    [10]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006(10):3463-3469.
    [11]牛铮,陈永华,隋洪智等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2): 125-130.
    [12]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版), 2001,27(3): 301-306.
    [13] Jensen A, Lorenzen B. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels[J]. International Journal of Remote Sensing, 1990, 11(10): 1809-1820.
    [14] Filella I, Serrano L, Serra J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis[J]. Crop Science, 1995, (35):1400-1405.
    [15] Xue L H, Cao W X, Luo W H, et al. Correlation between leaf nitrogen status and canopy spectral characteristics in wheat[J]. Acta Phytoecologica Sinica,2004, 28(2): 172-177.
    [16] Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400~2500 nm) at leaf and canopy scales[J].Remote Sensing of Environment, 1995(53):199-211.
    [17] Lee T, Raja K, Reddy G. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J].Crop Science, 2000(40):1814-1819.
    [18] Raymond E E J, Remmie B. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status[J]. International Journal of Applied Earth Observation and Geo-information, 2004(5): 205-218.
    [19] Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration [J].Remote Sensing of Environment, 2001(75):153-161.
    [20] Blackmer T M, Schepers J S, Varvel G E, et al. Nitrogen deficiency detection using short wave radiation from irrigated corn canopies[J]. Agrnomy Journal,1996(88):1-5.
    [21]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报, 2003,7(4):277-284.
    [22] Curran P J, Dungan J L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration [J].Remote Sensing Environ,2002(39):153-166.
    [23]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:186-228.
    [24]王珂,沈掌泉,王人潮.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997,13(4):211-214.
    [25]安贵阳.苹果叶营养元素含量的标准值及其影响因素研究[D].陕西杨凌:西北农林科技大学,2004.
    [1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:275.
    [2] Thomas J R, Oerther G F. Estimating Nitrogen Content of Sweet Pepper Leaves by Reflectance Measurements[J].Agronomy Journal,1972(64):11-13.
    [3] Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus)[J]. Weed Science, 1987,35 (2): 295-302.
    [4] Wang R C, Chen M Z, Jiang H X. Studies on agronomic mechanism of the rice yield estimation by remote sensing. The rice reflectance characteristics of different nitrogen levels and the selection of their sensitive bands[J]. Journal of Zhejiang Agricultural University, 1993(19): 7-14.
    [5] Zhou Q F, Wang R C. A preliminary study on the relationship between the nitrogen levels and the spectral characteristics. Journal of Zhejiang Agricultural University, 1993(19): 40-46.
    [6] Stone M L, Solie J B, Raun W R, et al. Use of Spectral Radiance for Correctiong in-season Fertilizer Nitrogen Deficiencies in Winter Wheat[J].Transaction of the ASAE,1996,39(5):1623-1631.
    [7]薛利红,曹卫星,罗卫红,等.小麦叶片氮素状况与光谱特性的相关性研究[J].植物生态学报,2004,28(2):172-177.
    [8] Munden R, Curran P J,Catt J A. The relationship between red edge and chlorophyll concentration in the broad balk winter wheat experiment at Rothamsted [J]. International Journal of Remote Sensing, 1994(15): 705-709.
    [9] Broge N H,Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002(81): 45-57.
    [10]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006(10):3463-3469.
    [11]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [12]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版), 2001,27(3): 301-306.
    [13]马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5): 334 -339.
    [14]甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学—中国地质大学学报,2004,29(1):119-126.
    [15]安贵阳.苹果叶营养元素含量的标准值及其影响因素研究[D].陕西杨凌:西北农林科技大学,2004.
    [16]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700