石灰石粉作混凝土掺合料的性能研究及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰石粉作为混凝土掺合料已越来越多的出现在实际工程中,但在使用过程中仍存在工作性能、力学性能和耐久性能等方面的问题。为此,本文分析研究了石灰石粉作混凝土掺合料的性能和机理。
     用Marsh法测定了石灰石粉与减水剂的适应性;利用砂浆强度试验测定了石灰石粉的比强度;利用干缩试验测定了含石灰石粉水泥基材料的稳定性,用水化热试验测定了石灰石粉对水泥水化放热的影响;利用XRD、SEM-EDS、IR等测试方法研究了含石灰石粉胶凝材料的水化机理和微观结构;利用改进的绝对体积法制备了含石灰石粉的混凝土;利用酸、碱、盐侵蚀法,冻融循环法和氯离子渗透法研究了含石灰石粉混凝土的耐久性;运用图像分析法和压汞法研究了含石灰石粉混凝土的孔结构;运用灰色理论对含石灰石粉混凝土的氯离子渗透性与孔结构的关系进行了研究。
     结果表明,聚羧酸系减水剂与含石灰石粉水泥浆体的适应性最佳,而且随着石灰石粉掺量的增加,浆体的流动度逐渐增大。按照石灰石粉掺量30%计算,石灰石粉1d强度比为80.3%,随着龄期的增长石灰石粉的强度比逐渐减小。石灰石粉掺入会使水泥砂浆干缩率增大,但掺量30%试样28d的干缩率小于0.1%。石灰石粉掺入会降低水泥的水化放热,石灰石粉掺入30%的情况下,可以降低水泥的水化放热量21%。
     含石灰石粉试样中有单碳水化铝酸钙Ca4Al2O6·CO3·11H2O存在,其形貌呈层片状,不规则排列。含石灰石粉水泥硬化浆体中,发现部分方解石周围存在凝胶及氢氧化钙晶体;部分方解石周围有层片状结构的水化产物生成。含石灰石粉试样在90d龄期之内,Si-O非对称伸缩的吸收频率没有出现向高波数方向移动,石灰石粉的存在没有改变水泥水化产物结构的聚合度。
     强碱溶液或高浓度硫酸盐腐蚀3个月,对含石灰石粉混凝土没有形成侵蚀破坏,反而强度有所增加。强酸腐蚀3个月,含石灰石粉混凝土的腐蚀现象较明显,但增大石灰石粉的比表面积则可以明显改善混凝土的抗酸性能。冻融循环50次对含石灰石粉混凝土基本无损害;冻融循环200次,石灰石粉掺量30%的混凝土质量损失3.84%,而复掺形式混凝土的抗冻性能良好,质量损失均小于2.0%。石灰石粉混凝土的28d龄期氯离子渗透系数大于3.0×10-12m2/s,而经过长龄期养护、提高石灰石粉的细度或者与其它掺合料复掺均可降低氯离子渗透系数至1.0×10-12m2/s以内。
     从三个维数对含石灰石粉混凝土的孔结构参数:孔表面粗糙度Dr、孔轴线曲折度Dm和孔空间分布特征值Db分别进行了分析研究,结果表明:所配制混凝土的孔表面粗糙度介于1.000-1.053之间,其中含石灰石粉混凝土的孔表面粗糙度较大,随着龄期的增长孔粗糙度逐渐减小;所配制混凝土的孔轴线曲折度介于2.390-2.444之间,粉体的颗粒形貌对于混凝土孔曲折度的影响较大,含石灰石粉混凝土具有较大的孔轴线曲折度,龄期增长孔曲折度逐渐增大;所配制混凝土的孔空间分布特征值介于3.067-3.188之间,石灰石粉的掺入增加了混凝土的孔体积分形维数,使混凝土孔空间分布更复杂,龄期增长孔空间分布特征值逐渐增大。
     根据灰色关联理论,计算差分还原方程结果表明,含石灰石粉混凝土的氯离子渗透性与孔表面粗糙度、孔轴线曲折度以及孔空间分布特征值密切相关。三种孔结构参数对混凝土氯离子渗透性影响的显著性依次为:孔轴线曲折度>孔空间分布特征值>孔表面粗糙度。
With the application of ground limestone in concrete structure project, many problems about concrete workability, mechanics and durability appeared. In this paper, performance and mechanism for concrete with ground limestone were studied.
     Workability, mechanics, and volume stability of cement containing ground limestones were determined by Marsh cone test, mortar strength and shrinkage test, respectively. The mechanism and microstructure of binder with ground limestones was studied using XRD, SEM-EDS, and IR. The concrete containing ground limestone were prepared by improved absolutely volume method. The durability of concrete containing ground limestones was studied by the acid, alkali, salt erosion test, freezing and thawing test and the chloride ion penetration test. The pore structure of concrete containing ground limestones was studied by MIP and image analysis. The relationship between chloride ion penetration and pore structure was studied by the gray systems theory.
     The results showed that the compatibility between cement paste with ground limestones and polyaliphatic-type superplasticizers was better than the other superplasticizers, the fluidity of paste gradually increased as ground limestone content increasing. The strength ratio of the sample with 30% ground limestone was 80.3% at 1 day. The drying shrinkage rate of cement mortar increased with ground limestone content increasing, while the drying shrinkage rate was less than 0.1% when the sample containing 30% ground limestone for 28 days. The hydration heat of the cement reduced 21% by mixing 30% ground limestone.
     There were some hydration products in the cement paste with ground limestone, which was Ca4Al2O6?CO3?11H2O with lamellar crystal and irregular arrange. Some calcites were wrapped by the gel and calcium hydroxide crystals, and some calcites were wrapped by the lamellar crystals. The asymmetric stretching absorption frequency of Si-O of cement containing ground limestone didn’t shift to higher wave number within 90 days, and the ground limestones didn’t change the polymerization degree of cement hydration products structure.
     The durability experiments showed that the concrete with finer ground limestone didn’t have significant corrosion, but the concrete with coarse one had obviously been corraded by acid. No corrosion was found when concrete dipped in the alkali and high concentration salt solution. The maximum mass loss of concrete was 3.84% after 200 freeze-thaw cycles, but the concrete with complex minerals was less than the 2.0%. The chloride ion diffusibility coefficient reduced to less than 1.0×10-12m2/s as curing time increased, ground limestone fineness increased, or complexed with other mineral addtives.
     Pore struture of concrete containing ground limestone were studied at one dimension level, two dimensions level, and three dimensions level. The results showed that surface fractal dimension (roughness) ranged from 1.000 to 1.053, the roughness of concrete with ground limestone was larger than that of concrete without mineral additive. The pore axis fractal dimension (tortuousness) ranged from 2.390 to 2.444, the tortuous of concrete with ground limestone was large due to the ground limestone grain characteristic. The pore volume fractal dimension (spatial distribution) ranged from 3.067 to 3.188, the spatial distribution of concrete increased with ground limestone.
     According to the grey relational theory, the chloride permeability of concrete with ground limestone was closely related to the pore roughness, tortuous and spatial distribution, and the significant sequence of three impact factors were the tortuousness, the spatial distribution, and the roughness.
引文
[1]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:14-19.
    [2] DAVIS R E, CARLSON R W, et al. Properties of cement and concretes containing Fly ash[J]. ACI Journal Proceeding, 1937,33: 577-612.
    [3] GRUN R.The application of blast furnace slag in cement industry(in German)[J]. Stahl u Eisen, 1942, 62:301-307.
    [4]刘数华,阎培渝.石粉作为碾压混凝土掺合料的利用和研究综述[J].水力发电, 2007(1): 69-71.
    [5]左振军.三大因素调控水泥工业发展—我国水泥工业发展保障条件分析[J].中国水泥, 2004(10): 30-34.
    [6] BONAVETTI V, DONZA H, MENENDEZ G, et al. Limestone filler cement in low w/c concrete: Arational use of energy[J]. Cement and Concrete Research,2003,33: 865-871.
    [7] TSIVILIS S, BATIS G, CHANIOTAKIS E, et al. Properties and behavior of limestone cement concrete and mortar[J]. Cement and Concrete Research,2000,30:1679-1683.
    [8] VOGLIS N, KAKALI G, CHANIOTAKIS E, et al. Portland-limestone cements. Their properties and hydration compared to those of other composite cements[J]. Cement & Concrete Composites, 2005,27:191-196.
    [9] HAJIME O, MASAHIRO O.Self-compacting concrete:development, present use and future[A]. In:Proceedings of 1st international RILEM Symposium on self-compacting concrete[C]. Stockholm, Sweden, 1999:3-14.
    [10] SONEBI M. Medium strength self-compacting concrete containing fly ash:Modelling using factorial experimental plans[J]. Cement and Concrete Research,2004,34(7):170-178.
    [11]涂成厚.石灰石粉的应用[J].国外建材科技.1999.12:47-51.
    [12]林宗寿.无机非金属材料工学[M].武汉:武汉工业大学出版社,1999,15-16.
    [13]陆平,陆树标. CaCO3对C3S水化的影响[J].硅酸盐学报,1987,15(4):289-293.
    [14]章春梅,RAMACHANDRAN V S.碳酸钙微集料对硅酸三钙水化的影响[J].硅酸盐学报, 1988, 16(2): 110-111.
    [15]杨华山,方坤河,涂胜金,等.石灰石粉在水泥基材料中的作用及其机理[J].混凝土, 2006, (6): 32-33.
    [16]李步新,陈峰.石灰石硅酸盐水泥力学性能研究[J].建筑材料学报,1998,1(2):186-187.
    [17] KAKALI G, TSIVILIS S, AGGELI E, et al. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cement and Concrete Research,2000,30:1073-1077.
    [18] VOGLIS N, KAKALI G, CHANIOTAKIS E, et al. Portland-limestone cements. Their properties and hydration compared to those of other composite cements[J]. Cement & Concrete Composites, 2005(27):191-196.
    [19] NEHDI M, MINDESS S. Optimization of high strength limestone filler cement mortars[J]. Cement and Concrete Research,1996,26:883-893.
    [20]胡曙光,李悦,陈卫军,等.石灰石混合材掺量对水泥性能的影响[J].水泥工程, 1996 (2): 22-23.
    [21] MUSTAFA S, CHRISTIANTO H A, ISMAIL O Y. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars[J]. Cement & Concrete Composites, 2006,28:432-440.
    [22]陈剑雄,崔洪涛,陈寒斌,等.掺入超细石灰石粉的混凝土性能研究[J].施工技术, 2004, 33(4): 39-40.
    [23]陈剑雄,李鸿芳,陈寒斌.石灰石粉超高强高性能混凝土性能研究[J].施工技术, 2005, 34(4): 27-28.
    [24]陈剑雄,李鸿芳,陈寒斌,等.掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J].建筑材料学报, 2005,8(6):672-673.
    [25] MENENDES G, BONAVETTI V, IRASSAR E F. Strength development of ternary blended cement with limestone filler and blast-furnace slag[J]. Cement & Concrete Composites, 2003(25): 61-67.
    [26] CARRASCO M F, MENENDEZ G, BONAVETTI V, et al. Strength optimization of“tailor-made cement”with limestone filler and blast furnace slag[J]. Cement and Concrete Research, 2005(35): 1324-1331.
    [27]雷昌聚.掺磨细石灰石粉混凝土的试验与应用[J].混凝土. 1996(4):21-25, 31.
    [28] HARTSHORN S A, SHARP J H, SWARMY R N. Thaumasite formation in Portland-limestone cement pastes[J].Cement and Concrete Research ,1999,29:1331-1340.
    [29] G. Kakali, S. Tsivilis, A. Skaropoulou, et al. Parameters affecting thaumasite formation in limestone cement mortar[J]. Cement & Concrete Composites, 2003, 25: 977-979.
    [30] HARTSHON S A, SHARP J H, SWAMY R N. Thaumasite formation in Portland-limestone cement pastes[J].Cement and Concrete Research ,1999,29:1331-1340.
    [31] TORRES S M, SHARP J H, SWAMY R N, et al. Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack[J]. Cement & Concrete Composites, 2003,25:947-954.
    [32] TORRES S M, LYNSDALE C J, SWAMY R N, et al. Microstructure of 5-year-old mortars containing limestone filler damaged by thaumasite[J]. Cement and Concrete Research, 2006, 36(2): 384-394.
    [33] JUSTNES H. Thaumasite formed by sulfate attack on mortar with limestone filler[J]. Cement& Concrete Composites, 2003,25: 955-959.
    [34] IRASSAR E F, BONAVETTI V L, TREZZA M A, et al. Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20℃[J]. Cement & Concrete Composites, 2005(27):77-84.
    [35] JUSTNES H. Thaumasite formed by sulphate attack on mortar with limestone filler[J]. Cement & Concrete Composites, 2003(25):955-959.
    [36]冯乃谦,高性能混凝土[J].混凝土与水泥制品.1993(2):6-10,18.
    [37] HAJIME O, MASAHIRO O. Self-compacting concrete:development, present use and future[A].In:Proceedings of 1st international RILEM Symposium on self-compacting concrete[C]. Stockholm, Sweden, 1999: 3-14.
    [38] JOHNSEN V, ANDERSEN P J. Particle packing and concret properties[A]. John L.Tassoulas Fourteeth Engineering Me-chanics Conference. Texas:the University of Texas at Austin[C], 1991, 1501-1502.
    [39] STOVALL T, DELARRARD F, BUIL M. Linear packing density model of grain mixture[J]. Powder Technology, 1986, 48(1):1-12.
    [40] STANDISH N, BORGER D E. The porosity of particulate mixture[J]. Powder Technology, 1979, 22: 121-125.
    [41] MEHTA P K. Influence of fly ash characteristics on the strength of portland-fly ash cement[J]. Cement and Concret Research, 1985,15(4):669-674.
    [42] SONEBI M. Medium strength self-compacting concrete containing fly ash:Modelling using factorial experimental plans[J]. Cement and Concret Research, 2004,34(7):1199-1208.
    [43] EFNARC. Specification and Guidelines for self-compacting concrete ,February 2002[S].
    [44] YAHIA A, TANIMURA M, SHIMOYAMA Y. Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio[J]. Cement and Concrete Research, 2005(35):532-539.
    [45] FELEKOGLU B, TOSUN K, BARADAN B, et al. The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars[J]. Cement and Concrete Research, 2006(36):1719-1726.
    [46] FELEKOGLU B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case)[J]. Resources Conservation and Recycling.2007(51):770-791.
    [47]陈雷,肖佳,陶路.超塑化剂和水泥与石灰石粉的相容性[J].低温建筑技术.2008(2):10-12.
    [48]唐婵娟,吴笑梅,樊粤明,等.磨细石灰石粉对水泥性能的影响[J].水泥.2008(8):1-5.
    [49]王建华,肖佳,赵金辉.石灰石粉对水泥与高效减水剂相容性的影响[J].应用研究. 2008 (11): 59-61.
    [50]马烨红,吴笑梅,樊粤明.石灰石粉作掺合料对混凝土工作性能的影响[J].混凝土. 2007(6): 56-59.
    [51] MIKANOVIC N, JOLICOEUR C. Influence of superplasticizers on the rheology and stability of limestone and cement pastes[J]. Cement and Concrete Research, 2008 (38): 907- 919.
    [52]杨华山,方坤河,涂胜金.石灰石粉对水泥基材料流变性和强度的影响[J].中国农村水利水电. 2008(12):105-107.
    [53]董刚.粉煤灰和矿渣在水泥浆体中的反应程度研究[D].中国建筑材料科学研究总院. 2008: 140-156.
    [54]刘数华,阎培渝.石灰石粉在复合胶凝材料中的水化性能[J].硅酸盐学报. 2008. 36(10): 1401-1405.
    [55]李卫超,刘桂羽,魏晓军.石灰石粉对混凝土性能的影响[J].山东建材.2007,4:41-44.
    [56]洪锦祥,蒋林华,肖玉明,王嘉琪.石灰石石屑混凝土力学性能研究[J].混凝土与水泥制品. 2002.8:7-9.
    [57] HAQUE M N. A discussion of the paper“Influence of superplasticizer, plasticizer and silica fume on the drying shrinkage of high-strength concrete subjected to hot-dry field condition”by S. H. Alasayed[J]. Cement and Concrete Research, 2000, 30(6): 835-836.
    [58] BISSONNETTE B, PIERRE P, PIGEN M. Influence of key parameters on drying shrinkage of cementitious materials[J]. Cement and Concrete Research, 1999, 10(29): 1655-1662.
    [59]邓德华,肖佳,元强,等.水泥基材料的碳硫硅钙石型硫酸盐侵蚀(TSA)[J].建筑材料学报. 2005, 10(5):532-536.
    [60] EDEN M A. The laboratory investigation of concrete affected by TSA in the UK[J]. Cement & Concrete Composites, 2003,25(8):847-850.
    [61] CRAMMOND N J. The occurrence of thaumasite in modern construction—A review[J]. Cement & Concrete Composites, 2002,24 (3-4):393-402.
    [62] SIMS I, HUNTLEY S A. The thaumasite form of sulfate attack-breaking the rules[J]. Cement & Concrete Composites, 2004,26(7):837-844.
    [63] V.HEES R P J, WIJFFELS T J, van der KLUGT L J A R. Thaumasite swelling in historic mortars: field observations and laboratory research[J]. Cement & Concrete Composites, 2003, 25(8): 1165-1171.
    [64] SADANAND S, STEVE B, NIELS T. Mechanism of thaumasite formation in concrete slabs on grade in Southern California [J]. Cement & Concrete Composites,2003,25(8):889-897.
    [65] LONGWORTH T I. Contribution of construction activity to aggressive ground conditions causing the thaumasite form of sulfate attack to concrete in pyritic ground[J]. Cement & Concrete Composites, 2003,25(8):1005-1013.
    [66]高礼雄,姚燕,王玲,等.碳硫硅钙石的形成及其对混凝土性能的影响[J].建筑材料学报. 2005, 8(4): 431-435.
    [67] HARTSHORN S A, SWAMY R N, SHARP J H. Engineering properties and structural implications of Portland limestone cement mortar exposed to magnesium sulphate attack[J]. Advances in Cement Research, 2001, (13): 31-46.
    [68]王冲,蒲心诚,陈科,等.超低水胶比水泥浆体材料的水化进程测试[J].材料科学与工程学报. 2008, 6: 852-857.
    [69]吴中伟.高性能混凝土(HPC)的发展趋势与问题[J].建筑技术, 1998, 1:8-10.
    [70] ZAID H, DANIEL L. Design and construction of the world first ultra-high performance concrete road bridges[C]. Proceeding of the International Symposium on Ultra-high Performance Concrete, Kassel, Germany, 2004, 9:39-48.
    [71] FENG X, GARBOCZE E.J. Estimation of the degree of hydration of blended cement pastes by Scanning Electron Microscope point counting procedure [J]. Cement and Concrete Research, 2004, 34:1787-1793.
    [72]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉工业大学出版社, 1991: 201-202.
    [73] YANG Y, SATO R, KAWAI K. Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages [J]. Cement and Concrete Research, 2005, 35:449-456.
    [74] VIOLETA B B. SCC mixes with poorly graded aggregate and high volume of limestone filler[J]. Cement & Concrete Composites, 2003(33):1279-1286.
    [75] KAKALI G, TSIVILIS S, AGGELI E. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cement & Concrete Composites, 2000(30):1073-1077.
    [76] KLEMM W A and ADAMA L D. Carbonate additions to cement[M]. ASTM STP1064, American Society for Testing and Materials, Philadelphia, PA,1990:60.
    [77] KUZEL H J, POLLMANN H. Hydration of C3A in the presence of Ca(OH)2, CaSO4·2H2O and CaCO3[J]. Cement and Concrete Research 1991, 21:885-895.
    [78] BONAVETTI V L, RAHHAL V F, IRASSAR E F. Studies on the carboaluminate formation in limestone filler-blended cements[J]. Cement and Concrete Research 2001,31:853-859.
    [79]阎培渝,张庆欢.活性或惰性掺合料对复合胶凝材料水化性能的影响[J].铁道科学与工程学报. 2007(2):1-7.
    [80] BENTZ D P. Three-dimensional computer simulation of cement hydration and microstructure development[J]. J Am Ceram Soc 1997;80(1):3-21.
    [81]李永鑫.含钢渣粉掺合料的水泥混凝土组成、结构与性能的研究[D].博士学位论文,中国建筑材料科学研究总院,2003,6:79-80.
    [82] INGRAM K D, DAUGHERTY K E. The 9th ICCC, 1992, 3:180-181.
    [83]杨南如.无机非金属材料测试方法[M].武汉工业大学出版社.2001:223-233.
    [84] MEHTA P K. Study on chemical resistance of low water/cement ratio concretes[J], Cement and Concrete Research 1985, 15:969-978.
    [85]万朝均.新型高性能混凝土的研究[D].博士学位论文,重庆建筑大学,1999,12.
    [86]陈友治.中性钠盐碱矿渣水泥与混凝土的研究[D].博士学位论文,重庆建筑大学,1998,6.
    [87] TURKER F, et al. Effects of Magnesium Sulfate concentration on the sulfate resistance on mortar with and without silica fume[J]. Cement and Concrete Research, 1997,27(2): 205-214.
    [88]吴科如,张雄等译.混凝土[M].北京:化学工业出版社,2005,439-440.
    [89]王稷良,周明凯,贺图升,等.石粉对机制砂混凝土抗渗透性和抗冻融性能的影响[J].硅酸盐学报. 2008.4(36):482-486.
    [90] GHRICI M, KENAI S, MANSOUR M S. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements[J]. Cement & Concrete Composites, 2007(29): 542-549.
    [91]王昌义,赵翠花,王家顺.快速检测氯离子渗透性能的试验方法.南京水利科学研究院材料结构研究所, 1993.8:11.
    [92] TSIVILIS S, BATIS G. Properties and behavior of limestone cement concrete and mortar[J]. Cement and Concrete Research, 2000,30(10):1679-1683.
    [93] ZELIC J. The properties of Portland cement-limestone-silica fume mortars[J]. Cement and Concrete Research, 2000, 30(1):145-152.
    [94]肖佳,王永和,邓德华,等.粉煤灰-石灰石粉高强混凝土的Cl-扩散性能[J].建筑材料学报. 2008, 4: 212-216.
    [95]徐龙君,张代军,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转, 1995, 18(1): 31-38.
    [96]郑英,周英彪,郑楚光.多孔CaO孔隙结构的分形描述[J].华中科技大学学报. 2001. 29(3): 82-84.
    [97]江东,王建华,郑世光.多孔介质的孔隙分形维数:测试、解算与意义[J].科技通报, 1999, 15(6): 453-456.
    [98]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997:93-97.
    [99]傅立.灰色系统理论及其应用[M].北京:科学出版社,1992:28-32.
    [100]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究[J].硅酸盐学报,1998, 26(4): 424-429.
    [101]韩涛.矿渣粉粒度分布特征及其对水泥强度的影响[D].硕士学位论文,西安建筑科技大学, 2004:6-7.
    [102]贾永刚.基于图像处理的材料细观结构分析方法研究[D].硕士学位论文,南京林业大学, 2006:10-15.
    [103] NYAME B K, ILLSTION J M. Capillary pore structure and permeability of hardened cement paste[A] Proc[J]. 7thInt1. Cong. Chem.Gement[C]. Paris: 1980, (6): 181-185.
    [104] NYAME B K. Permeability of normal and lightweight mortars[J]. Magzine of ConcreteResearch, 1985,37 (130): 44-48.
    [105] MEHTA P K and MANMOHAN D. Pore size distribution and permeability of hardened cement pastes[A]. Proc. 7th Int1. Cong.Chem.Cement[C]. Paris: 1980(7):1-5.
    [106]唐明.混凝土孔隙分形特征的研究[J].混凝土, 2000(8): 3-5.
    [107]陆平.水泥材料科学导论[M].上海:同济大学出版社,1991:1-50.
    [108]尹红宇.混凝土孔结构分形特征研究[D].广西大学,2006:11-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700