CAD关键技术在口腔修复体咬合调整中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CAD/CAM技术在口腔修复体设计与制造中的应用,引发了口腔修复学的第三次技术革命。它彻底改变了传统的义齿制作方法,是实现高效率、高精度义齿制作的唯一途径。修复体 面咬合调整是整个口腔修复体CAD系统中的关键问题和技术难点。目前国内欠缺对口腔修复体咬合调整CAD技术的深入研究,而国外虽已开发出实用系统,但 面咬合调整也存在尚未较好解决的问题。本文对口腔修复体咬合调整的CAD关键技术进行了系统、深入的研究,主要创新性成果如下:
     (1)设计了口腔修复体三角网格模型拓扑重建的数据结构,给出了快速建立拓扑结构的算法流程。三角网格模型顶点查找时,通过使用中间文件记录无重复的顶点及点和面的拓扑信息,提高了原直接法的查找速度,并将平衡二叉树法和哈希表法应用于顶点查找过程,也快速、有效地去除了STL文件记录的大量重复顶点。对三种顶点查找方法的比较分析表明,哈希表法更适用于含有海量无规则散乱点的修复体模型的拓扑重建。
     (2)提出了以简单 架为媒介,通过上下颌模型在正中 状态下的虚拟对位获取被修复体对颌约束的方法。首先采用改进的圆柱面特征识别方法计算 架转轴的轴线位置,然后通过构建上下颌模型OBB包围盒树,并在下颌模型绕 架轴线转动过程中对包围盒树进行更新,以及遍历上下颌模型包围盒树,实现了上下颌模型在采样位置的实时碰撞检测,从而建立了整个牙列在正中 位的咬合接触关系,为被修复体同名标准冠调控咬合面提供了准确的静态对颌约束。
     (3)提出了上下颌模型咬合面方向和法方向两种距离图的概念,以及基于图像空间碰撞检测算法的咬合面方向距离图计算方法和基于OpenGL选择模式的法向距离图计算方法。前者通过对上下颌模型在咬合面方向视景体内的绘制,从图像的深度缓存和模板缓存中获得 面间沿咬合面方向的距离值。后者通过在牙颌模型顶点法方向视景体内绘制对颌模型,从选择缓存中获得牙颌模型上顶点沿法向到对颌模型的距离值。由于充分发挥了图形硬件的运算功能,这两种基于图像空间的距离计算方法可快速、准确获得牙齿模型 面间距离,为指导标准冠 面的咬合调整提供了 面间的距离变化情况。
     (4)提出了以上下颌模型的距离图为依据,通过对 面间冲突距离进行体样条插值实现冲突区域调整的方法。该方法首先选取位于和邻近标准冠模型的控制顶点,并采用变分求解方法建立 面间冲突距离体样条插值函数,然后使用该函数对标准冠模型上顶点的冲突距离进行插值计算,最后依据计算结果对标准冠 面的冲突区域进行调整。调整后的标准冠 面能够符合与对颌牙的咬合关系,并保持 面的固有形态,满足 面光顺性要求。
     (5)提出了适用于口腔修复体的分片光滑B样条曲面拟合算法。详细讨论了修复体三角网格模型的Voronoi区域划分、三边界区域划分、四边界区域合并及重新采样,和分片光滑B样条曲面拟合过程。通过对左上颌第一磨牙、尖牙和中切牙的三角网格模型进行曲面拟合,充分验证了算法的有效性,表明了该拟合算法拓扑适应性强,能够生成高质量的样条曲面,符合临床使用的要求。最后在拟合曲面基础上设计加工出了烤瓷冠基底冠,进一步验证了该算法的实用性。
The applications of CAD/CAM technologies to dental restorations’design and fabrication evoked the third technological revolution of prosthodontics. It is changing the traditional method of false tooth fabrication, and is the only way to realize the false tooth fabrication with high efficiency and precision. Adjustment of occlusal surface is a crucial problem and a technical difficult in the whole CAD system of dental restorations. At present, the domestic study of dental restorations’CAD/CAM is deficient. Furthermore, although many practical systems have been developed abroad, there are still some issues about the adjustment of occlusal surface not solved well so far. In this thesis, the key CAD technologies for adjusting the occlusal surface are studied deeply and systemically. The main creative achievements are as follows:
     (1) The data structure for reconstructing the topology of dental restorations’triangular meshes is designed, and the algorithm flow for fast topology reconstruction is presented. When searching the vertexes of the triangular meshes model, a media file is introduced to record non-repeated vertexes and the topology of triangles and vertexes. It increases the searching speed of the direct method. Furthermore, AVL trees and Hash table are applied to the process of vertex searching, both of which effectively wiped off the massive repeated vertexes with high speed as well. The comparison of the three vertex searching methods demonstrates that the Hash table method is most applicable to the topology reconstruction of dental restorations, which have massive irregular vertexes.
     (2) A method able to acquire the opposite occlusal restriction of prepared tooth is proposed. It makes use of the virtual orientation of the lower and upper jaws model on the position of centric occlusion, during which the simple articulator is used as a medium. Firstly, an improved method for feature identification of the cylinder is used to compute the rotation axis equation of the simple articulator. Then, by constructing OBB trees for the lower and upper jaws model, updating the bounding box trees during the rotation of the lower jaw around the axis of the articulator, and traversing these trees, real-time collision detection between lower and upper jaws at sample positions is realized. As a result, the occlusal relationship between the lower and upper jaws on the position of centric occlusion is built. It provides accurate static opposite occlusal restriction for the occlusal surface adjustment of the prepared tooth’s standard crown.
     (3) The concepts of two distance maps defined along the occlusal surface’s direction and the normal direction respectively, along with the calculation methods of the distance maps are proposed for the lower and upper jaws model. The calculation of the distance map along the occlusal surface’s direction is based on the collision detection algorithm in the image space, in which the distances are obtained from the depth buffer and stencil buffer by rending the lower and upper jaws model in camera along the occlusal surface’s direction. The calculation of the distance map along the normal direction utilizes the selection mode of OpenGL, in which the distances from the vertexes on the model to the opposite model are achieved from the selection buffer by rending the opposite occlusal model along the normal direction of vertexes on the tooth model. Because the two calculation methods for the distance map fully utilize the good computation performance of the graphics hardware, they have high efficiency and accuracy. And they provide distance changes between occlusal surfaces for conducting the adjustment of the standard crown’s occlusal surface.
     (4) A method for adjusting the conflict areas is proposed. According to the distance map of the lower and upper jaws model, the method realizes the adjustment by interpolating the conflict distance between occlusal surfaces using a volume spline function. Firstly, control points on or nearby the standard crown model are selected, and the volume spline interpolation function is calculated by variational methods. Then the conflict distances of the vertexes on the standard crown model are computed using the interpolation function. Finally, the conflict areas on the occlusal surface of the standard crown are adjusted according to the results. The adjusted occlusal surface can accord with the opposite tooth. The shape inherent to the occlusal surface is well maintained, and the requirement of occlusal surface’s smoothness is satisfied.
     (5) A surface fitting algorithm suitable to the dental restorations is proposed, which fits surface by using patches of smooth B-spline surfaces. For the triangular meshes model of the restoration, its Voronoi partition, delaunay domain partition, quadrilateral domain combination and resampling, and the surface fitting using patches of smooth B-spline surfaces are discussed in succession detailedly. The fitting results of triangular meshes models of the first molar, canine and central incisor in left maxillary fully demonstrate the effectiveness of the proposed algorithm. They show that the algorithm has a strong adaptability of topology and a capability of producing high quality spline surface. Therefore it satisfies the clinical applications. At last, a base of porcelain fused to metal crown is designed and processed based on the reconstructed surface, which further verifies the practicability of the algorithm.
引文
[1] 马轩祥,赵铱民. 口腔修复学(第五版)[M]. 北京:人民卫生出版社,2005.
    [2] 徐君伍. 口腔修复学(第四版)[M]. 北京:人民卫生出版社,2000.
    [3] E.D.Rekow, A.G.Erdman, D.R.Riley, B.E.Klamecki. CAD/CAM for Dental Restorations- Some of the Curious Challenges[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(4): 314-318.
    [4] 吕培军.数学与计算机技术在口腔医学中的应用[M].北京:中国科学技术出版社,2001.
    [5] 刘福祥,吕培军,张震康.研究和开发具有我国自主知识产权口腔医学技术的战略思考[J].中华口腔医学杂志,2002,37(5):321-323.
    [6] F. Duret. CAD/CAM in dentistry[J]. J Amer Dent Assoc, 1988, 117(7):715-720.
    [7] Cerec 3D Operator’s Manual. http://www.sirona.com. 2005.
    [8] KaVo-Everest Operator’s Manual. http://www.kavo-everest.com. 2005.
    [9] 李蓉.Cerec CAD/CAM 全瓷修复体的临床研究[R].武汉:武汉大学,2004.
    [10] D.E.Rekow. The Minnesota CAD/CAM System DentiCAD. Technical report, University of Minnesota, 1989.
    [11] 吕培军,李彦生,王勇 等.国产口腔修复体 CAD-CAM 系统的研究与开发[J].中华口腔医学杂志,2002, 37(5): 367-370.
    [12] 刘祚时,倪潇涓.三坐标测量机(CMM)的现状和发展趋势[J].机械制造,2004,42(8):32-34.
    [13] 吴家升,张义力,王军杰.逆向工程数据采集方法的研究和展望[J].机械制造,2005,43(5):14-17.
    [14] T.Vàrady, R.Martin, J.Cox. Reverse engineering of geometric models— an introduction[J]. Computer-Aided Design, 1997, 29(4): 255-268.
    [15] A.Sabine, G.Sven. Modeling of a inlay from various information[C]. Vision, Modeling and Visualization, Stuttgart, 2001:21-23.
    [16] Y.Sun, Z.Wang, J.Tian, et al. Coloration of mica-ceramic for use in dental CAD/CAM system[J]. Materials Letters, 2002, 57: 425-428.
    [17] 范昭炜.实时碰撞检测技术研究[D].杭州:浙江大学,2003.
    [18] 李鸿波.ARCUS digma 系统转移颌位关系的可信度及虚拟 架的初步研究[R].北京:北京大学口腔医学院.
    [19] B.Kordaβ, C.G?rtner, A.S?hnel, et al. The virtual articulator in dentistry: concept and development[J]. The Dental Clinics of North America, 2002, 46: 493-506.
    [20] 马达,唐亮,唐昭,赵要武.下颌运动轨迹的描记在口腔修复中的运用(综述)[J].暨南大学学报(医学版).2002,23(2):84-87.
    [21] Zachmann. Optimizing the Collision Detection Pipeline[C]. Proceeding of the First International Game Technology Conference, Hong Kong, 2001, 18-21.
    [22] A.Bisler, U.Bockholt, G.Voss. The Virtual Articulator- Applying VR Technologies to Dentistry[C]. Proceedings of the Sixth International Conference on Information Visualisation, London, 2002: 600-602.
    [23] 魏迎梅.虚拟环境中碰撞检测问题的研究[D].长沙:国防科学技术大学,2000.
    [24] W.H.Mormann, J.Schug. Grinding precision and accuracy of fit of Cerec 2 CAD-CAM inlays[J]. J Am Dent Assoc., 1997, 128(1): 47-53.
    [25] B.P.Isenberg, M.E.Essig,R.W.Beaudreau, et al. Microleakage evaluation of Cerec CAD/CAM inlays[J]. J Dent Res, 1991, 70:434.
    [26] 王惠芸.我国人牙的测量和统计[J].中华口腔杂志,1959,3:149-155.
    [27] 戴宁,廖文和,俞青等.标准牙冠和桥体数据库的研究与实现[J].东南大学学报(医学版),2005 年录用.
    [28] H.A.Barr. Global and Local Deformations of solid primitives[C]. Proceedings of SIGGRAPH’84, ACM Computer Graphics, Minneapolis, 1984, 18(3): 21-30.
    [29] T.W.Sederberg, S.R.Parry. Free-Form Deformation of Solid Geometric Models[C]. SIGGRAPH’86, ACM Computer Graphics, Dallas, 1986, 20(4): 151-160.
    [30] S.Coquillart. Extended Free-Form Deformations: A Sculpturing Tool for 3D Geometric Modeling[C], SIGGRAPH’90, ACM Computer Graphics, Dallas, 1990, 24(4): 187-196.
    [31] W.M.Hsu, J.F.Hughes, H.Kaufman. Direct Manipulation of Free-Form Deformation[C], SIGGRAPH’92, ACM Computer Graphics, Chicago, 1992, 26(2): 177-184.
    [32] V.V.Savchenko, A.P.Alexander, T.L.Kunii, et.al. Feature based sculpting of functionally defined 3-D geometric objects[C]. Proceeding of The MMM’95, Singapore, 1995:341-348.
    [33] V.S.Vladimir, A.P.Alexander, G.O.Oleg, et al. Function representation of solids reconstructed from scattered surface points and contours[J]. Computer Graphics Forum, 1995, 14(4): 181-188.
    [34] T.Greg, F.O’Brien James. Shape Transformation Using Variational Implicit Functions[C]. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, Los Angeles, 1999: 335-342.
    [35] 吴熹.逆向工程中任意三角网格模型的区域划分方法研究[D].南京:南京航空航天大学,2003.
    [36] 张舜德,朱东波,卢秉恒.反求工程中三维几何形状测量及数据预处理[J].机电工程技术,2001,1:7-10.
    [37] 张丽艳.逆向工程中模型重建关键技术研究[D].南京:南京航空航天大学,2001.
    [38] 刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究[D].南京:南京航空航天大学,2004.
    [39] 吕培军,王勇,李国珍等.机器人辅助全口义齿排牙系统的初步研究[J].中华口腔医学杂志.2001,36(2):139-142.
    [40] 吕培军,李国珍,王勇等.人工智能专家系统在口腔修复中的应用[J].中华口腔医学杂志.1996,31(6):367-369.
    [41] M.Eck, T.DeRose, T.Duchamp et al. Multiresolution analysis of arbitrary meshes[C]. Computer Graphics (SIGGRAPH’95 Proceedings), Los Angeles, 1995, 29:173-182.
    [42] E.Béchet, J.C.Cuilliere, F.Trochu. Generation of a finite element MESH from stereolithograph(STL) files[J]. Computer-Aided Design, 2002, 34(1):1-17.
    [43] 曾晓华,刘静华,闫光华.基于 STL 数据模型的刀具轨迹生成[J].工程图学学报,2002,23(1):8-14.
    [44] X.Yan, P.Gu. A review of rapid prototyping technologies and systems[J]. Computer-Aided Design[J], 1996, 28: 307-318.
    [45] Jan Hrádek, Martin Kucha?, Václav Skala. Hash functions and triangular mesh reconstruction[J]. Computers & Geosciences, 2003, 29: 741-751.
    [46] 刘金义,候宝明. STL 格式实体的快速拓扑重建[J]. 工程图学学报. 2003, 24(4): 34-39.
    [47] 崔树标,张宜生,梁书云等. STL 面片中冗余顶点的快速滤除算法及其应用[J]. 中国机械工程,2001,38(1): 39-42.
    [48] J.O’Rourke Computational geometry in C (second edition)[M]. London: Cambridge University Press, 1998. 145-149.
    [49] M.Mantyla. An intruduction to solid modeling[M]. Computer Science Press, 1988: 110-132.
    [50] G.B.Bruce. A Polyhedron Representation for Computer Vision[C]. National Computer Conference, Anaheim, 1975:589-596.
    [51] K.Weiler. Edge-based data structures for solid modeling in curve-surface environments[J]. IEEE Computer Graphics and Applications, 1995, 5(1): 21-40.
    [52] 李江峰,钟约先,李电生. STL文件缺陷分析及修补算法研究[J]. 机械设计与制造, 2002, 2: 40-42.
    [53] H.Houges. Surface Reconstruction from Unorganized Points[D]. University of Washington, 1994.
    [54] L.Formaggia. Data structures for unstructured mesh generation. Thomson J. F., Soni B. K., Weatherill N. P.(Eds.), Handbook of Grid Generation[M]. CRC Press, Boca Raton, FL, 2001:14-22.
    [55] A.Glassner Building vertex normals from an unstructured polygon list[M]. Graphic Gems IV. Academic Press, New York, 1994: 60-73.
    [56] H.J.Wolfson, I.Rigoutsos. Geometric hashing: an overview[J]. IEEE Computational Science and Engineering, 1997, 4(4): 10-21.
    [57] A.C.Yao. Uniform hashing is optimal[J]. Journal of the Association for Computing Machinery. 1985, 32(3): 687-693.
    [58] W.Ford. 数据结构 C++语言描述[M]. 北京:清华大学出版社, 1999.
    [59] B.Kordaβ, C.H.G?rtner Virtual articulator: usage of virtual reality tools in the dental technology[J]. Quintessence of Dent Tech, 2000, 12: 75-80.
    [60] T.Sohmura, J.Takahashi. Improvement of CAD to produce crown by considering occlusion[J]. Dental Materials Journal, 1993, 12(2):190-195.
    [61] G.Roth, M.D.Levine. Extracting geometric primitives[J]. CVGIP: Image Understanding, 1993, 58(1):1-22.
    [62] G.Roth, M.D.Levine. Extracting geometric primitives using a genetic algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9):901-905.
    [63] M.Hebert, J.Ponce. A new method for segmenting 3-d scenes into primitives[C]. ICPR, Int. Conf. on Pattern Recognition, Munich, 1982:836-838.
    [64] T.Chaperon, F.Goulette. Extracting cylinders in full 3D data using a random sampling method and the gaussian Image[C]. Vision, Modeling and Visualization, Stuttgart, 2001:35-42.
    [65] M.C.Lin, D.Manocha. Interactive geometric computations using graphics hardware[C]. Siggraph’2002 course notes#31, July 2002.
    [66] M.C.Lin, S.Gottschalk. Collision detection between geometric models: a survey[C]. Proceedings of IMA Conference on Mathematics of Surfaces, 1998.
    [67] P.Jiménez, F.Thomas, C.Torras. Collision detection: a survey[J]. Computers and Graphics, 2001, 25(2):269-285.
    [68] J.L.Bentley. Multidimensional Binary Search Trees Used for Associative Searching[J]. ACM Communications, 1975, 18(9): 509-517.
    [69] H.Noborio, S.Fukuda, S.Arimoto. Fast Interference Check Method Using Octree Representation[J]. Advanced Robotics, 1989,3(3):193-212.
    [70] B.Naylor, J.Amanatides, W.Thibault. Merging BSP Trees Yields Polyhedral Set Operations[C]. ACM Computer Graphics(SIGGRAPH’90 Proceedings), Dallas, 1990, 24(2): 115~124.
    [71] W.Thibault, B.Naylor. Set operations on Polyhedra Using Binary Space Partitioning trees[J]. ACM Computer Graphics, 1987, 21(4): 153~162.
    [72] S.Suri, P.M.Hubbard, J.F.Hughes. Analyzing bounding box for object intersection[J]. ACM Transactions on Graphics, 1999, 18(3): 257-77.
    [73] Y.Zhou, S.Suri. Analysis of a bounding box heuristic for object intersection[C]. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 1999,46(6): 830-839.
    [74] S.Suri, P.M.Hubbard, J.J.Hughes. Collision Detection in Aspect and Scale Bounded Polyhedra[C]. Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, San Francisco, 1998: 127-136.
    [75] I.J.Palmer, R.L.Grimsdale. Collision detection for animation using sphere-trees[J].Computer Graphics Forum, 1995, 14(2): 105-116.
    [76] P.M.Hubbard. Real-time collision detection and time-critical computing[C]. SIVE 95, the First Workshop on Simulation and Interaction in Virtual Environments, Iowa City, Iowa. University of Iowa, informal Proceedings, 1995,1: 92-96.
    [77] G.Zachmann. Real-time and exact collision detection for interactive virtual prototyping[C]. Procedings of DETC’97, 1997:1-10.
    [78] G.V.D.Bergen. Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools, 1997, 2(4): 1-14.
    [79] S.Gottschalk, M.C.Lin, D.Manocha. OBB-Tree: A Hierarchical Structure for Rapid Interference Detection[C], the Proceedings of ACM SiGGRAPH’96, New Orleans, 1996: 171-180.
    [80] J.Klosowski, M.Held, J.S.B.Mitchell, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs[J]. IEEE Transaction On Visualization and Computer Graphics, 1998, 4(1):21-37.
    [81] M.Held, J.T.Klosowski, J.S.B.Mitchell. Collision Detection for Fly-Throughs in Virtual Environments[C]. Proceedings of 12th Annual Symposium on Computational Geometry, Philadelphia, 1996:24-26.
    [82] J.T.Klosowski, M.Held, J.S.B.Mitchell. Effieient Collision Detection for Interactive 3D Graphics and Virtual Environments[D]. Stony Broke: University of New York, 1998.
    [83] J.T.Klosowski, M.Held, J.S.B.Mitchell, et al. Effiicient Collision Detection Using Bounding Volume Hirerachies of K-DOPs[J]. IEEE Transactions on Visualization and Computer Graphics. 1998, 4(1):21-26.
    [84] G.Zachmann. Rapid Collision Detection by Dynamically aligned DOP-Trees[C]. Grigore Burdea ed. Proceedings of IEEE Virtual Reality Annual International Symposium, Atlanta, 1998: 90-97.
    [85] G.Zachmann and W.Felger. The BoxTree: Exact and Fast Collision Detection of Arbitrary Polyhedra[C]. Proceedings of 1st Workshop on Simulation and Interaction in Virtual Environments, Iowa City, 1995: 104-113.
    [86] G.Zachmann. Exact and Fast Collision Detection[D]. Technical University Darmstadt, Dept of Computer Science, 1994.
    [87] T.M?ller, T.Ben. Fast, minimum storage ray-triangle intersection[C]. Journal of Graphics Tools, 1997, 2(1): 21-28.
    [88] D.Shreiner, M. Woo, J. Neider, et al. OpenGL 编程指南(第四版)[M].北京:人民邮电出版社,2005.
    [89] J.S.Philip, H.E.David. 计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005.
    [90] K.Myszkowski, O.Okunev, T.L.Kunii. Fast collision detection between complex solids using rasterizing graphics hardware[J]. The Visual Computer, 1995, 11(9): 497-511.
    [91] T.L.Kunii, K.Myszkowski, O.Okunev, et al. Evaluation of Human Jaw Articulation[C]. Proceedings. Computer Animation’95, Geneva, 1995: 163-171.
    [92] M.Shinya, M.Forgue. Interference detection through rasterization[J]. Journal of Visualization and Computer Animation, 1991, 2: 131~134.
    [93] J.Rossignac, A.Megahed, B.O.Schneider. Interactive inspection of solids: cross-section and interference[J]. Computer Graphics, 1992, 26(2): 353~360.
    [94] G.Baciu, W.S.K.Wong. Rendering in object interference detection on conventional graphics workstations[C]. Proceeding of the Pacific Graphics, Seoul National University, 1997: 51-58.
    [95] G.Baciu, W.S.K.Wong, H.Sun. RECODE: An image-based collision detection algorithm[J]. Journal of Visualization and Computer Animation, 1999, 10(4):181~192.
    [96] T.Vassilev, B.Spanlang, Y.Chrysanthou. Fast cloth animation on walking avatars[J]. Computer Graphics Forum, 2001, 20(3): 260~267.
    [97] G.Baciu, W.S.K.Wong. Image-Based Techniques in a Hybrid Collision Detector[J]. IEEE Transactions On Visualization and Computer Graphics, April-June 2003, 9(2): 254-271.
    [98] J.C.Lombardo, M.P.Cani, F.Neyret. Real-time collision detection for virtual surgery[C]. Computer Animation’99, Geneva, 1999: 82-90.
    [99] F.Duret, J.L.Blouin, B.Duret. CAD/CAM in dentistry[J]. Journal Am Dent Assoc, 1988, 117(11): 715-720.
    [100] D.E.Rekow. CAD/CAM in dentistry: Critical analysis of systems[J]. Computers in Clinical Dentestry. Quintessence Publishing Co,Inc, September 1991: 172-185.
    [101] Jef M. van der Zel. Ceramic-fused-to-metal restorations with a new CAD/CAM system[J]. Quintessence International, 1993, 24(11): 769-778.
    [102] K.Myszkowski, V.V.Savchenko, T.L.Kunii. Computer modeling for the occlusal surface of teeth[C]. Proceedings of Computer Graphic International, Pohang, 1996 , 24-28 June: 191-198.
    [103] V.V.Savchenko, L.M.Schmitt. Reconstructing Occlusal Surfaces of Teeth Using a Genetic Algorithm with Simulated Annealing Type Selection[C]. Proceedings of the Symposium on Solid Modeling and Applications, Ann Arbor, 2001: 39-46.
    [104] D.Terzopoulos, J.Platt, A.Barr, et al. Elastically deformable models[J]. Computer Graphics, 1987, 21(4): 205-214.
    [105] Y.K.Chang, A.P.Rockwood. A generalized de casteljau approach to 3D free-form deformation[C]. Proceedings of SIGGRAPH’94, Orlando, 1994. ACM SIGGRAPH, New York: 187-196.
    [106] F.Lazarus, S.Coquillart, P.Jancene. Axial deformations: an intuitive deformation technique[J]. Comput Aided Design, 1994, 26(8):607-612.
    [107] R.MacCracken, K.I.Joy. Free-form deformations with lattices of arbitrary topology[C]. Proceedings of SIGGRAPH’96, New Orleans, 1996. ACM SIGGRAPH, New York:181-188.
    [108] T.Kanai, H.Suzuki, F.Kimura. Metamorphosis of arbitrary triangular meshes[J]. IEEE Computer Graphics and Applications, 2000, 20(2):62-75.
    [109] D.Terzopoulos. The Computation of visible-surface representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988, 10(4):417-438.
    [110] 刘刚,金小刚,冯洁青,彭群生.蒙太奇网络融合[J].软件学报,2003, 14(8):1425-1432.
    [111] R.L.Harder, R.N.Desmarais. Interploation using surface splines[J]. J.Aircraft, 1972, 9(2): 189-191.
    [112] Gianluca Donato, Serge Belongie. Approximate Thin Plate Spline Mappings[C]. 7th European Conference on Computer Vision, Part III (Lecture Notes in Computer Science Vol.2352), Copenhagen, 2002: 21-31.
    [113] P.Gonzalez-Casanova, R.Alvarez. Spline in geophysics[J]. Geophys., 1985, 50: 2831-2848
    [114] A.Goshtasby. Registration of images with geometric distortions[J]. IEEE Trans. Geosci. Remote Sensing, 1988, 26: 60-64.
    [115] S.Elanayar, Y.C.Shin. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Trans. Neural Networks, 1994, 5: 594-603.
    [116] F.L.Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations[J]. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11: 567-585.
    [117] H.D.Malcolm, P.F.Duane, E.H.Steven. A Physics-Based Coordinate Transformation for 3-D Image Matching[J]. IEEE Transactions on Medical Imaging, 1997, 16(3): 317-328.
    [118] J.Duchon. Spline Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces. Constructive Theory of Functions of Several Variables[M], Lecture Notes in Mathematics, edited by A.Dolb and B.Eckmann, Berlin: Springer-Verlag, 1977: 85-100.
    [119] J.Meinguet. Multivariate interpolation at arbitrary points made simple[J]. J. Appl. Math. Phys., 1979, 30: 292-304.
    [120] J.Meinguet. Surface spline interpolation: Basic theory and computational aspects. Approximation Theory and Spline Functions[M], S.P. Singh, J. W. H. Burry, and B. Waston, Eds. Dordrecht, Holland: Reidel, 1984: 127-142.
    [121] S.Aharon, C.Lenqlet. Collision detection algorithm for deformable objects using OpenGL[C]. Medical Image Computing and Computer-Assisted Intervention-MICCA 2002.5th International Conference, Tokyo, 2002: 211-218.
    [122] G.Turk, J.F.O’Brien. Modelling with Implicit Surfaces that Interpolate[J]. ACM Transactions on Graphics, 2002, 21(4): 855-873.
    [123] 刘浩.基于四边形网格的细分曲面造型基础技术研究[D].南京:南京航空航天大学,2005.
    [124] M.Eck, T.DeRose, T.Duchamp et al. Multiresolution analysis of arbitrary meshes[C].Computer Graphics (SIGGRAPH’95 Proceedings), Los Angeles, 1995, 29:173-182.
    [125] M.Eck, H.Hoppe. Automatic reconstruction of B-spline surfaces of arbitrary topological type[C]. Computer Graphics (SIGGRAPH’96 Proceedings), New Orleans, 1996, 30:325-333.
    [126] M.J.Milroy, C.Bradley, G.W.Vickers, et al. G 1continuity of B-spline surface patches in reverse engineering[J]. Computer-Aided Design, 1995, 27(6): 471-478.
    [127] J.P.Kruth, A.Kerstens. Reverse engineering modeling of free-form surfaces from point clouds subject to boundary conditions[J]. Journal of Materials Processing Technology, 1998, 76: 120-127.
    [128] 肖位枢.图论及其算法[M].北京:航空工业出版社,1993.
    [129] 彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739.
    [130] 晏冬梅.三角网格曲面参数化技术研究[D].南京:南京航空航天大学,2005.
    [131] P.Alliez, M.Meyer, M.Desbrun. Interactive geometry remeshing. Computer Graphics[C], SIGGRAPH’91 Proceedings, United States, 2002:347-354.
    [132] X.Gu, S.Gortler, H.Hoppe. Geometry images[C]. Computer Graphics, SIGGRAPH’91 Proceedings, San Antonio, 2002:355-361.
    [133] V.Surazhsky, P.Alliez, C.Gotsman. Isotropic remeshing of surfaces: A local parameterization approach[C]. Proceedings of the 12th International Meshing Roundtable, Sandia, 2003:215-224.
    [134] J.Maillot, H.Yahia, A.Verroust. Interactive texture mapping[C]. Computer Graphics (SIGGRAPH’93 Proceedings), Anaheim, 1993: 27-34.
    [135] W.T.Tutte. Convex representations of graphs[C]. Proceedings of the London Mathematical Society, London, 1963: 743-768.
    [136] M.S.Floater. Parameterization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(3): 231-250.
    [137] C.Gotsman, X.Gu, A.Shefffer. Fundamentals of spherical parameterization for 3D meshes[C]. Computer Graphics Proceedings, Annual Conference Series, ACM SiGGRAPH, San Diego, 2003: 358-363.
    [138] 严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报,2005,28(6):927-932.
    [139] 胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报.2004,16(5):632-637.
    [140] D.Zhang, M.Hebert. Harmonic Maps and Their Applications in Surface Matching[C]. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, 1999, 2: 524-530.
    [141] I.Boier-Martin, H.Rushmeier, J.Jin. Parameterization of Triangle Meshes over Quadrilateral Domains[C]. Eurographics Symposium on Geometry Processing, 2004: 193-203.
    [142] J.Eells, L.H.Sampson. Harmonic mappings of Riemannian manifolds[J]. Amer.J.Math., 1964, 86: 109-160.
    [143] M.S.Floater. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(3):231-250.
    [144] M.S.Floater. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1):19-27.
    [145] 周昆,潘志庚,马小虎,石教英.调和映射的构造及其在图形学中的应用[J].中国图象图形学报.1998,3(7):578-582.
    [146] 施法中.计算机辅助几何设计与非均匀有理 B 样条(CAGD&NURBS)[M].北京:北京航空航天大学出版社,1994.
    [147] A.Volker, W.Paul. Combining contour detection algorithm for the automatic extraction of the preparation line from a dental 3D measurement[C]. Proceeding of the SPIE, San Diego, 2005, 5741(1), 274-282.
    [148] 戴宁,廖文和.三角片模型特征线提取算法的研究与实现[C].第二届全国几何设计与计算学术会议论文集,合肥,2005:67-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700