轨道牵引逆变器数字控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵引变流器是轨道交流牵引传动控制系统的核心,它的性能直接影响到了车辆运行的性能。然而,轨道牵引变流器的功率较大、开关频率低、工作环境恶劣等问题,在控制上存在很多难处。长期以来,我国在牵引变流器机组和核心配套技术依赖于进口,制约着我们轨道交通的进一步发展;另一方面,数字控制以其灵活性、可重复性和可靠性等优点,已经取代了模拟控制,广泛应用于牵引传动控制系统。为此,本文以高速电力机车的开发为背景,围绕牵引变流器数字控制的几个重要问题进行深入研究,以提高牵引传动系统的瞬态和稳态性能,并通过仿真和实验研究验证了其正确性。
     首先,在牵引电机矢量控制系统中,电磁转矩输出性能主要受到转子磁场的幅值和定向角度的影响,而牵引电机参数变化会导致这两个变量失调,所以本文对如何提高矢量控制系统抗参数变化的鲁棒性进行了深入研究。为此,本文在传统间接矢量控制的基础上引入了磁链闭环控制和基于q轴磁链模型的定向角度校正算法。在铁路牵引供电系统中存在着无电的分相区,本文同样分析和讨论了牵引系统在分相区的断电带速重启和再生制动的控制策略,提高牵引控制系统的鲁棒性。
     其次,对改善电流环数字控制瞬态响应的控制策略展开了深入研究。针对同步旋转坐标系下电流环的耦合问题,本文采用了复矢量PI控制策略,消除dq耦合。接着,又综合分析和比较常见复矢量PI控制器数字实现方式的优缺点。在此基础上,对制约电流环性能的数字延时补偿方法进行了深入研究,提出了相应延时补偿策略和脉宽调制(Pulse Width Modulation, PWM)多次更新算法,进一步消除延时对系统的影响。
     最后,为了改善高速区低载波比电流谐波过大的问题,本文对优化脉宽调制策略在牵引变流器的应用进行研究,特别是对谐波电流有效值最小PWM技术的角度计算问题作了深入研究,此外,还以特定消谐PWM为例介绍了数字实现方法;接着又研究了对交直交牵引变流器的直流脉动影响的数字抑制方法,采用了周期预测补偿和采样修正相结合的数字补偿方法,形成了纯数字无差拍频控制策略;最后,对不同PWM模式的切换问题进行了深入研究,提出了具体切换原则和方法。
Traction converter plays an important role in railway AC drive system, which directed affectes the performance of vehicle. The rail traction's capacity is larger, the switching frequency is low, and works at poor conditions, so there are many difficulties in the control. However, as a long time, the power converter and core control technologies are stillrelied on importing in our country, which significantly restricts further development of rail transportation. On other hand, due to its flexibility, repeatability and reliability, etc, digital control has replaced the analog control in the field of traction control. Therefor, this article focus on the several important issues in digital control of traction converter in order to improve the transient and steady performance of the traction drives system. Simulations and experiments demonstrate the correctness of the research results. Following are the major researchworks of this dissertation.
     Firstly, in field oriented control system of traction motor, there are two important factors (the rotor flux amplitude and orientation angle) that restricting the torque output performance while the variation of traction motor parameters will decline the control performance, so how to improve the vector control robustness of the system is in-depth researched. Therefore, the closed-loop control of flux and the q-axis flux model orientation angle correction algorithms are introduced based on the traditional indirect vector control in this paper, and some issues of the strategy are also discussed. What's more, two kinds of the strategy of traction motor control at neutral section are discussed in order to improve system robustness.
     Sencondly, the current loop digital control strategy is discussed, in order to improve the transient performance of current loop. The voltage coupling problem of vector control system is thoroughly analyzed and the complex vector PI controller is introduced to destroy the decoupling. And the different digital realized method of complex vector PI controller are discussed and compared. On this basis, the digital delay is in-depth discussed; the delay compensation strategy and a new PWM update algorithm are presented to further eliminate delay on the system.
     Finally, in order to improve the harmonic content at the low-carrier ratio, the optimized pulse width modulation strategy for traction converter application is discussed. The selective harmonic elimination PWM technique and harmonic current RMS minimum PWM method are studied, in particular, the calculation of harmonic current RMS minimum PWM method is showed and the comparing of two methods is explained in detail. And then, the digital beatless control compensating the fluctuating DC link voltage for AC-DC-AC converter is discussed, using the repetitive forecast and the sampling compensation method; finally, the transition method between different PWM modes is proposed.
引文
[1]郑琼林.伴随电力电子器件一起发展中国轨道交通变流技术[J].变频器世界,2010(11):49-54.
    [2]丁荣军.现代轨道牵引传动及控制技术研究与发展[J].机车电传动,2010(5):1-8.
    [3]俞加康.我国城市轨道交通发展趋势[J].城乡建设,2008(5):49-50.
    [4]李杰.我国铁路重载运输发展研究[J].铁道运输与经济,2011(1):42-46.
    [5]马志文.电力牵引交流传动互馈试验系统的研究[学位论文].北京交通大学,2007.
    [6]郑琼林.电牵引传动系统研究[学位论文].北方交通大学,2002.
    [7]连级三.电力牵引控制系统[M].北京:中国铁道出版社,1994.
    [8]刘友梅,杨颖.中国轨道电力牵引交流传动技术的发展[J].世界轨道交通,2004(7):40-44.
    [9]郝荣泰.电力电子技术在我国电力机车上的应用[J].机车电传动,1998(Z1):47-49.
    [10]刘友梅,黄中荣.AC4000交流传动电力机车的研制[J].机车电传动,1997(1):5-8.
    [11]刘友梅.中国铁路高速探索[J].铁道科学与工程学报,2004(1):14-18.
    [12]刘友梅.试论轨道交通装备制造业的自主创新之路[J].电力机车与城轨车辆,2005(6):4-7.
    [13]徐惠林.北京地铁车辆电传动系统的国产化研究[J].现代城市轨道交通,2008(4):7-11.
    [14]翁星方.北京地铁国产化列车IGBT牵引逆变器[J].机车电传动,2008(4):45-47.
    [15]龙育才.深圳地铁车辆国产化及对有关问题的思考[C].第二届城市轨道交通中青年专家论坛暨第十六届地下铁道学术交流会,上海,2004.
    [16]Runge W.,王渤洪.从GTO变流器到IGBT变流器看传动技术的发展(二)[J].变流技术与电力牵引,2006(6):8-10.
    [17]Runge W.,王渤洪.从GTO变流器到IGBT变流器看传动技术的发展(一)[J].变流技术与电力牵引,2006(5):12-16.
    [18]郑琼林.交流传动机车牵引变流器的设计与控制[J].电力电子,2009(1):12-17.
    [19]Mermet-Guyennet M. New power technologies for traction drives[C]. Power Electronics Electrical Drives Automation and Motion (SPEEDAM),2010 International Symposium on, Pisa.14-16 June 2010.
    [20]袁登科,陶生桂.变流变频技术在轨道车辆中应用发展综述[J].电机与控制应用,2009(5):1-6.
    [21]杨显进.CRH5牵引变流器的研究[学位论文].西南交通大学,2009.
    [22]Nakazawa Y, Toda S, Yasuoka I, et al. One-pulse PWM mode vector control for traction drives[P]. Power Electronics in Transportation,1996. IEEE,1996.
    [23]Kitanaka H. Vector controller for induction motor[P].2008,7.
    [24]Takahashi I, Noguchi T. A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor[J]. Industry Applications, IEEE Transactions on,1986,IA-22(5):820-827.
    [25]Baader U, Depenbrock M, Gierse G. Direct self control (DSC) of inverter-fed induction machine:a basis for speed control without speed measurement[J]. Industry Applications, IEEE Transactions on,1992,28(3):581-588.
    [26]丁荣军,黄济荣.现代变流器技术与电气传动[M].北京:科学出版社,2008.
    [27]Steimel A. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison[J]. Industrial Electronics, IEEE Transactions on,2004,51(4):810-820.
    [28]Steimel A. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison[J]. Industrial Electronics, IEEE Transactions on,2004,51(4):810-820.
    [29]刘宏鑫.矢量控制与直接转矩控制之我见[J].电力电子,2004(1):31-32.
    [30]Steimel A. Power-Electronics Issues of Modern Electric Railway Systems[J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING,2010,10(2):3-10.
    [31]Robert Becker P K M R. OPEN-LOOP AND/OR CLOSED-LOOP CONTROL SYSTEM OF A 3-PHASE POWER CONVERTER FOR THE OPERATION OF AN ASYNCHRONOUS MACHINE[P].2009,9.
    [32]Spichartz M, Oettmeier M, Heising C, et al. Stator-flux-oriented control with high torque dynamics for IM and PMSM[C]. Vehicle Power and Propulsion Conference (VPPC),2010 IEEE,2010.
    [33]Jansson M, Danielsson A, Galic J, et al. Stable and passive traction drives[C]. IEEE Nordic Power and Ind. Electron. Conf,2004.
    [34]Awan A B, Pierfederici S, Nahid-Mobarakeh B, et al. Active stabilization of a poorly damped input filter supplying a constant power load[C]. Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE,2009.20-24 Sept. 2009.
    [35]Mosskull H, Galic J, Wahlberg B. Stabilization of Induction Motor Drives With Poorly Damped Input Filters[J]. Industrial Electronics, IEEE Transactions on,2007,54(5):2724-2734.
    [36]倪大成,年晓红,刘可安.十八边形磁链直接转矩控制算法设计及实现[J].铁道学报,2008(2):28-33.
    [37]李祥飞,邹莉华,王坚.十八边形磁链直接转矩控制系统的设计[J].电力电子技术,2009(2):31-32.
    [38]刘和平,邓力,郑群英,等.基于矢量控制的电动轿车感应电机驱动控制器[J].电工技术学报,2007(11):63-68.
    [39]孙逢春,翟丽,张承宁,et al. Design and Development of a Vector Control System of Induction Motor Based on Dual CPU for Electric Vehicle[J]. Journal of Beijing Institute of Technology(English Edition),2003(3):290-295.
    [40]王毅,马洪飞,赵凯岐,等.电动车用感应电机磁场定向矢量控制研究[J].中国电机工程学报,2005(11):113-117.
    [41]温旭辉,刘钧,赵峰,等.用于电动车辆的高性能永磁电机驱动系统[J].吉林大学学报(工学版),2011:321-326.
    [42]Toliyat H A, Levi E, Raina M. A Review of RFO Induction Motor Parameter Estimation Techniques[J]. Power Engineering Review, IEEE,2002,22(7):52.
    [43]Tsuji M, Shuo C, Izumi K, et al. A sensorless vector control system for induction motors using q-axis flux with stator resistance identification[J]. Industrial Electronics, IEEE Transactions on,2001,48(1):185-194.
    [44]Xing Y, Dunnigan M W, Williams B W. A novel rotor resistance identification method for an indirect rotor flux-orientated controlled induction machine system[J]. Power Electronics, IEEE Transactions on,2002,17(3):353-364.
    [45]Lorenz R D. A simplified approach to continuous on-line tuning of field-oriented induction machine drives[J]. Industry Applications, IEEE Transactions on,1990,26(3):420-424.
    [46]Jevremovic V R, Vasic V, Marcetic D P, et al. Speed-sensorless control of induction motor based on reactive power with rotor time constant identification [J]. IET ELECTRIC POWER APPLICATIONS,2010,4:462-473.
    [47]陆海峰,瞿文龙,张磊,等.一种基于无功功率的异步电机矢量控制转子磁场准确定向方法[J].中国电机工程学报,2005(16):116-120.
    [48]Maiti S, Chakraborty C, Hori Y, et al. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power[J]. Industrial Electronics, IEEE Transactions on,2008,55:594-601.
    [49]Shyh-Shing P, Yen-Shin L, Chang-Huan L. Sensorless vector controller for induction motor drives with parameter identification[C]. Industrial Electronics Society,1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE,1998.31 Aug-4 Sep 1998.
    [50]胡海兵.电力电子集成系统中的数字控制平台研究[学位论文].浙江大学,2007.
    [51]胡斯登,赵争鸣,袁立强,等.高性能变频调速系统的离散控制问题研究[J].中国电机工程学报,2010(30):1-6.
    [52]Oppenheim Alan V., Schafer Ronald W., Buck John R..离散时间信号处理(Discrete-time Signal Processing) [M]北京:清华大学出版社,2005.
    [53]Blasko V, Kaura V, Niewiadomski W. Sampling of discontinuous voltage and current signals in electrical drives:a system approach[J]. Industry Applications, IEEE Transactions on, 1998,34(5):1123-1130.
    [54]王宏佳,杨明,牛里,等.永磁交流伺服系统电流环带宽扩展研究[J].中国电机工程学报,2010(12):56-62.
    [55]王剑,李永东,马永健.一种显著增加变换器电流环带宽的新方法[J].电气传动,2009(6):34-38.
    [56]王剑,李永东.电流环时序方法在PWM整流器中的应用[J].清华大学学报(自然科学版),2009(10):1577-1580.
    [57]Holtz J. Pulsewidth modulation for electronic power conversion[J]. Proceedings of the IEEE, 1994,82(8):1194-1214.
    [58]Murai Y, Ohashi K, Hosono I. New PWM Method for Fully Digitized Inverters[J]. Industry Applications, IEEE Transactions on,1987,IA-23(5):887-893.
    [59]Murai Y, Gohshi Y, Matsui K, et al. High-frequency split zero-vector PWM with harmonic reduction for induction motor drive[J]. Industry Applications, IEEE Transactions on, 1992,28(1):105-112.
    [60]Narayanan G, Ranganathan V T. Synchronised PWM strategies based on space vector approach. Ⅱ. Performance assessment and application to V/f drives[J]. Electric Power Applications, IEE Proceedings-,1999,146(3):276-281.
    [61]Narayanan G, Ranganathan V T. Synchronised PWM strategies based on space vector approach. I. Principles of waveform generation[J]. Electric Power Applications, IEE Proceedings-,1999,146(3):267-275.
    [62]Narayanan G, Ranganathan V T. Extension of operation of space vector PWM strategies with low switching frequencies using different overmodulation algorithms[J]. Power Electronics, IEEE Transactions on,2002,17(5):788-798.
    [63]Yun W L, Bin W, Xu D, et al. Space Vector Sequence Investigation and Synchronization Methods for Active Front-End Rectifiers in High-Power Current-Source Drives[J]. Industrial Electronics, IEEE Transactions on,2008,55(3):1022-1034.
    [64]Zhang D, Wang F, El-Barbari S, et al. Improved Asymmetric Space Vector Modulation for Voltage Source Converters with Low Carrier Ratio[J]. Power Electronics, IEEE Transactions on,2011,PP(99):1.
    [65]Bowes S R, Holliday D. Optimal Regular-Sampled PWM Inverter Control Techniques[J]. Industrial Electronics, IEEE Transactions on,2007,54(3):1547-1559.
    [66]费万民,阮新波,张艳莉,等.多电平逆变器特定谐波消除脉宽调制方法的初值问题研究[J].中国电机工程学报,2007(13):87-92.
    [67]Wells J R, Chapman P L, Krein P T. Theoretical Considerations for Selective Harmonic Control[C]. Power Electronics Specialists Conference,2006. PESC '06. 37th IEEE, Jeju, 2006.18-22 June 2006.
    [68]谭新元.牵引逆变器SHEPWM控制技术的研究[J].中国电机工程学报,2001(9):48-53.
    [69]谢运祥,周炼,彭宏.逆变器消谐PWM模型的同伦算法研究[J].中国电机工程学报,2000(10):24-27.
    [70]Napoles J, Leon J I, Portillo R, et al. Selective Harmonic Mitigation Technique for High-Power Converters[J]. Industrial Electronics, IEEE Transactions on, 2010,57(7):2315-2323.
    [71]Buja G S, Indri G B. Optimal Pulsewidth Modulation for Feeding AC Motors[J]. Industry Applications, IEEE Transactions on,1977,IA-13(1):38-44.
    [72]Mehrizi-Sani A, Filizadeh S. An Optimized Space Vector Modulation Sequence for Improved Harmonic Performance[J]. Industrial Electronics, IEEE Transactions on, 2009,56(8):2894-2903.
    [73]Zhao D, Ayyanar R. Space Vector PWM with DC Link Voltage Control and Using Sequences with Active State Division[C]. Industrial Electronics,2006 IEEE International Symposium on, 2006.9-13 July 2006.
    [74]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2003.
    [75]李威.感应电机矢量控制系统研究[学位论文].北方交通大学北京交通大学,2001.
    [76]王成元,夏加宽,杨俊友,等.电机现代控制技术[M].北京:机械工业出版社,2008.
    [77]Hurst K D, Habetler T G, Griva G, et al. Zero-speed tacholess IM torque control:simply a matter of stator voltage integration[J]. Industry Applications, IEEE Transactions on, 1998,34(4):790-795.
    [78]Jun H, Bin W. New integration algorithms for estimating motor flux over a wide speed range[J]. Power Electronics, IEEE Transactions on,1998,13(5):969-977.
    [79]Karanayil B, Rahman M F, Grantham C. An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive[J]. Power Electronics, IEEE Transactions on,2004,19(2):257-263.
    [80]Hinkkanen M, Luomi J. Modified integrator for voltage model flux estimation of induction motors[J]. Industrial Electronics, IEEE Transactions on,2003,50(4):818-820.
    [81]Jansen P L, Lorenz R D, Novotny D W. Observer-based direct field orientation:analysis and comparison of alternative methods[J]. Industry Applications, IEEE Transactions on, 1994,30(4):945-953.
    [82]Montanari M, Peresada S M, Rossi C, et al. Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer[J]. Control Systems Technology, IEEE Transactions on,2007,15(6):1049-1064.
    [83]Vicente I, Endemano A, Garin X, et al. Adaptive full order observer based stable speed sensorless scheme for vector controlled induction motor drives[C]. EPE'09,12009.
    [84]罗慧.感应电机全阶磁链观测器和转速估算方法研究[学位论文].华中科技大学,2009.
    [85]王高林.感应电机无速度传感器转子磁场定向控制策略研究[学位论文].哈尔滨工业大 学,2008.
    [86]Tsuji M, Matsuda S, Hashimoto R, et al. On stability limit of a q-axis flux based sensorless vector control for induction motors[C]. IPEC 2010,2010.
    [87]樊扬,瞿文龙,陆海峰,等.基于转子磁链q轴分量的异步电机间接矢量控制转差频率校正[J].中国电机工程学报,2009(9):62-66.
    [88]耿士广,胡安,马伟明,等.矢量控制感应电机起动机理及直流预励磁研究[J].电工技术学报,2011(3):29-35.
    [89]白华,赵争鸣.三电平高压大容量变频调速系统中的预励磁方案[J].电工技术学报,2007(11):91-97.
    [90]白华,赵争鸣,胡弦,等.三电平变频调速系统中直流预励磁试验研究[J].中国电机工程学报,2006(3):159-163.
    [91]尚敬,刘可安,年晓红,等.牵引电动机无速度传感器及带速度重投控制[J].中国电机工程学报,2006(15):118-123.
    [92]Jiang J, Holtz J. An efficient braking method for controlled AC drives with a diode rectifier front end[J]. Industry Applications, IEEE Transactions on,2001,37(5):1299-1307.
    [93]Huang X, Zhang L, Sun H, et al. Study of heat dissipation for HXD2 locomotive's auxiliary converter[C]. Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010.12-16 Sept.2010.
    [94]Holtz J. The representation of AC machine dynamics by complex signal flow graphs[J]. Industrial Electronics, IEEE Transactions on,1995,42(3):263-271.
    [95]Harnefors L. Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007,54:2239-2248.
    [96]Briz F, Degner M W, Lorenz R D. Analysis and design of current regulators using complex vectors[J]. Industry Applications, IEEE Transactions on,2000,36(3):817-825.
    [97]Holmes D G, Lipo T A, McGrath B P, et al. Optimized Design of Stationary Frame Three Phase AC Current Regulators[J]. Power Electronics, IEEE Transactions on, 2009,24(11):2417-2426.
    [98]Khambadkone A M, Holtz J. Fast current control for low harmonic distortion at low switching frequency[J]. Industrial Electronics, IEEE Transactions on,1998,45(5):745-751.
    [99]Utkin V I. Sliding mode control design principles and applications to electric drives[J]. Industrial Electronics, IEEE Transactions on,1993,40(1):23-36.
    [100]Bose B K. Power Electronics and Motor Drives Recent Progress and Perspective[J]. Industrial Electronics, IEEE Transactions on,2009,56(2):581-588.
    [101]Holtz J, Oikonomou N. Fast Dynamic Control of Medium Voltage Drives Operating at Very Low Switching Frequency-An Overview[J]. Industrial Electronics, IEEE Transactions on, 2008,55(3):1005-1013.
    [102]Oikonomou N, Holtz J. Closed-Loop Control of Medium-Voltage Drives Operated With Synchronous Optimal Pulsewidth Modulation[J]. Industry Applications, IEEE Transactions on,2008,44(1):115-123.
    [103]Holtz J, Quan J, Pontt J, et al. Design of fast and robust current regulators for high-power drives based on complex state variables[J]. Industry Applications, IEEE Transactions ON, 2004,40(5):1388-1397.
    [104]Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. Industrial Electronics, IEEE Transactions on,1999,46(1):100-110.
    [105]沈滢,郝荣泰.异步牵引电机磁场定向控制解耦算法的研究[J].铁道学报,2003(1):26-29.
    [106]Bon-Ho B, Seung-Ki S. A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives[J]. Industry Applications, IEEE Transactions on, 2003,39(3):802-810.
    [107]Springob L, Holtz J. High-bandwidth current control for torque-ripple compensation in PM synchronous machines[J]. Industrial Electronics, IEEE Transactions on,1998,45(5):713-721.
    [108]Se-Jong J, Seung-Ho S. Improvement of Predictive Current Control Performance Using Online Parameter Estimation in Phase Controlled Rectifier[J]. Power Electronics, IEEE Transactions on,2007,22(5):1820-1825.
    [109]Mohamed Y A R I, El-Saadany E F. Robust High Bandwidth Discrete-Time Predictive Current Control with Predictive Internal Model-A Unified Approach for Voltage-Source PWM Converters[J]. Power Electronics, IEEE Transactions on,2008,23(1):126-136.
    [110]Holtz J, Oikonomou N. Estimation of the Fundamental Current in Low-Switching-Frequency High Dynamic Medium-Voltage Drives[J]. Industry Applications, IEEE Transactions on, 2008,44(5):1597-1605.
    [111]Seung-Ho S, Jong-Woo C, Seung-Ki S. Current measurements in digitally controlled AC drives[J]. Industry Applications Magazine, IEEE,2000,6(4):51-62.
    [112]Infineon. Infineon Power Module Selector and Simulator[Z].2011:2011.
    [113]刘连根.移缺口控制及其相位补偿——用于实现高电压PWM逆变器三分频工况和方波工况的平滑转换[J].机车电传动,1994(5):21-25.
    [114]娄慧波.大功率三相PWM变换器的谐波优化[学位论文].华中科技大学,2009.
    [115]袁志昌,宋强,滕乐天,等.大容量链式STATCOM 150Hz优化PWM控制策略的研究[J].电工技术学报,2004(8):83-87.
    [116]Li L. Optimal PWM techniques in voltage source inverters[D]. United States -- New York: Polytechnic University,1999.
    [117]Holmes D G, Lipo T A, Lipo T A. Pulse width modulation for power converters:principles and practice[M]. Wiley-IEEE Press,2003.
    [118]Herbert Bristol Dwight D S. Tables of Integrals and Other Mathematical Data[M]. New York: The Machillan Company,1957.
    [119]刘金琨.先进PID控制及其MATLAB仿真[M].电子工业出版社,2003.
    [120]Ogawa T, Wakao S, Kondo K, et al. Theoretical analysis of return current harmonics in the inverter-controlled DC electric railcar[C]. PESC2004,NEW YORK,2004.
    [121]Enjeti P N, Shireen W. A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms[J]. Power Electronics, IEEE Transactions on, 1992,7(1):171-180.
    [122]Salam Z, Goodman C J. Compensation of fluctuating DC link voltage for traction inverter drive[C]. Power Electronics and Variable Speed Drives,1996. Sixth International Conference on (Conf. Publ. No.429),1996.
    [123]Hashimoto T, Sone S. PWM converter-inverter system for AC supplied train[C]. Main Line Railway Electrification,1989., International Conference on,1989.
    [124]李威,车向中,郝荣泰.交-直-交电力机车PWM调制方法研究[J].铁道学报,2000(6):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700