苦皮藤素V在昆虫和植物中的穿透代谢及相关环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究农药在防治对象及被保护作物中的穿透与代谢规律,有助于了解该农药的作用方式、解毒代谢等毒理学问题,亦有助于该农药的合理施用。同样,研究农药在水体、土壤中的降解规律及在收获作物中的残留动态,有助于对该农药的安全性评价及制定安全使用标准和残留标准。
     苦皮藤素V是我国植物杀虫剂苦皮藤素乳油和微乳剂中主要杀虫活性成分之一,迄今没有系统的上述相关内容的研究。为此,本论文研究了苦皮藤素V在昆虫、植物、水体和土壤中的环境行为。主要研究结果如下所述:
     1.以粘虫(Mythimna separata)6龄幼虫和小地老虎(Agrotis ypsilon)5龄幼虫为试虫,在其前胸背板点滴给药。处理后1~6h,在试虫血淋巴中采用HPLC分析方法均为检测到苦皮藤素V;采用HPLC-MS/MS分析方法可以检测到苦皮藤素V,但含量极低,处理后4h的含量分别为0.169μg·mL-1和0.078μg·mL-1,说明苦皮藤素V很难穿透试虫体壁进入血腔。苦皮藤素V以载毒叶片饲虫法处理试虫,处理1h后粘虫幼虫和小地老虎幼虫血淋巴的苦皮藤素V含量分别为1.74μg·mL-1和1.65μg·mL-1,处理4h后,血淋巴的苦皮藤素V含量达峰值,分别为4.54μg·mL-1和5.81μg·mL-1,说明被摄入消化道的苦皮藤素V能迅速穿透肠壁进入血腔。
     2.苦皮藤素V经口被摄入试虫体内很快被代谢解毒。在6龄粘虫幼虫和5龄小地老虎幼虫体内的代谢动态符合负指数方程,分别为C=92.33e-0.0528t和C=88.30e-0.1268t,半衰期分别为13.1h和5.5h,说明小地老虎幼虫代谢苦皮藤素V的速率远大于粘虫幼虫。代谢速率的差异,可能是苦皮藤素V对两种试虫的选择作用机理之一。
     3.增效剂S16和TPP与苦皮藤素V混用后,可明显抑制苦皮藤素V在粘虫和小地老虎幼虫体内的代谢速率。在小地老虎幼虫体内,处理8h、24h后,S16可抑制苦皮藤素V代谢36.11%和14.50%,TPP可抑制苦皮藤素V代谢46.38%和25.56%。在粘虫幼虫体内,处理8h、24h后,S16可抑制苦皮藤素V代谢21.35%和4.94%,TPP可抑制苦皮藤素V代谢21.14%和11.95%。这些结果,说明苦皮藤素V在试虫体内的代谢主要由多功能氧化酶和羧酸酯酶催化。
     4.研究结果表明,苦皮藤素V既可通过蚕豆苗(双子叶植物)的根系进入植物体内上行输导,根系在10μg·mL-1浓度的水体中48h,蚕豆苗中苦皮藤素V的含量为1.72μg·g-1;又可通过叶片吸收进入植物体内上行输导,以200μg·mL-1浓度喷施中层叶片,48h后上层叶片中苦皮藤素V的含量为0.77μg·g-1,说明和根系的穿透吸收相比,从叶片的穿透吸收比较困难。研究结果还表明,和蚕豆苗相比,水体中苦皮藤素V更容易穿透小麦苗(单子叶植物)根系表面保护层进入植株体内上行输导,处理48h后小麦苗中苦皮藤素V含量达2.72μg·g-1;但苦皮藤素V水溶液浇施于土壤后,由于土壤对苦皮藤素V强烈的吸附作用,因此难以通过根系吸收进入植株体内。
     5.比较了苦皮藤素I、苦皮藤素V、NW28和NW53四种不同结构类型的二氢沉香呋喃类化合物不同pH水体中54℃条件下的稳定性。结果表明,在pH 4水体中,苦皮藤素I、苦皮藤素V及NW53比较稳定,24h水解率分别为10.43%、8.93%及6.60%,而NW28相对不稳定,24h水解率为19.75%;pH 7水体中,苦皮藤素I、苦皮藤素V及NW28较稳定,24h水解率分别为12.00%、12.03%及6.43%,而NW53稳定性较差,24h的水解率达50.55%;在pH 10水体中,苦皮藤素I、苦皮藤素V、NW28及NW53均不稳定,半衰期分别为1.7h、14.1h、7.1h及0.9h。
     采用MS及MS/MS技术对苦皮藤素V主要水解产物的结构进行了初步分析。结果表明,水解产物都是1~3个酯键断裂形成的,而且均发生在C-1、C-2、C-8及C-9位,没有发现C-13位酯键水解,也未发现7羟基(全水解)的水解产物。
     6.室内模拟条件下,苦皮藤素V在不同类型土壤中的降解速率差别较大,其降解速率依次为天津碱土>东北黑土>江西红土>关中黄土,其降解动态方程及半衰期依次为:Ct=9.613e-0.0321T,21.59d;Ct=10.592e-0.0219T,31.65d;Ct=10.261e-0.0123T,56.35d;Ct=11.275e-0.0118T,58.74d。苦皮藤素V在土壤中的主要降解产物和在水体中的降解产物相似,都是1~3个酯键断裂形成的,而且均发生在C-1、C-2、C-8及C-9位。
     7.大田施药条件下,苦皮藤素V在白菜中的消解动态符合负指数方程Ct=1.210e-0.0588T,半衰期为11.8d;在土壤中的消解动态亦符合负指数方程Ct=0.0596e-0.0475T,半衰期为14.6d。在推荐最高剂量5倍浓度下(苦皮藤素V 15mg·kg-1)施药3次,距最后一次施药14d后,白菜中的苦皮藤素V最终残留量为0.067mg·kg-1,属于低残留农药。
To investigate the discipline of the penetration and metabolism of pesticides in the control objects and protected crops will help to understand the mode of action, detoxification and other toxicology problems, and it also contribute to the rational application of pesticides. Similarly, researches on the degradation of pesticides in water and soil, and the residue dynamics in harvested crops, will be helpful to evaluate the safety, to develop the standards of safe use and pesticides residue.
     As one of the major active ingredients of the botanical pesticide, celangulins formulated as emulsifiable concentrate and micro-emulsion, celangulin V has never been thoroughly investigated in terms of the above mentioned fields. Therefore, the penetration and metablolism of celagulin V in the insects and plants, the environmental behaviour of celangulin V in aquatic system and soil were studied in the program. The main findings are as follows:
     1. The 6th instar larvae of armyworm(Mythimna separata) and the 5th instar larvae of black cutworm(Agrotis ypsilon) were used as test insects. The acetone solution of celangulin V was delivered in its pronotum by the method of drip administration. In the insect hemolymph, celangulin V was not detected by HPLC-UV analysis after the treatment of 1~16h. While minimal celangulin V was detected by HPLC-MS/MS, the contents were 0.169μg·mL-1 and 0.078μg·mL-1 after the treatment of 4h, which means that penetrating from the integment into the blood cavity was difficult for the tested chemical. Feeding the tested insects with leaves discs contain poison, the contents of celangulin V in the larvae hemolymph of armyworm and black cutworm were 1.74μg·mL-1 and 1.65μg·mL-1 after treatment 1h, and it achieved peak levels after 4h, the contents were 4.54μg·mL-1 and 5.81μg·mL-1, which indicated that celangulin V ingested into digestive tract could rapidly penetrate intestinal lining into the blood cavity.
     2. Celangulin V ingested by oral could be rapidly metabolized via detoxification. The metabolism of celangulin V in the body of the two tested insects conformed to a negative exponential function, the equations for the 6th larvae of armyworm and the 5th larvae of black cutworm were C = 92.33e-0.0528t and C = 88.30e-0.1268t, half-life were 13.1h and 5.5h, respectively. The metabolism rate of celangulin V in black cutworm larvae was much greater than that of armyworm larvae. Difference in metabolism rate might be one of the selective toxicity mechanisms of celangulin V against two tested insects.
     3. After administration with a mixture of celangulin V with synergist S16 and TPP, the metabolism rate of celangulin V in armyworm and black cutworm larvae could be inhibited obviously. In the case of black cutworm larvae, the metabolism of celangulin V were inhibited 36.11% and 14.50% by S16, 46.38% and 25.56% by TPP after treatment 8h and 24h, respectively. In the case of armyworm larvae, the metabolism of celangulin V were inhibited 21.35% and 4.94% by S16, 21.14% and 11.95% by TPP after treatment 8h and 24h, respectively. The results indicated that the metabolisms of celangulin V in tested larvae were mainly catalyzed by mixed function oxidase (MFO) and carboxyl esterase.
     4. The results showed that celangulin V could be adsorbed by root system or leaves, and then upstream in broad bean seedling (dicotyledons). Dipping the roots in the concentration of 10μg?mL-1 aquatic system for 48h, the content of celangulin V in the plant was 1.72μg?g-1. Spraying the middle leaves with 200μg?mL-1 solutions, the content of celangulin V in the upper leaves was 0.77μg?g-1 after 48h. It indicated that the penetration into root was much easier than into leaves. In addition, celangulin V could penetrate wheat (monocot) seedling roots more easily than that of broad bean in aquatic system, the content of celangulin V in the wheat seedling was 2.72μg?g-1 after 48h. However, the intake of celangulin V by root from soil treated with the solution was difficult and it might due to celangulin V was absorbed strongly by soil.
     5. The stability in different pH aquatic systems of celangulin I, celangulin V, NW28 and NW53, four types of dihydroagarofuran compounds, was investigated under 54℃. The results showed that celangulin I, celangulin V and NW53 were stable at pH 4, their hydrolysis rates were 10.43%, 8.93% and 6.60% after 24h respectively, while NW28 was relatively unstable, its hydrolysis rate was 19.75%. Celangulin I, celangulin V and NW28 were stable at pH 7, their hydrolysis rates were 12.00%, 12.03% and 6.43% after 24h respectively, while NW53 was less stable, and its hydrolysis rate was 50.55%. At pH 10, celangulin I, celangulin V, NW28 and NW53 were unstable and their half-life was 1.7h, 14.1h, 7.1h and 0.9h, respectively.
     The structures of the major hydrolysis products of celangulin V were analyzed by MS and MS / MS technique preliminary. The results showed that all hydrolysis products were derived from 1~3 ester bonds cleavage, and they all occurred in C-1, C -2, C-8 and C-9 positions, no products were observed derived from the cleavage of ester bond at C-13. At the same time, seven hydroxyls derivative (full hydrolysis product) was also not observed.
     6. The results of laboratory simulation tests indicated that the degradation rate of celangulin V in different types of soil varied greatly, their order of degradation rate was Tianjin alkaline earth > Northeast black earth> Jiangxi red earth> Guanzhong loess, the dynamic equation and the half-life of degradation were: Ct = 9.613e-0.0321T, 21.59d; Ct = 10.592e-0.0219T, 31.65d; Ct = 10.261e-0.0123T, 56.35d; Ct = 11.275e-0.0118T, 58.74d. The main degradation products of celangulin V in soil were similar with that in water.
     In field trials, the degradation dynamic of celangulin V in cabbage was fit to the negative exponential equation Ct = 1.210e-0.0588T and half-life was 11.8d. The degradation dynamic in soil was also fit to the negative exponential equation Ct = 0.0596e- 0.0475T and half-life was 14.6d. The results of ultimate residue test showed that the content of celangulin V in cabbage was 0.067 mg·kg-1 , which was sprayed with quintuple of the recommended high dose for three times, and was harvested after 14 days of the last application. It indicated that celangulins formulation was belonging to low-residue pesticide.
引文
蔡道基. 1999.农药环境毒理学研究.北京:中国环境科学出版社: 28-34.
    陈舜华,钟创光,赵小奎. 1998.几种淡水动植物对(14)C-毒死蜱的吸收、分布和消长的研究.核农学报, 12(5): 286-292.
    范志先,许允成,初丽伟,等. 2003.吡虫啉在番茄和土壤上的残留动态.吉林农业大学学报, 25(6): 649-651.
    高玉荣,黄玉瑶,曹宏,等. 1995.单甲脒农药对模型池塘生态系统藻类群落结构的影响.应用与环境生物学报, 1(3): 209-218.
    关锐捷. 2001.中国发展农业产业化经营现状及展望.中国农业信息快讯, 1: 5-6.
    韩丙军,何书海,林靖凌,等. 2007.温度影响印楝素A及同系物降解动力学研究.现代农药, 65(6): 30-37.
    侯志广,王秀梅,范志先,等. 2004.气质法测定白菜中克百威残留量的研究.吉林农业大学学报, 26(1): 70-72.
    黄瑞纶. 1956.杀虫药剂学.北京:财政经济出版社: 539-540.
    姬志勤,吴文君,胡兆农. 1998.植物杀虫剂苦皮藤有效成分苦皮藤素Ⅴ的光稳定性研究.中国化工学会农药专业委员会第九届年会论文集: 105-107.
    李建法,谭卫红,吕金红,等. 2009.有机膨润土对印楝素的缓释和稳定作用.农药, 48(1): 27-30.
    李启泉,刘守亮,秦启发,等. 2004.环境、食品及人体农药残留量调查.中国自然医学杂志, 5(1): 5-8.
    李俊凯,徐汉虹,江定心,等. 2005.吲哚乙酸引导下三唑醇在大豆植株中的传导与积累研究初报.农药学学报, 7(3): 259-263.
    刘步林. 2001.农药剂型加工技术.第2版.北京:化学工业出版社: 409.
    刘惠君;郑巍;刘维屏. 2001.新农药吡虫啉及其代谢产物对土壤呼吸的影响.环境科学, 22(4): 73-76.
    刘惠霞,吴文君. 1992.温度对苦皮藤麻醉成分毒力的影响.西北农业学报, 2(2): 54-56.
    刘惠霞. 1993.苦皮藤麻醉成分对昆虫的选择毒性及其机制的初步研究.西北农业学报, 2(2): 31-36.
    刘惠霞,吴文君,姬志勤,等. 1998.苦皮藤毒杀成分对昆虫的选择毒杀作用及其机制研究.西北农业学报, 7(2): 41-44.
    刘惠霞,吴文君. 1999.苦皮藤素Ⅳ作用机理的初步研究.世界农药, 21(增刊): 79-82.
    刘惠霞,杨从军,吴昊,等. 2002.苦皮藤素Ⅴ对昆虫选择毒性机理的进一步研究.西北农林科技大学学报(自然科学版), 30(2): 83-86.
    刘曙照,瞿颖蔚,王中信,等. 1994.噻嗪酮在水和水稻植株中的残留动态及转运.植物保护学报, 21(2): 187-191.
    刘正聪,陆舍铭,高茜,等. 2009. PY/GC-MS法研究烟碱热裂解产物.精细化工, 5(26): 480-484.
    路平,邱国福,王晓玲,等. 2002.气-质联用仪法对蔬菜中农药残留量的分析.农药, 43(9): 23.
    江树人. 1988. 14C-久效磷涂抹棉苗茎秆后药剂的吸收、分布和代谢[J].核农学报, 2: 64.
    莫汉宏. 1994.农药环境化学行为论文集.北京:中国科学出版社.
    农业部农业检定所. 1995.农药残留实用检测方法手册.北京:农业出版社: 46-51.
    欧晓明. 2004.新农药硫肟醚的环境化学行为研究. [博士学位论文].杭州:浙江大学.
    欧晓明. 2006.农药在环境中的水解机理及其影响因子研究进展.生态环境, 15(6): 1352-1359.
    祁志军. 2001. 0.2%苦皮藤素乳油的环境安全性评价. [硕士学位论文].杨凌:西北农林科技大学.
    祁志军,姬志勤,秦宝福,等. 2004. 0.2%苦皮藤素乳油在土壤中的吸附与降解.西北农林科技大学学报(自然科学版), 32 (2): 31-34.
    祁志军,胡兆农,时春喜,等. 2004. 0.2%苦皮藤素乳油对非靶标生物的影响.西北农林科技大学学报(自然科学版): 32(3): 73-76.
    秦宝福,吴文君,祁志军,等. 2004.苦皮藤素微粉剂对绿豆象种群的控制作用.西北农林科技大学学报(自然科学版): 32 (增刊): 57-59.
    秦宝福,吴文君,姬志勤,等. 2003.苦皮藤素微粉剂对玉米中玉米象种群的控制.西北农林科技大学学报(自然科学版): 31 (增刊) : 35-37.
    石尚柏. 1995.甲基1605对棉铃虫、斑实夜蛾毒性、渗透性组织分布和代谢作用.湖北植保, 6: 21-23.
    沈国兴,严国安,彭金量,等. 1999.农药对藻类的生态毒理学研究II:毒性机理及其富集与降解.环境科学进展, 7(6): 131-140.
    孙卓,林靖凌,郑服丛. 2008.紫外光对印楝素A及同系物降解的影响.广东农业科学, 9: 68-69.
    唐光辉,张璟,何军,等. 2007.基于SFE-GC/MS技术的敌敌畏在柳树中的传导与分布.中国农学通报, 23(10): 454-459.
    唐进根,嵇保中,金风,等. 2001.灭幼脲在桑天牛成虫体内的代谢和转移[J].南京林业大学学报(自然科学版), 25(2): 43-46.
    王化国,齐孟文,彭根元,等. 1998. (14)C-甲霜灵在豌豆中的传导与分布以及其在几种作物中残留消解动态.中国农业大学学报, 3(5): 85-89.
    王连生. 1990.有机污染物化学(上册).北京:科学出版社.
    王吉强. 2008.吡虫啉根施对瓜蚜的防治效果及根施后药剂在黄瓜植株体内的传导分布. [硕士学位论文].保定:河北农业大学.
    魏少鹏. 2009.苦皮藤根皮杀虫活性成分及构效关系研究. [博士学位论文].杨凌:西北农林科技大学.
    吴春华,陈欣. 2004.农药对农区生物多样性的影响.应用生态学报, 15(2): 341-344.
    吴文君,曹高俊. 1982.植物性杀虫剂苦皮藤作用方式的初步研究.西北农学院学报, (1): 75-80.
    吴文君,陈广泉,王兴林. 1988.苦皮藤提取物对玉米象种群的控制作用及机理.粮食储藏, 17(5): 9-13.
    吴文君. 1988.植物化学保护实验技术导论.西安:陕西科学技术出版社: 89-91.
    吴文君,张新瑞. 1989.光热及pH值对苦皮藤有效成分生物活性的影响.西北农业大学学报, 17(1): 65-68.
    吴文君,刘惠霞,朱靖博. 1993.杀虫天然产物苦皮藤II, III, IV的结构鉴定.农药, 3: 8-10.
    吴文君,李绍白,朱靖博,等. 1994.新化合物苦皮藤素V的分离与结构鉴定简报.西北农业大学学报, 22(4): 116-117.
    吴文君,姬志勤,胡兆农. 1997.天然产物与消化毒剂.农药, 36(6): 6-9.
    吴文君,刘惠霞,朱靖博,等. 1998.天然产物杀虫剂——原理·方法·实践.西安:陕西科学技术出版社.
    吴文君,刘惠霞,胡兆农,等. 2008.从天然产物到新农药创制——杀虫植物苦皮藤研究进展.昆虫知识, 45(6): 845-851.
    虞云龙,陈鹤鑫,樊德方. 1997.杀灭菊酯的微生物降解与酶促降解.环境科学, 18(2): 5-8.
    夏会龙,陈宗懋. 1989.氯氰菊酯和马拉硫磷农药的水解动力学研究.农业环境科学学报, 05.
    向平安,黄璜,燕惠民,等. 2005.湖南洞庭湖区水稻生产的环境成本评估.应用生态学报, 16(11): 2187-2193.
    肖曲,郝冬亮,刘毅华,等. 2008.农药水环境化学行为研究进展.中国环境管理干部学院学报, 18(3): 58-61.
    杨仁斌,刘毅华,邱建霞,等. 2007.农药在水中的环境化学行为及对水生生物的影响.湖南农业大学学报(自然科学版), 33(1): 96-100.
    杨晓为,王芳,杨晓云,等. 2008.鱼藤酮在不同类型土壤中的降解.安全与环境学报, 8(4): 15-18.
    姚建仁,焦淑贞,钱盖新,等. 1989.化学农药光解研究进展.农药译丛, 11(1): 26-30.
    张龙翔. 1997.生化实验方法和技术.第2版.北京:高等教育出版社: 461-465.
    张帅,曾鑫年,熊忠华. 2007.表鱼藤酮光稳定性的研究.农药, 46(4): 241-242.
    张宗炳,樊德方,钱传范,等. 1989.杀虫药剂环境毒理学.北京:中国农业出版社.
    赵华,李康,吴声敢,等. 2004.毒死蜱对环境生物的毒性与安全性评价.浙江农业学报, 16(5): 292-298.
    赵善欢. 2000.植物化学保护.北京:中国农业出版社.
    赵淑英,谭卫红,宋湛谦. 2005.印楝素的稳定性研究.福建林学院学报, 25(3): 247-250.
    郑巍. 2000.新农药吡虫啉的环境物理化学与生物化学行为研究. [博士学位论文].杭州:浙江大学.
    中华人民共和国国家标准. 1998.食品中有机磷和氨基甲酸酯类农药多种残留的测定. GB/t 17331.
    周晓燕,崔兆杰. 2009.土壤及果树中HCH和DDT残留及分布规律研究.环境科学与技术, 32(5): 62-65.
    朱树秀,尹力上. 1988.春小麦对土壤中(14)C-辛硫磷残留物的转移规律和途径的研究.生态学报, 8(1): 59-65.
    邹喜乐. 2007.论农药对环境的危害.湖南农机, 07, 44-47.
    Aislabie J, Asim K. Bej, Janine Ryburn, etal. 2005. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol. Ecol. 52 (2): 279-286.
    Aronstein B N, Calvillo Y M, Alexander M. 1991. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soils. Environ Sci Technol, 25: 1728-1731
    Badon R, Bastide J, Sabadie J. 1990. Reactivite de l'herbicide metsulfuron methyle, synthese des produits de degradation. Chemosphere, 21(1-2), 289-294.
    Cambon J P, Bastide J. 1996. Hydrolysis kinetics of thifensulfuron-methyl in aqueous buffer solution. J Agric Food Chem, 44: 333-337.
    Gao J M, Wu W J, Zhang J W, et al. 2007. The Dihydro-β-agarofuran Sesquiterpenoids. Nat Prod Rep, 24:1153-1189.
    George R. Hallberg. 1989. Pesticides pollution of groundwater in the humid United States. Agriculture, Ecosystems & Environment, 3-4(26): 299-367.
    Kalyani K. Patnaik, Niraj K. Tripathy. 1992. Farm-grade chlorpyrifos (Durmet) is genotoxic in somatic and germ-line cells of Drosophila. Mutation Research/Genetic Toxicology, 279(1): 15-20.
    Mata-Sandoval J C, Karns J and Torrents A. 2001. Influence of rhamnoiipids and triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J. Agric. Food Chem, 49: 3296-3303
    M.E. DeLorenzo, L. Serrano, K.W. Chung, etal. 2006. Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio. Ecotoxicology and Environmental Safety, 64(2): 122-127.
    Morrica P, Barbato F, Iacovo R D, Seccia S, Ungaro F. 2001. Kinetics and mechanismof ima-zosulfuron hydrolysis. J.Agric.Food Chem, 49, 3816-3820.
    Pantani O, Calamai L, Fusi P. 1994. Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicides (cinosulfuron). Applied and Clay Science, 8: 373-387.
    Sabadie J. 2002. Nicosulfuron: Alcoholysis, Chemical Hydrolysis, and Degradation on Various Mine-rals. J. Agric. Food Chem., 50, 526-531.
    Sarmah A K, Kookana R S, Duffy M J, Alston A M and Harch B D. 2000. Hydrolysis of triasulf-uron, metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions. Pest Manag Sci, 56: 463-471.
    Sarmah A K, Sabdie J. 2003. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions. Journal of Agriculture and Food Chemistry, 50: 6263-6265.
    Sukanya Lal, Rup Lal, D. M. Saxena. 1987. Bioconcentration and metabolism of DDT, fenithion and chlorpyriphos by the blue-green algae Anabaena sp and Aulesura ferilissima. Environmental Pollution, 46(3): 187-196.
    VaróI, Amat F, Navarro J C, M. Barreda, etal. 2006. Assessment of the efficacy of Artemia sp (Crustacea) cysts chorion as barrier to chlorpyrifos (organophosphorus pesticide) exposure. Effect on hatching and survival. Science of the total Environment, 366(1):148-153.
    Wang M A, Wu W J, Zhu J B, et al. 2006. Two New Insecticidal Sesquiterpene Polyol Esters from Celastrus angulatus. Nat Prod Res, 20: 653-658.
    Ward S., Arthington A. H., Pusey B. J. 1995. The Effects of a Chronic Application of Chlorpyrifos on the Macroinvertebrate Fauna in an Outdoor Artificial Stream System: Species Responses. Ecotoxicology and Environmental Safety, 30(1): 2-23.
    Wei J, Furrer G and Schulin R. 2000. Kinetics of carbosulfan degradation in the aqueous phase inthe presence of a cosolvent. J. Environ. Qual, 29: 1481-1487.
    Wet J, Furrie G, Kaufmann S, et al. 2001. Influence of clay minerals on the hydrolysis of carbamate pesticides. Environmental Science and Technology, 35: 2226-2232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700