海洋微藻对UV-B辐射增强与CO_2加富共同作用的复合响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO_2水平在21世纪将倍增。随着工业化的发展,除了CO_2,氯氟代烃(CFCs),CH_4和N_2O也将增多,这些气体的增多将使臭氧层减薄,使到达地球表面的UV-B辐射呈增强趋势,CO_2和UV-B将随着未来全球气候的变化而同时增加。UV-B辐射对藻类有明显的伤害作用,其损伤的主要目标是蛋白质、DNA和光合色素等,CO_2浓度升高对海洋微藻的生物量、光合作用有促进作用,而UV-B辐射与CO_2加富共同作用对海洋微藻的研究还未见报道。本文以几种海洋微藻为实验对象,通过研究其对UV-B辐射增强与CO_2加富单独以及复合响应,探讨UV-B辐射增强与CO_2加富对海洋微藻的生理生态学、细胞学的影响机制,以期为全球气候变化对水生生态系统的影响提供科学依据。通过实验,我们得到以下结果:
     1.UV-B辐射对海洋微藻的生长具有抑制作用,并且随着辐射剂量的不断增大而抑制作用增强。在单养的情况下,短期内(48h)8种藻对UV-B的敏感性顺序为骨条藻<塔胞藻<盐藻<小球藻<角毛藻<亚心形扁藻<小新月菱形藻<金藻8701。
     高浓度CO_2(5000μl/L)能够促进海洋微藻的生长,且随时间的延长,增长幅度越大。高浓度CO_2(5000μl/L)对6种藻生长影响的敏感性依次为:小球藻<盐藻<金藻8701<小新月菱形藻<亚心形扁藻<塔胞藻。
     2.研究了在三种UV-B辐射剂量(0,2.88 J/m~2和5.76 J/m~2)对三种藻混养的竞争性平衡的影响。本实验的两个UV-B辐射剂量(2.88 J/m~2和5.76 J/m~2)使三种藻的总生物量都大幅降低,竞争平衡也发生了变化。实验表明,UV-B对三种藻的敏感性顺序为金藻>小新月菱形藻>亚心形扁藻;增强的UV-B使对UV-B具有高耐受力的亚心形扁藻提供了竞争优势,使种间竞争平衡向着有利于亚心形扁藻的方向发展。
    
    海洋微藻对Uv-B辐射增强与CO:加富共同作用的复合响应
     与低浓度COZ相比,高浓度COZ促进三种藻的生长,并且混养与单
    养相比较,高浓度CO:对三种藻的敏感性发生了变化,通气培养到第21
    天时,高浓度CO:的优势种、亚优势种、劣势种并未发生变化。
     增强UV一B+高COZ与对照(空气)相比,三种藻的细胞密度显著降
    低。所以,尽管COZ浓度升高能够促进藻的生长,但并不能抵消UV一B
    辐射对海洋微藻生物量的影响,而且增强UV一B十高CO:与对照(空气)
    相比,种间竞争和优势种发生了很大变化。
     3.采用透射电镜对微藻的超微结构进行研究
    射增强(未通气)使盐藻叶绿体结构受到破坏
    。研究发现,UV一B辐
    线粒体内晴局部溶解,
    穿入到蛋白核内的类囊体发生缺失或断裂,累积许多小的淀粉粒和脂肪
    小球,液泡异常增大,数量增加,内含物减少,高尔基体则变为排列松
    弛的储泡,醋泡的外围顶端并没有特别膨大,表明Uv一B辐射增强对盐藻
    细胞结构的变化是盐藻适应外界环境UV一B辐射的一种反应。
     UV一B辐射增强(通空气)使盐藻细胞的线粒体数目增多,但个别线
    粒体的内靖溶解,类囊体溶解,叶绿体被膜部分皱缩,高尔基体有一个
    排列松弛的滞泡,储泡的外围顶端并没有特别膨大,核膜部分溶解。
     经uv一B辐射剂量为8.8)/mZ处理后的小球藻(未通气),类囊体片
    层缺失、溶解,类囊体中的含有光合色素的小体被漂白;线粒体内蜡部
    分溶解;有的小球藻开始出现轻微的质壁分离现象;经UV一B辐射剂量为
    13.SJ/mZ处理后的小球藻(未通气),类囊体排列错乱、崩解,出现质壁
    分离的现象,有的细胞壁开始脱落,线粒体严重变形,内峭大部分溶解;
    细胞内基质电子密度比较高;细胞内出现大量空白区,叶绿体中的含有
    光合色素的小体被漂白且可见几个含有光合色素的小体的空壁。由此可
    见,随着UV一B辐射剂量的增大,小球藻的细胞结构被破坏的程度越大。
     盐藻细胞在低浓度C02(360 p l/L)培养下细胞内有一个发育良好的、
    由淀粉盘包围的蛋白核,而在高浓度CO:(5000 p I/L)培养的细胞内没
    有发现蛋白核或蛋白核不明显,高尔基体排列紧密,类囊体排列整齐,
    片层清晰,线粒体内晴清晰。
     增强UV一B+高CO:处理的细胞内形成许多小块的淀粉粒,有的细胞
    
    海洋微藻对UV-B辐射增强与CO:加富共同作用的复合响应
    核膜已经溶解,类囊体部分溶解;在质膜和叶绿体膜之间有许多线粒体,
    但线粒体的内峭己经溶解。蛋白核外围的淀粉鞘断裂成几个不连续的大
    小不一的淀粉粒。高尔基体排列松弛。结果表明,CO:加富并不能完全
    抵消UV一B辐射对盐藻细胞结构的破坏。
     4.UV一B辐射对两种海洋微藻的生理生化的研究表明:(1) UV一B辐
    射能抑制微藻的生长并且抑制微藻光合作用;相对较低剂量的UV一B辐射
    刺激小球藻的光合色素(叶绿素a(Chl一a)和类胡萝卜素(Car)),较高
    的Uv一B辐射剂量抑制chl一a和Ca:含量;(2)非变性聚丙烯酞胺凝胶电
    泳方法对蛋白质组成分析的结果表明,较低剂量的UV一B辐射处理可以升
    高可溶性蛋白质的含量,随着UV一B辐射剂量的加大,蛋白质含量明显降
    低;(3)UV一B辐射使活性氧(过氧化氢(HZOZ)和超氧阴离子自由基(02’一))
    含量升高,且UV一B辐射时间延长,升高幅度增大;另外,小球藻和亚心
    形扁藻之间存在差异,且随着UV一B辐射时间延长,藻种间的差异更趋明
    显:(4)随着Uv一B辐射时间
Atmospheric levels of CO2 are expected to double during the 21st century. In addition to CO2, chlorofluorocarbons (CFCs), CH4 and N2O are also increasing with industrialization. The increase of these trace gases is expected to deplete the stratospheric ozone column with a subsequent increase in the amount of solar UV-B radiation reaching the earth. Both CO2 and UV-B radiation are expected to increase simultaneously with future changes in global climate. UV-B radiation can significantly damage microalgae. The main targets are protein, DNA and photosynthetic pigments, and so on. Elevated CO2 concentration can promote the biomass, photosynthesis of microalgae, while combined effects of UV-B radiation and enriched CO2 on marine microalgae have not been reported. In this article, we take several species of marine microalgae as experimental objectives, and discuss the mechanisms of enhanced UV-B radiation and enriched CO2 on the physiological ecology and cytology of marine microalgae by studying enhanced UV-B radi
    ation, elevated CO2 singlely and CO2 /UV-B radiation in combination, to supply experimental base for aquatic ecosystem with changes in global climate. Through experiments, we get results as follows:
    1. UV-B radiation inhibited the growth of marine microalgae, and the inhibiting action increased as increasing UV-B radiation dosage. Under the condition of solitary cultivation, the sensitivity of short-term (2d) UV-B radiation on solitary cultivated eight species of microalgae was Skeletonema costatum Greville < Platymanas sp. < Dunaliella salina < Chlorella.sp< Chaetoceros miielleri Lemmermann < Platymonas subcordiformis < Nitzschia clostertium< Isochrysis galbama Park 8701.
    Elevated CO2 can promote the growth of marine microalgae, and as the time was prolonged, the increase amplitude was greater. The sensitivity of six species of algae to elevated €62 was Chlorella. s p < Dunaliella salina< Isochrysis galbama Park 8701 < Nitzschia clostertium< Platymonas subcordiformis< Platymanas sp.
    2. The effects of three UV-B radiation doses (0, 2.88 J/m2, 5.76 J/m2) on competitive
    
    
    balance of three species of algae under the condition of mixed cultivation were examined. The total biomass of three species of microalgae under the UV-B dosage of 2.88 J/m2, 5.76 J/m2 was greatly reduced, and the competitive balance changed also. The experiment showed that, the sensitivity of UV-B radiation on three species of microalgae was Isochrysis galbama Park 8701>Nitzschia clostertium >Platymonas subcordiformis. So enhanced UV-B radiation provide competitive dominance for Platymonas subcordiformis, which has high tolerance to UV-B, and in general, the effect of UV-B was in favor of Platymonas subcordiformis. On the 21st day, in the treated groups of UV-B radiation (2.88 J/m2, 5.76 J/m2), Platymonas subcordiformis became the dominant algae.
    Compared with low concentration COi, elevated COi promoted the growth of three algae, and elevated COa changed the sensitivity of three species of algae under the condition of mixed cultivation, comparing to under the condition of solitary cultivation. On the 21st day of the experiment, the dominant algae, subdominant algae and rogue algae were not changed.
    Compared with control (air), enhanced UV-B + elevated CO2 greatly decreased cell densities of three species of algae. Therefore, although elevated CO2 can promote the growth of algae, it can not counteract the effect of UV-B radiation on biomass of marine microalgae. Compared with control (air), enhanced UV-B + elevated COa changed the interspecific comptition and dominant algae.
    3. Effects of enhanced UV-B radiation (not bubbling) on the ultrastructure of Dunaliella salina were examined. After exposure to enhanced UV-B radiation, dramatic ultrastructual changes occurred in the chloroplast of D. salina; some cristae of mitochondria were disintegrated; the thylakoid penetrating into the pyrenoid was lost or broken. After exposure to enhanced UV-B radiation, enhanced UV-B radiation caused the accumulation of starch grains and lipid globu
引文
1.曹锡清.脂质过氧化对细胞与机体的作用.生物化学与生物物理进展,1986,2:17-23.
    2.陈勃.低温诱导玉米幼苗的交叉适应及诱导表达CaM/CaMBP转基因烟草体系的建立.云南大学硕士研究生学位论文,2001.
    3.陈平平.大气二氧化碳浓度升高对植物的影响.生物学通报,2002,37(3):20-22.
    4.陈拓,任红旭,王勋陵.UV-B对小麦叶抗氧化系统的影响.环境科学学报,1999,19(4):453-455.
    5.陈颖等,刘根齐,李文彬,孙勇如.3种小球藻DNA提取方法的比较.植物生理学通讯,2001,37(3):242-244.
    6.冯国宁,安黎哲,冯虎元,王勋陵.增强UV-B辐射对菜豆蛋白质代谢的影响.植物学报,1999,41(8):833-836.
    7.高雷明,黄银晓,林舜华.CO_2倍增对羊草物候和生长的影响.环境科学,1999,20(5):25-29.
    8.高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应Ⅱ.三苯基锡和三丁基锡对扁藻和金藻光合作用的影响.海洋与湖沼,1994,25(4):362-367.
    9.高玉荣,黄玉瑶,曹宏,陈俨梅.单甲脒农药对模型池塘生态系统藻类群落结构的影响.应用与环境生物学报,1995,1(3):209-218.
    10.龚明.抗旱性鉴别方法与指纹及其综合评价.云南农业大学学报,1989,4(1):73-78.
    11.郭丽红.玉米幼苗交叉适应的研究及表达CaM/CaMBP转基因烟草体系的建立.云南大学硕士研究生学位论文,1999.
    12.胡晗华,高坤山.CO_2浓度倍增对牟氏角毛藻生长和光合作用的影响.水生生物学报,2001,25(6):636-638.
    13.华汝成.单细胞藻类的培养与利用.北京:农业出版社,1986:26-30.
    14.黄少白,戴秋杰,刘晓忠等.水稻对紫外线B辐射增强的生化适应机制.作物学报,1998,24(4):464-469.
    15.姜微波,Amnon LERS,Nehemia AHARONI.CO_2对离体欧芹叶片中蛋白质代谢的影响.植物学通报,2000,17(2):185-187.
    16.蒋高明,林高辉,Bruno DV Manur.几种热带雨林与荒漠植物暗呼吸作用对高CO_2浓度的响应.生态学报,1999,19(4):519-522.
    17.蒋高明.全球大气二氧化碳浓度升高对植物的影响.植物学通报,1995,12(4):1-7.
    18.李杰芬等.植物生理学.北京:北京师范大学出版社,1988,62.
    19.李烈英,于富才,李光友.几种海洋生物高度不饱和脂肪酸的比较研究.海洋学报,1994,16(1):105-113.
    20.李元,王勋陵.紫外辐射增强对春小麦生理、产量、品质的影响.环境科学学报,1998,18(5):504-509.
    21.李元,杨济龙,王勋陵,胡之德.紫外辐射增加对春小麦根际士壤微生物种群数量的影响.中国环境科学,1999,19(2):157-160.
    22.梁文懂,米本年邦.绿藻的光培养及其生长机理研究.武汉冶金科技大学学报,1999,22(3):248-251.
    23.林久生,王根轩.CO_2倍增对渗透胁迫下小麦叶片抗氧化酶类及细胞程序性死亡的影响.植物生理学报,2000,26(5):453-457.
    24.林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代
    
    化中的应用.植物学通报,1992,9(1):1-16.
    25.林伟宏.植物光合作用对大气CO_2浓度升高的反应.生态学报,1998,18(5):121-128.
    26.林文雄,梁义元,金吉雄.水稻对UV-B辐射增强的抗性遗传及其生理生化特性研究.应用生态学报,1999,10(1):31-34.
    27.刘家尧,张其德,赵克夫等.大气CO_2浓度倍增和盐浓度对滨藜离子水平和叶绿素荧光诱导动力学的效应.环境科学学报,1998,18(5):533-538.
    28.刘家忠.干旱预处理诱导的玉米幼苗交叉适应及其机制.云南师范大学硕士研究生学位论文,2000.
    29.卢从明,张其德,冯丽洁,匡廷云,郭建平,王春乙.CO_2浓度倍增对谷子拔节期和灌浆期光合色素含量和PSⅡ功能的影响.植物学报,1997,39(9):874-878.
    30.罗俊.水分胁迫对甘蔗叶绿素a荧光参数的影响及其活性氧代谢的关系.福建农业大学硕士学位论文,1999:3.
    31.马淑英,黄阳成,杨小贺,武维华.高浓度钾对杜氏盐藻叶绿体超微结构的影响.植物学报,1999,41(12):1342-1344.
    32.缪锦来.南极冰藻对UV-B辐射增强的适应性及其抗紫外线辐射活性物质的研究.中国海洋大学博士论文,2003.
    33.莫简.活性氧及其生物学作用.生物化学与生物物理进展,1981,2:23-29.
    34.潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995:82、180.
    35.彭长连,林植芳,林桂珠.加富CO_2条件下水稻叶片抗氧化能力的变化.作物学报,1999,25(1):39-43.
    36.秦松.从第九届国际光合作用大会看藻类分子遗传学发展趋势.海洋与湖沼,1993,(24):656.
    37.秦松.海洋科学研究进展.北京:科学出版社,1996.
    38.任红旭,陈雄,吴冬秀.CO_2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响.作物学报,2001,27(6):729-736.
    39.尚宗波.全球气候变化对沈阳地区春玉米生长的可能影响.植物学报,2000,42(3):300-305.
    40.盛玮.酵母中谷胱甘肽过氧化物酶(GSH-Px)活性的分析.淮北师院学报,2003,24:39-43.
    41.汪家政,范明.蛋白质技术手册.北京:科学出版社,2000,119-120.
    42.汪杏芬,李世仪,白克智等.CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响.植物学报,1998,40(12):1169-1172.
    43.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,29(6):55-57.
    44.王春乙,潘亚茹,白月明等.CO_2倍增对几种主要农作物影响的实验研究.气象学报,1997,55:86-94.
    45.王大力,朱力民.CO_2倍增对稻田甲烷排放的影响.植物生态学报,1999,23(5):451-457.
    46.王可玢,娄世庆,赵福洪,戴云玲,匡廷云.CO_2浓度倍增对几子种植物叶片的叶绿素蛋白质复合物的影响.植物学报,1997,39(9):867-973.
    47.王淼,代力民,韩士杰等.高CO_2浓度对长白山阔叶红松林主要树种的影响.应用生态学报,2000,11(5):675-679.
    48.王为民,王晨,李春俭等.大气CO_2浓度升高对植物生长的影响.西北植物学报,2000,
    
    20(4):676-683.
    49.王小箐,潘瑞帜.UV-B对高等植物生长和产量及某些生理代谢过程的影响.植物生理学通讯,1995,31:385-389.
    50.王修兰,徐师华,李佑祥,崔读昌.环境CO_2浓度增加对玉米生育生理及产量的影响.农业工程学报,1995,11(2):109-114.
    51.王修兰,徐师华,李佑祥,崔读昌.小麦对CO_2浓度倍增的生理反应.作物学报,1996,22(3):340-344.
    52.王修兰,徐师华,梁红.CO_2浓度增加对C_3、C_4作物生育和产量影响的实验研究.中国农业科学,1998,31(1):56-61.
    53.王义琴,张慧娟,杨奠安等.大气CO_2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,1998,43(16):1736-1738.
    54.王悠,杨震,唐学玺等.7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230.
    55.魏鼎文,赵延亮,秦芳等.中国北京和昆明地区大气O_3层的异常变化.科学通报,1994,39:1509-1511.
    56.吴晓岚.Ca~(2+)-CaM对玉米超氧化物歧化酶活性的效应.云南大学硕士研究生学位论文,2001.
    57.夏建荣,高坤山,叶海波.水华鱼腥藻生长与光合作用对大气CO_2浓度升高的响应.植物生态学报,2002,26(6):652-655.
    58.夏建荣,高坤山.CO_2浓度变化对两种淡水绿藻的显微结构和超微结构的影响.植物学报,2002,44(5):527-531.
    59.夏建荣,高坤山.不同CO_2浓度下培养的蛋白核小球藻细胞结构的变化.武汉植物学研究,2002,20(5):403-404.
    60.夏建荣,高坤山.高浓度CO_2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-780.
    61.徐仰仓,王静,林久生,王根轩.不同CO_2浓度下渗透胁迫对小麦膜伤害的影响.应用生态学报,2000,11(6):878-880.
    62.晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响.植物生理学报,1996,22(4):373-378.
    63.杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响.生态学报,2000,20(1):39-42.
    64.杨松涛,李彦舫,胡玉熹,林金星,邹啸环.CO_2倍增对3种禾本科植物叶绿体超微结构的影响.西北植物学报,1998,18(3):330-334.
    65.杨志敏,颜景义,郑有飞.紫外辐射增强对大豆光合作用和生长的影响.生态学报,1996,16(2):154-159.
    66.余敏、何耕兴、陈辉等.中国海洋药物,1995,2:30-34.
    67.岳明,王勋陵.紫外线辐射对小麦和燕麦竞争性平衡的影响-小麦和燕麦生物量结构和冠层结构.环境科学学报,1999,19:526-531.
    68.曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响.植物生理学报,1990,16(1):37-42.
    69.张其德,卢从明,冯丽洁等.CO_2加富对紫花苜蓿光合作用原初光能转换的影响.植物学报,1996a,38(1):77-82.
    70.张其德,卢从明,匡廷云.大气CO_2浓度升高对光合作用的影响.植物学通报,1992,9
    
    (4):18-23.
    71.张其德,卢从明,刘丽娜,白克智,匡廷云,郭建平,高素华,王春乙.二氧化碳加富对大豆叶片光系统Ⅱ功能的影响.植物生态学报,1996b,20(6):517-523.
    72.张其德,卢从明,刘丽娜,白克智,匡廷云.CO_2倍增对不同基因型大豆光合色素含量和荧光动力学参数的影响.植物学报,1997a,39(10):946-950.
    73.张其德,卢从明,刘丽娜,冯丽洁,匡廷云.CO_2倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响.植物学报,1997b,39(9):845-848.
    74.赵广琦,王勋陵,岳明,李方民.增强UV-B辐射和CO_2复合作用对蚕豆幼苗生长和光合作用的影响.西北植物学报,2003,23(1):6-10.
    75.郑国昌.细胞生物学.北京:人民教育出版社,1980,151.
    76.郑荣梁.氧的毒性.生物化学与生物物理进展,1984,1:9-11.
    77.周广胜,张新时,高素华,白克智,延晓东,郑元润.中国植被对全球变化反应的研究.植物学报,1997,39(9):979-988.
    78.周广胜,张新时.中国气候-植被关系初探.植物生态学报,1996,20(2):113-119.
    79.邹定辉,高坤山.高浓度CO_2对大型海藻光合作用及有关过程的影响.生态学报,2002,22(10):1750-1757.
    80.邹定辉,高坤山.大型海藻类光合无机碳利用研究进展.海洋通报,2001b,20(5):83~90.
    81.邹定辉,高坤山.高CO_2浓度对石莼光合作用及营养盐吸收的影响.青岛海洋大学学报,2001a,31(6):877~882.
    82.左宝玉,姜桂珍,白克智,匡廷云.CO_2倍增对谷子和紫花苜蓿叶绿体超微结构的效应.植物学报,1996,38(1):72-76.
    83.左宝玉,张泉,姜桂珍,白克智,匡廷云.CO_2倍增对小麦叶绿体超微结构、超分子结构及光谱特性的影响.植物学报,2002,44(8):908-912.
    84. Adams NL, Shick JM. Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis. Photochem Photobiol, 1996, 64: 149-158.
    85. Adamse P, Britz SJ. Amelioration of UV-B damage under high irradiance. I. Role of photosynthesis. Photochemistry and Photobiology, 1992, 56(5): 645-651.
    86. Agrawal S B. Effects of supplemental UV-B radiation on photosynthetic pigment, protein, and glutathione contents in green algae. Environ Exp Bot, 1992, 32: 137-143.
    87. Amthor JS. Respiration in a future, higher CO_2 world. Plant Cell Environ, 1991, 14, 13-20.
    88. Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol, 1999, 34: 497-504.
    89. Antonell F, Grifoni D, Sabatini F, et al. Morphological and physiological responses of bean plants to supplemental UV radiation in Mediterrancan. Plant Ecology, 1997, 128:127-136.
    90. Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF. Interactions between C_3 and C_4 slat-marsh plant species during 4 years of exposure to elevated atmospheric CO_2. Vegetatio, 1993, 104: 133-143.
    91. Badger MR, Andrews TJ. Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiology, 1982, 70: 517-523.
    92. Badger MR, Berry JA, Kaplan A. Photosynthesis and the intracellular inorganic pool in the
    
    blue-green alga Anabaaena variabilis: response to external CO_2 concentration. Planta, 1980b, 149: 219-226.
    93. Badger MR, Gallagher A. Adaptation of photosynthetic CO_2 and HCO_3 accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations. Plant Physiol, 1987, 14:189-201.
    94. Badger MR, Kaplan A, Berry JA. Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for carbon dioxide concentrating mechanism. Plant Physiol, 1980a, 66: 407-413.
    95. Badiani M, Annibal A D, Paolacci A R, et al. The antioxidant status of soybean (Glycinemax) leaves grown under natural CO_2 enrichment in the field. Aust J Plant Physiol, 1993, 20: 275-284.
    96. Baker JT, Allen LH Jr, Boote K J, Rowland-Bamford A J, Jones JW, Jone PH, Bowes G, Albrecht SL. Response of vegetation to carbon dioxide concentrations. Joint Program of U.S. Dep. Of Energy and USDA. Plant Stress and Protection Res. Unit, USDA-ARS, and Inst. Of Food and Agric. Sci., University of Florida, Gainesville, FL. 1988.
    97. Banaszak AT, Trench RK. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. Ⅱ. The synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopeia xamachana. J Exp Mar Biol Ecol, 1995, 194: 233-250.
    98. Basiouny FM, Van TK, Biggs RH. Some morphological and biochemical characteristics of C_3 and C_4 plants irradiated with UV-B. Physiol Plant, 1978, 42: 29-32.
    99. Bassham JA, Calvin M. The path of carbon in photosynthesis. Prentice-Hall, Englewood Cliffs, NJ. 1957.
    100. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem, 1971, 44 (5) : 276-287.
    101. Beerling DJ, Terry AC, Mitchell PL, Callaghan TV, Gwynn-Jones D, Lee JA. Time to chill: effect of simulated global change on leaf ice nucleation temperatures of subarctic vegetation. American Journal of Batany, 2001, 88(4): 628-633.
    102. Behrenfeld MJ, Hardy JT, Lee H. Chronic effects of ultraviolet-B radiation on growth and cell volume of Phaeodactylum tricornutum (Bacillariophyceae). J Phycol, 1992, 28: 757-760.
    103. Behrenfeld MJ, Hardy JT, Lee Ⅱ H. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J Phycol, 1995, 31: 25-36.
    104. Ben-Amotz A, Shaish A, Avron M. Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol, 1989, 91: 1040-1043.
    105. Berry J, Boynton J, Kaplan A, Badger M. Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO_2 concentration. Carnegie Inst Wash Year Book, 1976, 75: 423-432.
    106. Bewley R D. Physiological aspects of desication tolerance. Ann Rev Plant Physiology, 1979, 20:195-238.
    107. Bidigare RR. Potential effects of UV-B radiation on marine organisms of the Southern Ocean, distributions of phytoplankton and krill during austral spring. Photochem Photobiol,
    
    1989, 50: 469-477.
    108. Bjork M, Haglund K, Rammazanov Z, et al. Inducible mechanisms for HCO_3 utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol, 1993, 29: 166-173.
    109. Bjorn LO, Callaghan TV, Johnsen L, et al. The effects of UV-B radiation on European heathland species. Plant Ecol, 1997, 128: 252-264.
    110. Bjorn LO. Effects of ozone depletion and increased UV-B on terrestrial ecosystem. Intern J Environ Studies, 1996, 51 : 217-243.
    111. Blumthaler M, Ambach W. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science, 1990, 248: 206-208.
    112. Bothwell ML, Sherbot D, Roberge AC, Daley RJ. Influence of natural ultraviolet radiation on lotic periphyton diatom community growth, biomass accrual and species composition: short-term versus long term effect. J Phycol, 1993, 29, 24-35.
    113. Bothwell ML, Sherbot DMJ, Pollock CM. Ecosystem response to solar ultraviolet-B radiation: Influence of trophic-level interactions. Science, 1994, 265: 97-100.
    114. Bowes G. Facing the inevitable: plants and increasing atmospheric CO_2. Ann Rev Plant Physiol Plant Mol Biol, 1993, 44: 309-332.
    115. Bowes G. Growth at elevated CO_2: Photosynthetic responses mediated through Rubisco. Plant Cell Environ, 1991, 14:795-806
    116. Bowler C, Van C W, Van M M, Lnze D. Superoxide dismutase in plants. CRC Crit Tey Plant Sci, 1994, 13: 199-218.
    117. Bowler CW, Montagu V, Ince D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:83-116.
    118. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
    119. Brandle TK, Campbell Weff, Sisson WB, et al. Net photosynthesis, eletron transpor capacity, and ultrastructure of pisum sativuml exposed to ultraviolet-B radiation. Plant Physiol, 1977, 60: 165.
    120. Buma AGJ, Engelen AH, Gieskes WWC. Wavelength-dependent induction of thymine dimmers and growth rate reduction in the marine diatom Cyclotella sp exposed to ultraviolet radiation. Marine Ecology Progress Series, 1997, 153:91.
    121. Buma AGJ, Zemmelink HJ, Sjollema K, Gieskes WWC. UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marin diatoms. Marine Ecology Progress Series, 1996, 142:47-54.
    122. Cabor GL, Mikos G. The role of the genome project in determining gene function insights from model organisms[J]. Cell, 1996, 86: 521-529.
    123. Caldwell MM, Bjorn LO, Bornman JF, et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B: Biol, 1998, 46: 40-52.
    124. Caldwell MM, Robberecht R, Flint SD. Internal filters: Prospectsfon UV-accoimation in higher plants[J]. Physiol Plant, 1983, 58: 45-450.
    125. Caldwell MM. Plant response to solar ultraviolet radiation. A.L. Lange et al (eds). Physiological Plant Ecology, Encyclopedia of planta physiology (New serries). Vol. 1d2A. Springer Verlay, Berlin, 1981:169-197.
    
    
    126. Caldwell MM. The effect of solar UV-B radiation on higher plants, Implication of stratospheric ozone reduction In research in photobiology, (A. costllani, ed) Plonum press, Newyork, 1977, 597.
    127. Calkins J, Thordardottir T. The ecological significance of solar UV radiation on aquatic ecosystems. Nature, 1980, 283: 563-566.
    128. Cambell D. The cyanobacterium synechococcus resists UV-B by exchanging photosystem 2 reaction center D1 protein. Proc Natl Acad Sci USA, 1998, 95(1): 364-371.
    129. Campa A. Peroxidases in Chemistry and Biology, Vlo Ⅱ. Boca Raton, FL: CRC Press. 1991, 25-30.
    130. Campbell D. The cyanobacterium synechococcus resists UV-B by exchanging photosystem 2 reaction center D1 protein[J]. Proc Natl Acad Sci USA, 1998, 95(1): 364-371.
    131. Carreto JI, Demarco SG, Lutz VA. UV-absorbing pigments in the dinoflagellates Alexandrium excacatum and Prorocentrum micans. Effects of light intensity. In: Red Tides: Biology, Environmental Science and Toxicology (Okaichi T, Andersson DM, Nemoto T, Eds), Elsevier, New York. 1989, pp. 333-336.
    132. Carreto JI, Lutz VA, Demarco SG, Carignan MO. Fluence and wavelength dependence of mycosporine-like amino acid synthesis in the dinoflagellates Alexandrium excacatum. In: Toxic Marine Phytoplankton (Graneli E, Sundstrom B, Edler L, Andersson DM, Eds.), Elsevier, New York. 1990, pp. 275-279.
    133. Ceulemans R, Mousseau M. Effects of elevated atmospheric CO_2 on woody plants. New Physiologist, 1994,127: 425-446.
    134. Chaves M M, Pereira J S. Water stress, CO_2 and climate change. J Exp Bot, 1992, 43: 1131-1139.
    135. Conconi A. The octadecanoid signaling pathway in plants mediates a response to ultraviolet radiation. Nature, 1996, 383: 826-832.
    136. Conde FR, Churio MS, Previtali CM. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol B: Bio, 2000, 56: 139-144.
    137. Craige E W. What role does UV-B radiation play in freshwater ecosystem? Limnol Oceanogr, 1995, 40(2): 386.
    138. Cullen J, Lewis M. The kinetics of algal photoadaption in the context of vertical mixing. J Plankt Res, 1988, 10(5): 1039-1063.
    139. Cullen JJ, Neale PJ. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res, 1994, 39: 303-320.
    140. Cure JD, Acock B. Crop responses to carbon dioxide doubling: A literature survey. Agricultural and Forest Meteorology, 1986, 38: 127-145.
    141. Curtis SE. Gene encoding the beta and epsilon subunits of the proton-translocating ATPase from Anabaena sp. strain PCC 7120. J Bacteriol, 1987, 169 (1): 80-86.
    142. Dahlman RC, Strain BR, Rogers HH. Research on the response of vegetation to elevated atmospheric carbon dioxide. J Environ Qual, 1985, 14:1-8.
    143. Dai Q, Yan B, Huang S, Lui X, Peng S, Miranda MLL, Chavez AQ, Vergara BS, Olszyk DM. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiol Plant, 1997, 101:301-308
    
    
    144. Dai QJ, Coronel vP, Vergara BS. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci, 1992, 32: 1269-1274.
    145. Dai QJ. Response of rice to enhanced ultraviolet-B radiation at seeding stage under glasshouse condition, PH.D. Thesis, University of the phillippines. Los. Banos, lagune, phillippines. 1990, 129.
    146. Dalton DA. Antioxidant defenses in plants and fungi, in: S. Ahmad (Ed.). Oxidative Stress and Antioxidant Defenses in Biology, Chapman and Hall, New York, 1995, pp, 298-355
    147. Demeter S, Janda T, Kovacs L, Mende D, Wiessner W. Effects of in vivo CO_2-depletion on electron transport and photoinhibition on the green algae, Chlamydobotrys stellata and Chlamydomonas reinhardtii. Biochim Biophys Acta, 1995, 1229: 1-9.
    148. Dhler G, Hagmeier E, Grigoleit E, Krause KD. Impact of solar UV radiation on uptake of 15N-ammonia and 15N-nitrate by marine diatoms and natural phytoplankton. Biochem Physiol Pflanz, 1991, 187: 293-303.
    149. Dhler G, Hoffmann M, Stappel U. Pattern of proteins after heat shock and UV-B radiation of some temperate marine diatoms and the Antarctic Odontella weissflogii. Bot Acta, 1995,108: 93-98.
    150. Dohler G, Stolter H. Impact of UV-B (290-320nm) radiation on photosynthesis-mediated uptake of 15N-ammonia and 15N-nitrate of several marine diatoms. Biochem Physiol Pflanzen, 1986, 181: 533-539.
    151. Dhler G. Effect of UV-B radiation (290-320nm) on the nitrogen metabolism of several marine diatoms. J Plant Physiol, 1985, 118: 391-400.
    152. Drake BG, Gonzalez-Meler MA, Long SP. More efficient plants: a consequence of rising atmospheric CO_2 concentration? Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 609-639.
    153. Drobetsky E, Sage E. UV-induced G:C-A:T transitions at the APET locus of Chinese hamster ovary cells cluster at frequently damaged 5-TCC-3 sequence. Mutat Res, 1993, 289: 131.
    154. Dukes JS. Comparison of the effect of elevated CO_2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecology, 2002, 160: 225-234.
    155. Ekelund NGA. Effects of UV-B radiation on growth and motility of four phytolankton species. Physiol Plant Physial, 1990, 78: 590.
    156. Ellman G L. Tissue Sulfhydryl Groups. Arch Bilchem Biophys, 1959, 82: 70-77.
    157. Elsther EF. Oxygen activation and oxygen toxicity. Ann Rev Plant Physiol, 1982, 33:73-96.
    158. Enling S M. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in terrestrial cyanobacterium Nostoc commune [J]. Bacteriol, 1997, 179(6): 1940.
    159. Esterbzuer H, Grill D. Seasonal variation of glutathion and glutathion reductase in needles of picea abies. Plant Physiol, 1978, 61: 119-121.
    160. Fisher P, Klein U. Localization of nitrogen-assimilating enzymes in the chloroplast of Chloamydomonas reinhardtii. Plant Physiol, 1998, 88:149-155.
    161. Flohe L. Methods in Enzymology. New York: Academic Press. 1974, 328-366.
    162. Fogg GE, Collyer M. The accumulation of lipid in algae. In Algal Culture, from Laboratory to Pilot Plant (Burlew JS, editor), 1961, 177-181. Kirby Lithographic, Washington, DC.
    
    
    163. Foyer C H, Descourvieres P, Kunert K J. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17: 507-523.
    164. Freidberg EC, Walker GC, Siede W. DNA repair and mutagenesis[M]. ASM Press, WA, 1995, 199-211.
    165. Furgal JA. Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive. Can J Fish Aquat Sci, 1997, 54(7): 1659.
    166. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO_2 concentration. J Appl Phycol, 1991, 3: 355-362.
    167. Gao K, Aruga Y, Asada K, Kiyohara M. Influence of enhanced CO_2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol, 1993, 5: 563-571.
    168. Gao K, Ji Y, Aruga Y. Relationship of CO_2 concentrations to photosynthesis of intertidal macroaigae during emersion. Hydrobiologa, 1999, 398/399: 355-359.
    169. García-Pichel F. The absorption of ultraviolet radiation by microalgae: simple optics and photobiological implications. Sci Mar, 1996, 60 (suppl.1), 73-79.
    170. Garcia-Sanchez M J, Fernandez J A, Niell F X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 1994, 194: 55-61.
    171. Garde K, Cailliau C. The impact of UV-B radiation and different PAR intensities on growth, uptake of ~(14)C, excretion of DOC, cell volume, and pigmentation in the marine prymnesiophyte, Emiliania huxleyi. Journal of Experimental Marine Biology and Ecology, 2000, 247:99-112.
    172. Geiger M, Walch P. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in order plants, and a large stimulation of nitrate reductase activity and higher leaves of amino acids in young tobacco plants. Plant Cell Environ, 1998, 21: 253-266.
    173. George Bowes. Facing the inevitable: plants and increasing atmospheric CO_2. Ann Rev Plant Physiol Mol Biol, 1993, 44: 309-332.
    174. Gerber S. Effects of solar radiation on motility and pigmentation of three species of phytoplankton [J]. Environ Exp Bot, 1993, 33(4): 515.
    175. Gieskes WWC, Buma AGJ. UV damage to plant life in a photobiologically dynamic environment: the case of marine phytoplankton. Plant Ecology, 1997, 128: 16-25.
    176. Goex JI, Handa N, Taguchi S, Hama T, Saito H. Metabolism of neutral monosaccharides constituents of storage and structural carbohydrates in natural assemblages of marine phytoplankton exposed to ultraviolet radiation. Limnol Oceanogr, 1996, 41: 1478-1489.
    177. Graham D, Whittingham CP. The path of carbon during photosynthesis in Chlorella pyrenoidosa at high and low carbon dioxide concentrations. Z. Pflanzenphysiol, 1968, 10: 135-144.
    178. Green R, Fluhr R. UV-B induced PR-1 Accumulation is mediated by active oxygen species [J]. Plant Cell, 1995, 7: 203-212.
    179. Grobe C W, Murphy T M. Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. & G (Chlorophyta). Journal of Experimental Marine Biology and Ecology, 1998, 225:39-51.
    180. Grobe CW, Murphy TM. Inhibition of growth of Ulva expansa (Chlorophyta) by
    
    ultraviolet-B radiation. J Phycol, 1994, 30: 783-790.
    181. Guillard R R, Rhyter H. Studier on marine phytoplankton diatoms: Ⅰ, Cyclotella nana Hustedt and Denotula confervacea (cleve). [J] Gran Can J Microbiol, 1962, 8: 229-239.
    182. Hader DP, Lebert M, Helbling E W. Effects of solar radiation on Patagonian macroalga Emteromorpha linza (L.) J. Agardh-Chlorophyceae. Journal of Photochemistry and Photobiology B: Biology, 2001, 62: 43-54.
    183. Hader DP, Worrest RC, Kumar HD, Smith RC. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio, 1995, 24: 174-180.
    184. Hader DP, Worrest RC. Consequences of the effects of increased solar ultraviolet radiation on aquatic ecosystems, in The Effects of Depletion on Aquatic Ecosystems, Ch 3, edited by Hader DP, pp 11-30, Environmental. Intelligence Unit, Academic press and R.Glandes Company, Austin (1997d)
    185. Hader DP, Stratospheric ozone depletion and increase in ultraviolet radiation, in The Effects of Depletion on Aquatic Ecosystems, Ch 1, edited by Hader DP, pp 1-4, Environmental Intelligence Unit, Academic press and R.Glandes Company, Austin (1997C)
    186. Hader DP. Effects of increased solar ultraviolet radiation on aquatic ecosystem [J]. Ecol, 1999, 80(2): 223.
    187. Hader DP. Effects of solar and artificial ultraviolet radiation on motility and pigmentation in marine Crytomonas maculata [J]. Environ Exp Bot, 1991, 31(1): 33.
    188. Hader DP. Effects of UV Radiation on Phytoplankton, in Advances in Microbial Ecology 15, edited by J.G Jones, Plenum Press, New York, London. 1997a, pp.1-26.
    189. Hader DP. Novel method to determine vertical distribution of phytoplankton in marine water columns. Environ Exp Bot, 1995, 35: 547-555.
    190. Hader DP. Risks of enhanced solar ultraviolet radiation for aquatic ecosystems. Progr Phycol Res, 1993, 9: 1-45.
    191. Hader DP. UV-B and Aquatic Ecosystems. In: UV-B and Biosphere, ed by J Rozema, W.W.C Gieskes, S.C. van de Geijn, C. Nolan, and H de Boois, Kluwer Academic Publishers, Dordrecht, Boston and London. 1997b, pp.4-13.
    192. Halldal P. Ultraviolet action action spectra in algology. A review. Photochem Photobiol, 1967, 6: 445-460.
    193. Halliwell B, Gutteridge J M C. Free Radicals in Medicine and Biology. Oxford: Clarendon Press. 1989, 277-289.
    194. Hao X, Hale B A, Ormrod DP, Papadopoulos AP. Effects of pre-exposure to ultraviolet-B radiation on responses of tomato (Lycopersicon esculentum cv. New Yorker) to ozone in ambient and elevated carbon dioxide. Environmental Pollution, 2000, 110: 217-224.
    195. He J, Humang LK, Chou WS, et al. Response of rice and pea plants to hardening with low dose of ultraviolet-B radiation. Aust J Plant Physiol, 1994, 21(2): 563-574.
    196. Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125:189-198.
    197. Hein M, Sand-Jensen K. CO_2 increases oceanic primary production. Nature, 1997, 388:526-527.
    198. Hein M, Sand-Jensen K. CO_2 increases oceanic primary production. Nature, 1997, 18: 339-356.
    
    
    199. Helbling E W. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species [J]. Mar Ecol Prog Ser, 1992, 80(1): 89.
    200. Helbling, EW, Villafane V, Holm-Hansen O. Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In: Weiler CS, Penhale PA (Eds), Ultrariolet Radiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series, 1994, 62, pp.207-227. American Geophysical Union, Washington, D.C.
    201. Helbling, EW, Villafane VE, Buma AGJ, Marcosandrade Francesco Zaratti, DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia). Eur J Phycol, 2001, 36: 157-166.
    202. Hemnann H. Effects of UV-radiation on photosynthesis of phytoplankton exposed to solar simulator light [J]. Photochem Photobio, 1996, 34(1): 21.
    203. Herouart D, Van Montagu M, Inte D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA, 1993, 90: 3108-3112.
    204. Herrmann H, Hader DP, Ghetti F., et al. Inhibition of photosynthesis by solar radiation in Dunaliella salina: Relative efficiencies of UV-B, UV-A and PAR. Plant, Cell Environ, 1997, 20: 359.
    205. Hideg E, Vass I. UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Science, 1996,115:251-260.
    206. Hidema J, Kang H, Kumagai T. Changes in cyclobutyl pyrimidine dimer levels in rice (Oryza sativa L.) growthing indoors and outdoors with or without supplemental UV-B radiation [J]. J Photochem Photobiol, B: Biol, 1999, 52: 7-13.
    207. Houghton RA, Woodwell GM. Global climatic change. Sci Am, 1989, 260: 18-26.
    208. Hungate BA, Chapin FS, Ⅲ, Zhong H, Holland EA, Field CB. Stimulation of grassland nitrogen cycling under carbon-dioxide enrichment. Oecologia, 1997, 109: 149-153.
    209. Idso KE, Idso SB. Plant responses to atmospheric CO_2 enrichment in the face of environmental constraint: a review of the past 10 years research. Agricultural and Forest Meteorology, 1994, 69, 153-203.
    210. Imamura M, Tsuzuki M, Shiraiwa Y, Miyachi S. Form of inorganic carbon utilized for photosynthesis in Chlamydomonas reinhardtii. Plant Cell Physiol, 1983, 24: 533-540.
    211. Israel A, Katz S, Dubinsky Z, et al. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhorophyta). J Appl Phycol, 1999, 11: 447~453.
    212. Jackson JF. DNA repair in pollen [J]. Mutation Res, 1987, 181:17-29.
    213. Jenkins GI, Fugrevand G, Chrisite JM. UV-B pereption and signal transduction in P.Lumsden end, plants and UV-B[M]. Cambridge: Cambridge University Press, 1997: 135-156.
    214. Jenkins ME, Suzukit C, Mount DW. Evidence that heat and ultraviolet radiation activiate a common stress response program in plants that is altered in the UV-B mutant of Arabidops is thalana[J]. Plant Physiol, 1997, 115: 1351.
    215. Jensen A. Chlorophyll and Carotenoids. In: Helebust J A and Carigie T S ed. Handbook of Physiolgical Methods. New York: Cambridge University Press. 1978. 59-70.
    216. Jimenez C, Pick U. Differential stereoisomer composition of β, β-carotene in thylakoids
    
    and in pigment globules in Dunaliella. J Plant Physiol, 1994, 143: 257-263.
    217. Johnason U, Gehrke FKC, Bjorn LO, et al. The effects of enhanced UV-B radiation on a subarctic heath ecosystem[J]. Ambio, 1995, 24(2): 106-111.
    218. Johnston A M, Raven J A. Effects of Culture in high CO_2 on the photosynthetic physiology of Fucus serratus. Br Phycol J, 1990, 25:75-82.
    219. Jordan BR, et al. Changes in mRNA levels and polypeptide subunit of ribulose 1,5-bisphophate caboxylase in response to supplementary Ultraviolet-B radiation. Plant Cell Enviro, 1992, 15(1): 91-98.
    220. Jordan BR, James PE, Mackerness SAH. Factors affecting UV-B induced changes in Arabidopsis thaliana L. Gene expression: the role of development, protective pigments and the chloroplast signal[J]. Plant Cell Physiol, 1998, 39(7): 769-778.
    221. Jurik TW, Weber JQ, Gates DM. Short-term effects of CO_2 on gas exchange of leaves of Bigtooth aspen (Populus grandidentata ) in the field. Plant Physilo, 1984, 75: 1022-1026.
    222. Kadono Y. Distribution and habitat of Japanese Potamogeton. Bot Mag Tokyo, 1982, 95: 63-76.
    223. Kar R K, Choudhuri M A. Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla rerticillata. Physiol Plant, 1987, 70: 729.
    224. Karentz D, Cleaver E, Mitchell DL. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol, 1991, 27: 326-341.
    225. Kato M, Shimizu S. Chlorophyll metabolism in higher plants. Ⅶ. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can J Bot, 1987, 65: 729-735.
    226. Keller AA, Hargraver P, Jeon H, et al. Effects of ultraviolet-B enhancement on marine trophic levels in a stratified coastal system. [J] Marine Biology, 1997a, 130 (2): 277-287.
    227. Keller AA, Hargraver P, Jeon H, et al. Ultraviolet-B radiation enhancement dose not affect marine trophic levels during a winter-spring bloom. [J] Ecoscience, 1997b, 4 (2): 129-139.
    228. Kimbull BA. Carbon dioxide and agricultural yield: an assemblage and analysis of 330 prior abservations. Agronomy Journal, 1983, 75: 779-788.
    229. King AW, Emanuel WR, Post WM. Projecting future concentrations of atmospheric CO_2 with global carbon cycle models: the importance of simulating historical changes. Environmental Management, 1992, 16: 91-108.
    230. Kirby, RS, Wilhrlm, SW. Response of the bluegreen algae microcystis aeruginosa to manipulated levels of ultraviolet radiation, IAGLR 99. International Association for Great Lakes Research: Great Lakes, Great Science, Great Cities. Program and Abstracts, 1999, A-59.
    231. Kǒner C. Toward a better experimental basis for upscaling plant responses to elevated CO_2 and climate warming. Plant Cell Environ, 1995, 18: 1101~1110.
    232. Koostra A. Protection from UV-B induced DNA damage by flavonoids. PMBIDB, 1994, 26: 771-774.
    233. Kramer GF, Norman HA, Krizek DT, et al. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids of cucumber. Phytochemistry, 1991, 30: 2101.
    234. Krinsky NI. The protective function of carotenoid pigments, In: Giese A. C. ed. Photophysiology 3. New York: Academic Press, 1986, 123-195.
    
    
    235. Kubler JE, Johnston AM, Raven JA. The effects reduced and elevated CO_2 and O_2 on the seaweed Lomentaria articulata. Plant Cell Envir, 1999, 22:1303~1310.
    236. Lacoste-Royal G, Gibbs S P. Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase-oxygenase in the pyrenoid and thylakoid region of the chloroplast of Chlamydomonas reinhardtii. Plant Physiol, 1987, 83: 602-606.
    237. Landry LG, Chapple CCS, Last RL. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol, 1995, 109: 1159-1166.
    238. Landry LG, Stapleton AE, LIM JP, et al. An Arabidopsis photolyase mutant is hypersensitive to UV-B radiation [J]. Proc Natl Acad Sci USA, 1997,94: 328-332.
    239. Larkum AWD, Wood WF. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth. Res, 1993, 36:17-23.
    240. Lers A, Biener Y, Zamir A. Photoinduction of massive β-carotene accumulation by the alga Dunaliella bardawil. Plant Physiol, 1990, 93: 389-395.
    241. Lesser MP, Cullen JJ, Neale PJ, Carbon uptake in a marine diatom during acute exposure to ultraviolet-B radiation: relative importance of damage and repair. J Phyco, 1994, 30(2): 183-192
    242. Lesser MP, Shick JM. Effects of irradiance and ultraviolet radiation on photoadaption in zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol, 1989, 102: 243-255.
    243. Lesser MP. Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar Ecol Prog Ser, 1996, 132: 287-297.
    244. Levine C A, et al. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol, 1996, 6:427-437.
    245. Lignell BA, Pedersen M. Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. B Phycol J, 1989, 24: 83~89.
    246. Lin H M (林惠民). Comparison of Spirulina Subsalsa with other Spirulina species. Acta Hydrobiologica Sinica (水生生物学报), 1991, 15 (1): 27-34 (in Chinese).
    247. Loeblich LA. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina. J Mar Biol Assoc UK, 1982, 62: 493-508.
    248. Long S P, Baker N R, Rines C A. Analysing the response of photosynthetic CO_2 assimilation to long-term elevation of atmospheric carbon dioxide concentration. Vegetatio, 1993, 104/105: 33-45.
    249. Long SP, Drake BG. Effects of the long-term elevation of CO_2 concentration in the field on the quantum yield of photosynthesis of the O_3 sedge, Scirpus olneyi. Plant Physiol, 1991, 96: 221-226.
    250. Lucas WJ. Photosynthetic assimilation of exogenous HCO_3 by aquatic plants. Annual Review of Plant Physiology, 1983, 34: 71-104.
    251. Luetz C, Seidlitz HK, Meindl U. Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulate induced by UV-B simulation. Plant Ecology, 1997, 128(1-2): 54-64.
    252. Lumsden PJ. Plants and UV-B responses to environmental change [M]. Cambridge
    
    University Press, UK, 1997.
    253. Maberly SC, Raven JA, Johnston AM. Discrimination between ~(12)C and ~(13)C by marine plants. Oecologia, 1992, 91: 481-492.
    254. Macherness SAH, John CF, Jordan B, Thomas B. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide, FEBS Lett. 2001, 489: 237-242.
    255. Mackerness SA, Liu LS. Individual members of the light-harvesting complex Ⅱ.chlorophy Ⅱ a/b binding protein gene family in pea show differential responses to ultraviolet-b radiation[J]. Physiol Plant, 1998, 103: 377-384.
    256. Mackerness SAH, Jordan BR, Thomas B. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280-320nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochemm Photobiol B: Biolo, 1999, 48: 180-188.
    257. Mackrness AH, Jordan SBR. Changes in gene expression in response to UV-B induced stress[A]. In: Pesssarkli M eds. Handbook of plant and crop stress[C]. New York: Marcel Dkker, 1999, 99: 749-768.
    258. Malanga G, Kozak R G, Puntarulo S. N-Acetylcysteine-dependent protection against UV-B damage in two photosynthetic organisms. Plant Science, 1999, 141 : 129-137.
    259. Malanga G, Puntarulo S. Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation. Physiol. Plant, 1995, 94:672-679.
    260. Manetas R, Koussoulak S, Hader DE In assessing biological UV-B effects natural fluctuations of solar radiation should be taken into account[J]. Plant Ecology, 1997, 128: 93-97.
    261. Mansey HI, Salisbury FB. Biochemical response of xanthium leaves to ultraviolet radiation. Radia Bot, 1971, 11: 386.
    262. Marchant HJ. Impacts of ozone depletion on Antarctic organism, Antarctic communities: Species, structure and survival, 1997,367-374.
    263. Mark U, Tevini M. Effects of solar ultraviolet-B radiation, temperature and CO_2 on growth and physiology of sunflower and maize seedlings[J]. Plant Ecology, 1997, 128: 224-234.
    264. Martini B, Marangoni R, Gioffre D, Colombetti G. Effects of UV-B irradiation on the motility and photomotility of the marine ciliate Fabrea salina. J Photochem Photobiol B: Biol, 1997, 39: 197-203.
    265. Masi Antonio, Melis Anastasios. Morphological and molecular changes in the unicellular Dunaliella salina grown under supplemental UV-B radiation: cell characteristics and Photosystem Ⅱ damage and repair properties. Biochimica et Biophysica Acta, 1997, 1321: 183-193.
    266. Mauney J R, Kimball B A, Pinter Jr, P J, et al. Growth and yield of cotton in response to a free-air carbon dioxide enrichment. Agroc For Meteorol, 1994, 70: 49-67.
    267. Mazur B J, Chui CF. Sequence of the gene coding for the beta-subunit of dinitrogenase from the blue-green alga Anabaena. Proce Natl Acad Sci USA, 1982, 79 (22): 6782-6786.
    268. Mckay RMI, Gibbs SP. Composition and function of pyrenoids: cytochemical and immuno-cytochemical approaches. Can J Bot, 1991, 69: 1040-1052.
    269. Meindl U, Lütz Cornelius. Effects of UV irradiation on cell development and ultrastructure of the green alga Micrasterias. J Photochem and Photobio B: Bio, 1996, 36: 285-292.
    
    
    270. Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL. Effects of different levels of CO_2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol, 1999, 11:455-461.
    271. Mercado JM, Niell FX, Figueroa FL. Regulation of the mechanism for HCO_3 use by the inorganic carbon level in Porphyra leucostica Thus in Le Jolis (Rhotophyta). Planta, 1997, 201: 319~325.
    272. Mirecki KM, Teramura AH. Effects of ultraviolet-B irradiation on soybean. Plant Physiol, 1984,74: 475.
    273. Mitchell DL, Karentz D. The induction and repair of DNA photodamage in the environment. In: Yong AR, Bjorn LO, Moan J, Nultsch W (Eds.), Environmental UV Photobiology, Plenum Press, New York, 1993, pp.345-371.
    274. Miyachi S, Tsuzuki M, Maruyama I, et al. Effects of CO_2 concentration during growth on the intracellular structure of Chlorella and Scenedesmus (Chlorophyta). J Phycol, 1986, 22: 313-319.
    275. Molina MJ, Rowland FS. Stratospheric sink for chlorofluoromethanes; chlrin atom-catalyzed destruction of ozone. Nature, 1974, 249: 810.
    276. Monje O, Bugbee B. Adatation to high CO_2 concentration in an optional environment radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ, 1998, 21: 315-324.
    277. Morita E, Kuroiwa H, Huroiwa T, et al. High localization of Ribulose-1,5-bisphosphate carboxylase-oxygenase in the pyrenoid of Chlamydomonas reinhardtii (Chorophyta), as revealed by cryofixation and immunogold electron microscopy. J Phycol, 1997, 33:68-72.
    278. Morita S, Kaminaka H, Masumura T, Tanaka K. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: the involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol, 1999, 40: 417-422.
    279. Moroney JV, Tolbert NE. Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol, 1985, 77: 253-258.
    280. Mousseau L, Gosselin M, Levasseur M, Demers S, Fauchot J, Roy S, Villegas PZ, Mostajir B. Effects of ultraviolet-B radiation on simultaneous carbon and nitrogen transport rates by estuatine phytoplankton during a week-long mesocosm study. Marine Ecology Progress Series, 2000, 199 (26): 69-81.
    281. Muller-Niklas G, Heissenberger A, Puskeric S, et al. Ultraviolet-B radiation and bacterial metabolism in coastars waters[J]. Aquat Microb Ecol, 1995, 9: 111-116.
    282. Murali NS, Teramura AH. Effects of supplemental UV-B radiation on the growth and physiology of field grow soybean. Environ and Experi Bot, 1986, 26 (3): 233.
    283. Murali NS, Teramura AH. Effects of ultraviolet-B irradiance on soybean. Ⅵ. Influence of phosphorus nutrition on growth and flaviod content. Physiol Plant, 1985,63: 412.
    284. Murphy TM, Willekens H. Inhibition of protein in cultured tobacco cells by radiation. Photochem Photobiol, 1975, 21: 219-225.
    285. Naganuma T, Inoue T, Uye S. Photoreactivation of UV-induced damage to embryos of a planktonic copepod. J Plankton Res, 1997, 19: 783-787.
    286. National Aeronautics and Space Administration, Executive Summary of the Ozone Trends Panel, NASA, Washington, DC, 1988.
    
    
    287. Neale PJ, Banaszak AT, Jarriel CR. Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): Mycosporine-like amino acids protect against inhibition of photosynthesis. J Phycol, 1998, 34: 928-938.
    288. Nedunchezhian N. Induction of heat short-like proteins in Vigna sinensis seedlings growing under UV-B enhanced radiation. Physiol Plant, 1992, 85: 503-506.
    289. Nielsen T. Effects of UV-radiation and humic substances on growth and motility of Cyrodiuium auredum[J]. Limnol Oceanogr, 1993, 38(7): 1570.
    290. Nilawati J. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. J Phycol, 1997, 33(2): 215.
    291. Nobutaka H, Toshifumi T, Yoshiharu F, et al. Tolerance of microalgae to high CO_2 and high temperature. Phytochemistry, 1992, 31: 3345-3348.
    292. Nogues S, Baker NR. Evaluation of the role of damage to photosystem Ⅱ. In the inhibition of CO_2 assimilation in pea leaves on exposure to UV-B radiation[J]. Plant Cell Environ, 1995, 18: 781-787.
    293. Ochs CA. Effects of UV radiation on grazing by two marine heterotrophic nanoflagellates on autotrophic picoplankton[J]. J Plankton Res, 1997, 19:151-1536.
    294. Ohyama K, Pelcher LE, Gamborg OL. The effects of UV irradiation on survival and on nucleic acids and protein synthesis in plant protoplasts. Rad Bot, 1974, 14: 343-346.
    295. Palmqvist K, Ramazanov Z, Samuelsson G. The role of extracellular carbonic anhydrase for accumulation of inorganic carbon in the green alga Chlamydomonas reinhardtii. A comparison between wild type and cell-wall-less mutant cells. Physio Plant, 1990, 80: 267~276.
    296. Pang Q, Hays JB. UV-B-induced and temperature sensitive photoreactivation of cyclobutane pyrimidine dimmers in Arabidopsis thaliana[J]. Plant Physiol, 1991, 95: 536-543.
    297. Parasher C D, Ozel M, Geike F. Effect of hexachlorobenzene and acetone on algal growth: physiology and ultrastructure. Chem-Biol Interactions, 1978, 20(1): 89-95.
    298. Patel BN, Merrett MJ. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta, 1986, 169: 81-86.
    299. Patterson Brain, et al. Estimation of hydrogen peroxide in plant extracts using titanium (Ⅳ). Analytical Biochemistry, 1984, 139:487-492.
    300. Pearson M, Brooks DL. The influence of elevated carbon dioxide on growth age-related changes in leaf gas exchange. J Exp Bol, 1995, 46: 1651-1659.
    301. Peletier H, Gieskes WWC, Buma AGJ. Ultraviolet-B radiation resistance of benthic diatoms isolated from tidal flats in the Dutch Wadden Sea. Marine Ecology Progress Series, 1996, 135: 163.
    302. Polle A, Eiblmeier M, Sheppard L, Murray M. Responses of antioxidative enzymes to elevated CO_2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell and Environ, 1997, 20: 1317-1321.
    303. Poorter H. Interspecific variation in the growth response of plants to an elevated ambient CO_2 concentration. Vegetatio, 1993, 104/105: 77-79.
    304. Poppe F, Hanelt D, Wiencke C. Changes in ultrastructure, photosynthetic activity and pigments in the Antarctic Red Alga Palmaria decipiens during Acclimation to UV
    
    Radiation. Botanica Marina, 2002, 45(3): 253-261.
    305. Prasad T K, Andrson M D, Martin B A, Strwart C R. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedings. Plant Physiol, 1994a, 105: 619-627.
    306. Prasad T K, Andrson M D, Martin B A, Strwart C R. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for Hydrogen Peroxide. Plant Cell, 1994b, 6: 65-74.
    307. Predieris, Norman HA, Krizek DT, et al. Influence of UV-B radiation on membrance lipid composition and ethylene evolution in doyenne dhiver pear shoots grown in vitro under different photosynthetic photon fluxes[J]. Env Exp Bot, 1995, 35: 151-160.
    308. Prins HBA, Elzenga JTM. Bicarbonate utilization: function and mechanism. Aquatic Botany, 1989, 34: 59-83.
    309. Quaite FE, Sutherland BM, Sutherland JC. Action Spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, 1992, 358: 576-678.
    310. Quaite FE, Takayanagis, Ruffini J, et al. DNA damage levels determine cyclobutyl pyrimidine dimmer repair mechanisms in alfalfa seedlings[J]. Plant Cell, 1994, 6(11): 1635-1641.
    311. Quay PK, Tibrool B, Wong CS. Oceanic uptake of fossil fuel CO_2:carbon-13 evidence. Science, 1992, 256:74-79
    312. Rail C, Tyagi B, Mallick N. Alterration in photosynthetic characteristics of Anabaena doliolum following exposure to UV-B and Pb. Photochem Photobiol, 1996, 64: 658-663.
    313. Rail C. Algal responses to enhanced ultraviolet-B radiation; Proceedings of the India National Science Academy Part B [J]. Biological Science, 1998, 64(2): 125.
    314. Rajagopal S, Murthy S D, Mohanty P. Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes. J Photochem Photobiol B: Biol, 2000, 54:61-66.
    315. Ramazanov Z, Rawat M, Mason CB, Moroney JV. Ultrastructural and biochemical adaptation of algal cells to limiting CO_2 concentrations. Scientia Marina (Barcelona), 1996, 60(suppl.1): 141-148.
    316. Rao M V, Hale B A, Ormrod D P. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol, 1995, 109: 421-432.
    317. Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of arabidopsis thaliana. Plant Physiol, 1996, 110:125-136.
    318. Rao MV, Ormod DP. Impact of UV-B and O_3 on the oxygen free radical scavenging system in Arabidopsis thaliana differing in flavonoid biosynthesis[J]. J Photochem Photobiol Biol, 1995, 62 (4): 719-726.
    319. Rau W. Blue light-induced carotenoid biosynthesis in microorganisms, In: the blue light syndrome. Ed. Senger H. Berlin: Springer-verlag. 1980, 283-298.
    320. Raven J A. Physiology of inorganic C acquisition and implication for resource use efficiency by marine phytoplankton: relation to increased CO_2 and temperature. Plant Cell Environ, 1991, 14: 779-794.
    321. Raven JA. Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev, 1970, 45: 167-221.
    
    
    322. Raven JA. The mechanism of photosynthetic use of bicarbonate by Hydrdictyon africanum. J Exp Bot, 1968, 19: 193-206.
    323. Riebesell U, Wolf-Gladrow DA, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993, 361:249-251.
    324. Rijstenbil JW. Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii. Eur J Phycol, 2001, 36: 1-8.
    325. Robbrecht R, Caldwell MM. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenotherza strieta[J]. Plant Cell Environ, 1983, 6: 477-485.
    326. Ros J, Tevini M. Interaction of UV radiation and IAA during growth of seedlings and hypocotyls segment of sunflower. J Plant Physiol, 1995, 146: 295-302.
    327. Rozema J, Leessen G M, Staaij J W M van de, Tosserams M, Visser A J, Broekman R A. Effects of UV-B radiation on terrestrial plants and ecosystems: Interaction with CO_2 enrichment. Plant Ecol, 1997, 128: 182-191.
    328. Rozema J, Lenssen GM, Arp WJ, Staaij JWM Vande. Global change, the impact of the greenhouse effect (atmospheric CO_2 enrichment) and the increased UV-B radiation on terrestrial plants. Tasks for Vegetation Science, 1991, (22): 220-231.
    329. Rozema J, Oudejams AMC, Van DE, Staaij J, et al. The effects of enhanced UV-B radiation on strujcture, processes and feedbacks in terrestrial ecosystems[A]. In: Hader DP, Nolan SC, eds. Role of solar UV-B radiation on ecosystems[C], press, 1998.
    330. Rozema J, Tosserams M, Magandans MGM. Impact of enhanced solar UV-B radiation on plants from terrestrial ecosystems[A]. In: Zwerver S, eds. Climate change research evaluation and policy implications[C]. Elsevier, Amsterdam, 1995, 997-1004.
    331. Sage RF, Sharkey TD, Seemann JR. Acclimation of photosynthesis in elevated CO_2 in five C_3 species. Plant Physiol, 1989, 89: 590~596.
    332. Sanesson M, Callaghan TV, Carlsson BA. Effects of enhanced ultraviolet radiation and carbondioxide concentration on the mass Hylocomium splenddens[J]. Global Change Biol, 1996, 2: 67-73.
    333. Santas R. Effects of solar ultraviolet radiation on tropical algal communities. [J] Diss. ABST. INT. PT. B-SCI. & ENG., 1989,50 (4): 147.
    334. Santos I, Almeida J M, Salema R. Plants of Zea mays L. developed under enhanced UV-B radiation. 1. Some ultrastructural and biochemical aspects. J Plant Physiol, 1993, 141: 450-456.
    335. Sasek TW, Delucia EH, Strain BR. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO_2 concentrations. Plant Physiol, 1985, 78: 619.
    336. Satoh H, Okada M, Nakayama K, et al. Purification and further characterization of pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase from the green alga Bryopsis maxima. Plant Cell Physiol, 1984, 25: 1205-1214.
    337. Schlesingev WH. Response of the terrestrial biosphere to global climate change and human perturbation[J]. Vegetatio, 1993, 104/105: 295-306.
    338. Schwanz P, Picon C, Vivin P, Dreyer E, Guehl J M, Polle A. Responses of antioxidative systemes to drought stress in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) as modulated by elevated CO_2. Plant Physiol, 1996, 110: 393-402.
    339. Shiraiwa Y, Miyachi S. Factors controlling the induction of carbonic anhydrase and
    
    efficiency of photosynthesis in Chlorella vulgaris 11h cells. Plant Physiol, 1983, 24: 919-923.
    340. Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature, 1993, 365: 119-125.
    341. Sisson WB, Caldwell MM. Photosynthesis dark respiration and growth of kumex patiented to ultraviolet irradiance (288-315nm) simulating to a reduced atmospheric ozone colum. Plant Physiol, 1976, 38: 563.
    342. Smith R, Baker K. Biologically effective dose transmitted by culture bottles in 14C experiments. Limnol Oceanogr, 1980, 25: 364-366.
    343. Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, D Karentz, S Maclntyre, H A Matlick, D Menzies, M Ondrusek, Z Wan, K J Waters. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic Waters. Science, 1992, 255: 952-959
    344. Smith SV. Marine macroalgae as a global carbon sink. Science, 1981,211: 828-840.
    345. Staaij JWM, Lenssen GM, Stroetenga M, Rozema J. The combined effects of elevated CO_2 levels and UV-B radiation on growth characteristics of Elymus athericus. Vegetatio, 1993, 104/105: 433-439.
    346. Stary A, Robert C, Sarasin A. Deleterious effects ultraviolet A radiation in human cells. Mutat Res, 1997, 383 : 1.
    347. Staxen I, Bornman JF. A morphological and cytological study of petania hybria exposed to UV-B radiation. Physiol Plant, 1994, 91: 735-740.
    348. Stephanou M, Manetas Y. Ultraviolet-B radiation effects on the Mediterrancan ruderal Dittrichia viscose[J]. Plant Ecology, 1997, 128: 109-112.
    349. Stewart JD, Hoddinott J. Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana. Physiol Plant, 1993, 88: 493-500.
    350. Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ,1999, 22: 583~621.
    351. Strid A, Rober J. Alteration in pigment content in leaves of Pisum stativum after exposure to supplementary UV-B. Plant Cell Physiol, 1992, 33(7): 1015-1023.
    352. Stuian I, Den HJ. Root growth and functioning under atmospheric CO_2 enrichment. Vegetation, 1993, 104/105: 99-115.
    353. Stumm W, Morgan jj. Aquatic Chemistry. John Wiley, Sons, New York. 1996, 171-185.
    354. Sullivan JH, Termura AH. The effects UV-B radiation on loblolly pine: 3, interaction with CO_2 enhancement[J]. Plant Cell Environ, 1994, 17:311-317.
    355. Taguchi S. Enhanced photosynthetic rate of natural phytoplankton assemblages in the absence of ultraviolet radiation in Akkeshi Bay, Japan [J]. Bull Plankton-Soc Japan L, 1994, 41(2): 143.
    356. Takahashi TRA, Feely RF, Weiss RH, et al. Global Air-sea Flux of CO_2: An Estimate Based on Measire,emts pf Sea-air pCO_2 Difference. Proc Natl Acad Sci (USA), 1997, 94, 8282.
    357. Takeuchi Y, Fukumoto R, Kasahara H, Sakaki T, Mitsutoshi K. Peroxidation of lipids and growth inhibition induces by UV-B irradiation. Plant Cell Environ, 1995, 14: 566-570.
    358. Tayor RM, Tobin A, Bray C. The cloning and sequence analysis of a putative Type Ⅱ. CPD photolyase from Arabidopsis thaliana[J]. Accession Number. X99301, 1996.
    
    
    359. Teramura A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant, 1983, 58: 415-427.
    360. Teramura AH, et al. Effects of UV-B radiation on soybean 2. Plant Physiol, 1980, 65: 483.
    361. Teramura AH, Murali NS. Ntraspecific differences in growth and yield of soybean exposed to UV-B radiation under greenhouse and field conditions. Environ and Experi Bot, 1986, 26(1): 89.
    362. Teramura AH, Sullivan JH, Ziska L H. Interaction of elevated ultraviolet-B radiation and CO_2 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol, 1990c, 94: 470-475.
    363. Teramura AH, Swlivan H, Lydon J. The effectiveness of UV-B radiation in altering soybean yield: A six years field study. Physiol Plant, 1990a, 80:5-11.
    364. Teramura AH, Ziska LH. CO_2 enhancement of growth and photosynthesis in rice (Oryza sativa). Modification by increased ultraviolet-B radiation. Plant Physiol, 1990b, 99: 473-481.
    365. Tevini M, Braum J, Fiser G.The protective fuction of the epidermal layer of rye seedlings against ultraviolet-B radiation[J]. J Photochem Photlbiol B: Biol, 1991, 53: 329-333.
    366. Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta, 1981, 153: 388-394.
    367. Tevini M, Teramura AH. UV-B effects on terrestrial plants[J]. J Photochem Photobiol B: Biol, 1989, 50: 479-487.
    368. Tisseransms M, Pais Desam A Rozema. The effects of solar UV radiation on four plant species in a coastal grassland vegetation in the Netherland [J]. Physiol Planta, 1996, 97: 731-739.
    369. Tissue DT, Oechel WC. Response of Eriohorurn vaginarum to elevated CO_2 and temperature in the Alaskan tussock tundra[J]. Ecology, 1987, 68: 401-402.
    370. Tolbert NE, Husic HD, Husic DW, Moroney JV, Wilson BJ. Relationship of glycolate excretion to the DIC pool in microalgae. In Lucas WJ, Berry JA (eds), Inorganic carbon uptake by aquatic photosynthetic organisms. Amjerican Society of Plant Physiologists, Rockville, MD, 1985, pp. 211-227.
    371. Tsuzuki M, Gantar M, Aizawa K, et al. Ultrastructure of Dunaliella tertiolecta cells grown under low and high CO_2 concentrations. Plant Cell Physiol, 1986, 27: 737-739.
    372. Tumer NE, Robinson SJ, Haselkorn R. Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature, 1983, 306 (5941): 337-342.
    373. Tumus RW. CO_2 enriched almosphere, seedings growth of ponderosa pine and blue spruce seedling. Tree Planters Notes, 1972, 23: 12-15.
    374. Van de Leun JC, Tang XY, Tevini M (eds). Environmental effects of ozone depletion: 1994 assessment. (UNEP 1994). Ambio, 1995, 24:102-224.
    375. Van-donk E. Loss of flagella in green alga chlamydomonas reinhardtic due to in aitu UV-exposure [J]. Sci Mar Barc, 1996, 60(suppl): 107.
    376. Van-donk E. Loss of flagella in green alga chlamydomonas reinhardtic due to in aitu UV-exposure [J]. Sci Mar Barc, 1996, 60(suppl): 107.
    377. Vassiliev IR, Prasil O, Wyman KD, Kolber ZK, Hanson AK, Prentice JE, Falkowski PG.
    
    Inhibition of PSⅡ photochemistry by PAR and UV radiation in natural phytoplankton communities. Photosynthesis Research, 1994, 42: 51.
    378. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines. Plant Science, 2000, 151: 59-66.
    379. Villarejo A, Isabel Orus M, Martinez F. Regulation of the CO_2-concentratiing mechanism in Chlorella vulgaris UAM 101 by glucose. Physiologia Plantarum, 1997, 99: 293-301.
    380. Visser AJ, Tosserams M, Groen MW, et al. The combined effects of CO_2 concentration and enhanced UV-B radiation on faba bean. 3. lesf optical properties, pigments stomatal index and epidermal cell density[J]. Plant Ecology, 1997a, 128: 208-222.
    381. Visser AJ, Tosserams M, Groen MW, Magendans GWH, Rozema J. The combined effects of CO_2 concentration and solar UV-B radiation on faba bean grown in open top chambers. Plant, Cell and Environment, 1997b, 20(2): 189-199.
    382. Vu CV, Allen LH, Garrard LA. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Physiol Plant, 1982, 55:11-16.
    383. Wand SJE, Midgley, Musil CF. Physiological. and growth response of two A frican species, Acacia karroo and Themeda triandra, to combined increases in CO_2 and UV-B radiation. Physiol Plant, 1996, 98: 882-890.
    384. Wangberg SA, Selmer JS, Gustavson K. Effects of UV-B radiation on biomass and composition in marine phytoplankton communities.. Sci Mar, 1996, 60(suppl. 1): 81-88.
    385. Wetzel RG, Hatcher PS, Bianchi TS. Natural photolysis by ultraviolet irradiance of recalcitrant dissoloved organic matter to simple substrates for rapid bacterial metabolism[J]. Limnol Oceanogr, 1995, 40: 1369-1380.
    386. Willekens H, Camp WV, Montage MV. Ozone, Sulfur dioxide, and UV-B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana phumbaginifolin [J]. Plant Physiol, 1994, 106: 1007-1014.
    387. Worrest R, Wolniakowski K, Scott J, Brooker D, Thomson B, Van Dyke H. Sensitivity of marine phytoplankton to UV-B radiation: Impact upon a model ecosystem. Photochem Photobiol, 1981, 33:223-227
    388. Worrest RC, Van Dyke H, Thomas BE. Impact of enhanced simulated solar ultraviolet radiation upon a marine community. Photochem Photobiol, 1978, 27: 471-478.
    389. Worrest RC. Impacts of solar ultraviolet-B radiation (290-320nm) upon marine microalgae. Physiol Plant, 1983, 58:428-434
    390. Wright LA, Murphy TM. Ultraviolet radiation-stimulated efflur of 86-rubidium from cultured tobacco cell. Plant Physiol, 1978, 61: 434.
    391. Xia Jian-Rong, Gao Kun-Shan. Effects of CO_2 enrichment on microstructure and ultrastructure of two species of freshwater green algae. Acta Botanica Sinica, 2002, 44(5): 527-531.
    392. Xiong F, Lederer F, Lukavsky J, Nedbal L. Screening of freshwater algae (Chlorophyta, Chromophyta) for ultraviolet-B sensitivity of the photosynthetic apparatus. J Plant Physiology, 1996, 148: 42.
    393. Xu DQ, Terashima K, Crang RFE, et al. Stomatal and nonstomatal acclimation to a
    
    CO_2-enriched atmosphere. Biotrouics, 1994.
    394. Yokota A, Canvin DT. Changes of ribulose bisphosphate carboxylase/oxygenase content, ribulose bisphosphate concentration, and photosynthetic activity during adaptation of high-CO_2 grown cells to low-CO_2 conditions in Chlorella pyrenoidosa. Plant Physiol, 1986, 80: 341-345.
    395. Yu Shi-gui, Biorn LO. Ultraviolet B stimulates grana formation in chloroplasts in the African desert plant Dimorphotheca phuvialis[J]. J Photochem Photobiol B: Biol, 1999, 49: 65-67.
    396. Zagarese HE, Feldman M, Williamson CE. UV-B-induced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida). J Plankton Res, 1997, 19: 357-367.
    397. Ziska L H, Teramura A H. CO_2 enrichment of growth and photosynthesis in rice (Oryza sativa) modification by increased UV-B radiation. Plant Physiol, 1992, 99: 473-481.
    398. Zlotnid I, Dubinsky Z. The effect of light and temperature on DOC excretion by phytoplankton. Limnol Oceanogr, 1989, 34:831-839.
    399. Zou DH, Gao KS. Photosynthetic responses to inorganic carbon in Ulva lactuca under aquatic and aerial states. Acta Botanica Sinica, 2002, 44(11): 1291-1296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700