神经抑制污染物连续暴露下大型溞(Daphnia magna)外在行为响应及内在机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体污染严重影响水生生态系统稳定及威胁人类的健康安全。利用水生生物行为变化监测水体环境可以实现对水体环境质量的实时、快速的监测。水生生物在环境污染物暴露下,对水生生物产生的毒性效应会表现在五个水平上,分别是分子水平、细胞水平、组织水平、个体水平和群体水平。通常水生动物在个体水平上表现为游泳能力、回避行为、条件反射能力等各种行为的变化。个体水平上生物的行为强度与暴露污染物的相对效应浓度和暴露的时间有着明显的相关性。这种行为变化与环境压力大小直接相关,其在一定环境压力下的行为变化与环境压力阈模型(Stepwise Stress Model, SSM)所述的生物行为环境模型相一致。环境毒物对生物个体影响,首先作用于生物机体的相关生物指示物(酶或蛋白)。因此,生物行为强度变化的同时,生物体内相应的标志物必然也做出了相应的反应。
     本实验研究了体内抑制和体外抑制试验下,有机磷类农药敌敌畏、氨基甲酸酯类农药灭多威以及拟除虫菊酯类农药溴氰菊酯分别在2TU和5TU浓度下的指示生物大型溞(Daphnia magna)的生物标志物乙酰胆碱酯酶(AChE)活性的变化趋势。结合生物的环境压力阈模型,分析大型溞的乙酰胆碱酯酶活性的变化规律,探索大型溞对受试污染物的内在响应机制。
     通过实验发现大型溞的AChE活性与暴露农药的浓度和暴露时间有明显的相关性,其中体外抑制试验中,AChE活性还与农药的毒理机制有关:
     1. 24 h急性毒性试验结果表明:不同污染物对大型溞的毒力大小有所差异,敌敌畏、灭多威和溴氰菊酯对24~48 h大型溞的24 h-LC50分别为0.746μg/L、9.829μg/L和6.680μg/L。大型溞的死亡率与污染物的浓度呈正相关性,具有明显的剂量-效应关系。大型溞在受到不同种类环境污染物的刺激时,均会表现出明显的行为变化,出现回避行为,这与污染物的致毒机理无直接关系。
     2.敌敌畏、灭多威以及溴氰菊酯在体内抑制试验中对大型溞AChE活性具有明显的抑制作用。整体上,随着暴露时间的增加,实验组大型溞的AChE活性呈下降趋势明显低于空白对照组,且高浓度组(5 TU)污染物对酶活性的抑制作用明显高于低浓度组(2 TU);在一定浓度污染物暴露中,AChE活性的抑制率随时间增加呈上升趋势。体内抑制试验由于受生物体内代谢的影响,AChE活性在某些时间会出现回升现象。
     3.体外抑制实验结果显示,有机磷类与氨基甲酸酯类农药对AChE活性的抑制作用明显。敌敌畏、灭多威的作用下,AChE活性的抑制率在一定时间范围内随着作用时间的增加而上升且5 TU浓度组的对酶活性的抑制强度要高于2 TU浓度组。由于溴氰菊酯的作用靶位点非AChE,因此对AChE活性的影响较小。
     在体内抑制试验中,污染物连续暴露下,不同时间酶活性的相对活性不一定,可能会出现升高或降低的情况,但总的变化趋势是下降。这与生物的体外行为强度变化规律基本吻合,符合环境压力阈模型(SSM)。通过比较污染物在体内和体外抑制试验中对AChE活性的影响,发现同种污染物对生物的AChE活性的抑制率存在差异。
Recently, water pollution has been a serious influence on the stability ofaquatic ecosystem and human security. Using the behavior change of aquaticorganism, can carry out real-time and rapid water quality monitoring. Aquaticorganisms exposed to the environmental pollution would produce the toxiceffects of performance in five levels, respectively molecular level, cellular level,organizational level, the individual level and the group level. Usually aquaticanimals in individual performance level display various kinds of behaviorchange such as swimming ability, avoidance behavior, reflex ability and so on.The behavior change of aquatic organism which exposed to pollutants has beenrelativity with contaminant concentration and exposure time on the individuallevel. This kind of behavior change is directly related to environmentalpressure, under certain environmental pressure, the trend of behavior changecorresponds with Stepwise Stress Model. Contaminants have a primordiallyeffect on biological indicator of organisms like enzymes or proteins. Therefore,with the biological indicator change, biological behaviors will also make acorresponding reaction.
     In this study, the inhibitory effects of three insecticides, dichlorvos,methomyl and deltamethrin, on acetylcholinesterase of Daphnia magna wereinvestigated in the laboratory. The concentrations of insecticides are 2 TU and5 TU, and 1 TU is defined as the 24 h-LC50 of insecticides. Combined withStepwise Stress Model, to analyze the trend on cholinesterase activity ofDaphnia magna exposed to pollutants and explore the response mechanism.
     The results show that the AChE activity has obviously relationship withthe relative concentration of insecticides based on 24 h-LC50 and the exposure time, hereinto, there is obviously relationship between AChE activity andtoxicological mechanism of pesticides in vitro.
     Firstly, the results of acute toxicity indicated that different pollutants havedifferent virulence to Daphnia magna and the 24h-LC50 of insecticides, DDVP,methomyl and deltamethrin, were 0.746μg/L, 9.829μg/L and 6.680μg/L.Meanwhile, an obvious positive relationship was observed between themortality rate of Daphnia magna and the concentration of insecticides. Underthe stimulation of different types of environmental pollutants, Daphnia magnawere showing significant behavioral changes.
     Secondly, in vivo, dichlorvos, methomyl and deltamethrin had obviousinhibition on AChE activity of Daphnia magna. Overall, along with theincrease of the exposure time, AChE activities of experimental groups dropsignificantly lower than blank control groups. The inhibition rates of threeinsecticides on AChE were increasing gradually with time, and the 5 TUgroups were more serious influence on AChE activity than the 2 TU groups.The result indicated that metabolism maybe had an effect on the insecticidesinhibit AChE activity, sometimes; the back sampling's AChE activity maybeappears higher than the previous one with time.
     Finally, in vitro, just dichlorvos and methomyl had important influence onAChE activity of Daphnia magna. Within the scope of a certain time, theinhibition on AChE activity of Daphnia magna would go up with the increaseof exposure time exposed to dichlorvos or methomyl. However, deltamethrinhad less impact in AChE activity, because AChE was not the target position.
     In conclusion, AChE activity was indeterminacy at different time, mayappear raise or lower, but total trend is downward trend with time in pollutantscontinued exposure. The trend is consistent with the rule of biologicalbehaviors, which accorded with Stepwise Stress Model (SSM). Comparing theresults between the inhibition on AChE activity of Daphnia magna in vitro andin vivo, concluded that the same insecticides caused different inhibition rate onthe activity of AChE.
引文
[1] K. Stead-Dexter, N.I. Ward. Mobility of heavy metals within freshwater sedimentsaffected by motorway stormwater. Science of The Total Environment,2004,334-335:271-277.
    [2] Vallee B L, Ulmer D D. Biochemical effects of mercury, cadmium and lead.Annual Review of Biochemistry, 1972,41:92-108.
    [3]何强,井文涌,王翊亭.环境学导论(第3版)[M].清华大学出版社,2004:154-155.
    [4]董文福,傅德黔.近年来我国环境污染事故综述[J].环境科学与技术,2009,32(7):75-77.
    [5]国家环保总局.2002年中国环境状况公报. 2003. http://www.mep.gov.cn/.
    [6]国家环保总局.2010年中国环境状况公报. 2011. http://www.mep.gov.cn/.
    [7]刘洋.基于大型蚤急性毒性实验的水质监测技术构建[D].山东师范大学,2011, 6-7.
    [8]刘长江,门万杰,刘彦军,等.农药对土壤的污染及污染土壤的生物修复[J].农业系统科学与综合研究,2002,18(4):295-297.
    [9] Bedos C, Cellier P, Calvet, et al. Mass transfer of Pesticides into the atmosphereby volatilization from soils and plants [J]. Agra Food East Eur, 2002,22:21-33.
    [10]宋秀杰.北京市农药化肥非点源污染的防治技术措施[J].环境保护,2000,9:30-32.
    [11]李志良.鱼类行为学在水质在线监测与预警中的应用研究[D].山东师范大学,2008,8-10.
    [12] Mcmahon J W. Some physical factors influencing the feeding behavior of ADaphnia magna Slraus. Journal of Zooplankton,1956,43:603-611
    [13]单正军,陈祖义.农药对水生生物的污染影响及污染控制技术[J].农药科学与管理, 2007,28(10):18-21.
    [14]黄玉瑶,高玉荣,曹宏,等.单甲脒农药对模型池塘生态系统群落结构的影响[J].生态学报,1996,16(2):187-194.
    [15]杨志聪,姚静,方展强. DDTs对唐鱼仔鱼的急性毒性及安全浓度评价[J].实验动物与比较医学, 2007,27(2):123-126.
    [16]国家环境保护局.环境监测技术规范.生物监测(水环境部分).第4册[M].北京:国家环境保护局,1986:538.
    [17] Hejduk J and Z Svobodova, Acta Vet. Brno (Czech),1980, 49,251.
    [18] Kikuchi M, Sasaki Y, Wakabayashi M. Screening of organophosphate insecticidepollution in water by using Daphnia magna[J]. Ecotoxicol environ Saf,2000,47:239-245.
    [19]蔡道基,龚瑞忠,汤国才,等.稻田使用溴氰菊酯农药对水生生物的安全评价[J].环境科学研究,1997,10(3):30-35.
    [20] Shanmugavel S, Sampath K. Sublethal effects of phosphamidon and methylparathion on food intake, growth and conversion efficiency of the fish Oreochromis[J].Environmental Ecology, 1988,6(2):257-261.
    [21]李汉帆.农药的“三致”问题[J].湖北预防医学杂志,1994,5(3):34-36.
    [22]周炳,赵美蓉,黄海凤. 4种农药对斑马鱼胚胎的毒理研究[J].浙江工业大学学报, 2008,36(2):136-140.
    [23] Bolognesi C, Morasso G. Genotoxicity of pesticides: potential risk forconsumers[J]. Trends Food Sci&Techno,2000,11:182-187.
    [24] Wong C K, Chu hum F. Acute and chronic toxicity of malathion to the freshwatercladoceran Moina macrocopa[J]. Water air soil pollution, 1995,84(3-4):399-405.
    [25]阎秀花,李玉珍.农药污染与身体健康[J].衡水师专学报,2002,4(1):45-47.
    [26]杨先乐,湛嘉,黄艳平.有机磷农药对水生生物毒性影响研究进展[J].上海水产大学学报,2002,11(4):378-382.
    [27]纽伟民,赵晓联,赵春城.有机磷农药检测方法综述[J].江苏食品与发酵,2001,22(1):28-30.
    [28] Varó, F. Amat, J.C. Navarro. Acute toxicity of dichlorvos to Aphanius iberus(Cuvier & Valenciennes, 1846) and its anti-cholinesterase effects on this species[J].Aquatic Toxicology, 2008,88(1):53-61.
    [29] Manabu Sakai. Use of chronic tests with Daphnia magna for examination ofdiluted river water[J]. 2002,53(3):376-381.
    [30] Sanchezfortun S, Sanzbarrera F, Barahonagomariz M V. Acute toxicities ofselected insecticides to the aquatic arthropod artemia-salina[J]. Bulletin ofEnvironmental Contamination and Toxicology,1995,54(1):76-82.
    [31] Tripathi A M, Agarwal R A. Molluscicidal and anti-AChE activity of tertiarymixtures of pesticides[J]. Archives of Environmental Contamination and Toxicology,1998, 34(3):271-274.
    [32]黄周英,谢进金,陈琳钦,等.敌敌畏对金鱼的急性毒性研究[J].毒理学杂志,2005,19(4):311-312.
    [33] J. Martins, L. Oliva Teles, V. Vasconcelos. Assays with Daphnia magna andDanio rerio as alert systems in aquatic toxicology[J]. Environment International,2007,33:414-425.
    [34]李志伟,梁丹,张建夫.氨基甲酸酯类农药残留分析方法的研究进展[J].华中农业大学学报,2008,27(5):691-695.
    [35] Machemer L H, Pickel M. Carbamte insecticide[J]. Toxicol,1994,91:29-36.
    [36] Bardin P G, Van Eeden S F, Moolman J A,et al. Organophosphate and carbamatepoisoning[J]. Arch Intern Med,1994,154:1433-1441.
    [37]李少南.灭多威的环境毒理研究进展[J].环境科学进展,1997,5(3):65-69.
    [38] Khalil Z, Mostafa I Y. J. Environ. Sci. Health, Part B, 1986,21(4):289-301.
    [39] Hejduk J and Z Svobodova, Acta Vet. Brno (Czech),1980, 49,251.
    [40]张丽俏,刘洋,曾阳,等.氯化镉、灭多威和硝基苯对日本青鳉(Oryzias latipes)行为抑制的生物应急监测[J].生态毒理学报,2011,6(2):154-159.
    [41]胡春容.拟除虫菊酯农药的毒性研究进展[J].毒理学杂志,200——19(3),239-241.
    [42] Lund A E, Narahashi T. Modification sodium channel kinetics by the insecticidetetramethrin in crayfish giant axons[J]. Neurotoxicology, 1981,2:213-219.
    [43] Vijverberg H P M, J D Bercken. Neurotoxicological effects and the mode ofaction of pyrethroid insecticides. Critical Reviews in Toxicology,1990,21(2):105-126.
    [44]刘安西,宁黔冀,陈叙龙等.氯氰菊酯异构体对黑胸大蠊神经钠钾通道的调制作用[J].昆虫学报,1990,33(1):1-6.
    [45]吴霞编译.拟除虫菊酯、氟虫腈和茚虫威作用机制的最新进展[J].世界农药,2002,24(2):29-34.
    [46]马志卿.不同类杀虫药剂的致毒症状与作用机理关系研究[D].杨凌:西北农林科技大学,2002,71.
    [47]陈良燕,蔡道基.溴氰菊酯农药对鱼塘浮游动物影响的研究[J].中国环境科学,1996,16(6):466-469.
    [48]姜双城.溴氰菊酯对菲律宾蛤仔急性毒性研究[J].福建水产,2010,1:41-45.
    [49]潘厚军,吴淑勤,黄志渎,等.鱼类对有机磷和溴氰菊酯农药的敏感性研究[J].淡水渔业,2000,30(7):44-45.
    [50]周志刚,王明学,吕敢堂.溴氰菊酯对草鱼鱼种脑AChE及ATP酶活性的影响[J].华中农业大学学报,1999,(2):176-179.
    [51] Martins J, Soares M L, Saker M L, OlivaTeles L, Vasconcelos V M. Phototacticbehavior in Daphnia magna Straus as an indicator of toxicants inthe aquatic environment [J]. Ecotoxicology and Environmental Safety, 2006,67(3):417-422 .
    [52] EPA;Water Quality Criteria , National Academy of sciences . 1972, P. I ,US, EPAResearch Series .
    [53]国家环境保护局.水质物质对溞类(大型溞)急性毒性测定方法.1992,GB/T13266-91.
    [54] Duquesne S, Kuster E. Biochemical, metabolic, and behavioural responses andrecovery of Daphnia magna after exposure to an organophosphate [J].Ecotoxicology and Environmental Safety, 2010,73(3): 353-359 .
    [55] Johnston N A L, Campagna V S, Hawkins P R, Banens R J.Response of the eastern rainbowfish (Melanotaenia duboulayi) to toxicMicrocystis aeruginosa[J]. Australian Journal of Marine and Freshwater Research,1994,45(5): 917-923.
    [56] Ringelberg J. An account of a preliminary mechanistic model of swimmingbehavior in Daphnia: its use in understanding diel vertical migration[J].Hydrobiologia, 1995, 307:161-165.
    [57]徐恩斌,张忠兵,谢渭芬.乙酰胆碱酯酶的研究进展[J].国外医学,2003,23( 1):73-75.
    [58]朱美财.乙酰胆碱酯酶的结构和功能研究进展[J].生物化学与生物物理进展,1992,19:338-342.
    [59] Bruijn J D, Hermensm J. Inhibition of acetylcholinesterase and acute toxicity oforganophosphorous compounds to fish: a preliminary structure-activity analysis[J].Aquatic Toxicology, 1993, 24:257-274.
    [60] Galgani F, Bocquene G, Cadiou Y. Evidence of variation in cholinesteraseactivity in fish along a pollution gradient in the North Sea[J]. Mar.Ecol.Prog.Ser.,1992,91:77-82.
    [61] Quinn, A. L.,J. B. Rasmussen,et al.Physiological stress response ofMountain Whitefish (Prosopium williamsoni) and White Sucker (Catostomuscommersoni) sampled along a gradient of temperature and agrichemicals in theOldman River,Alberta[J].Environmental Biology of Fishes,2010,88(2):119-131.
    [62] Mdegela, R. H.,R. D. Mosha,et al.Assessment of acetylcholinesteraseactivity in Clarias gariepinus as a biomarker of organophosphate and carbamateexposure[J].Ecotoxicology,2010,19(5):855-863.
    [63] Kopecka-Pilarczyk, J. The effect of pesticides and metals on acetylcholinesterase(AChE) in various tissues of blue mussel (Mytilus trossulus L.) in short-term in vivoexposures at different temperatures[J].Journal of Environmental Science and HealthPart B-Pesticides Food Contaminants and Agricultural Wastes,2010,45(4):336-346.
    [64] Beltran, K. S. and G. N. Pocsidio.Acetylcholinesterase activity in Corbiculafluminea Mull.,as a biomarker of organophosphate pesticide pollution inPinacanauan River,Philippines[J].Environmental Monitoring and Assessment,2010,165(1-4):331-340.
    [65] Xuereb, B.,E. Lefèvre,et al.Acetylcholinesterase activity in Gammarusfossarum (Crustacea Amphipoda):Linking AChE inhibition and behaviouralalteration[J].Aquatic Toxicology,2009,94(2):114-122.
    [66]陈家长,冷春梅,胡庚东,等.溴氰菊酯连续暴露对罗非鱼血清乙酰胆碱酯酶活性的影响[J].生态学杂志,2008,27(5):776-779.
    [67]许碧君,陆光华.胆碱脂酶作为水生生物的生物标志物研究进展[J].四川环境,2006,25(5):87-90.
    [68]何东海,孟范平,朱小山.有机磷农药对海洋动物乙酰胆碱酯酶(AChE)的毒性效应研究进展[J].海洋通报,2003,22(6):71-78.
    [69] Pascal Mora, Xavier Michel, Jean-Fran, et al. Cholinesterase activity as potentialbiomarker in two bivalves[J]. Environmental Toxicology and Pharmacology,1999,7:253-260.
    [70]任宗明,饶凯锋,王子健.水质安全在线生物预警技术及研究进展[J].供水技术,2008a,2(1):5-7.
    [71] Gerhardt A, Janssens de Bisthoven L, Mo Z, et al. Short-term responses ofOryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea:Palaemonidae) to municipal and pharmaceutical waste water in Beijing, China:survival, behaviour, biochemical biomarkers, Chemosphere, 2002,47:35-47.
    [72] Zongming Ren, Jinmiao Zha, Mei Ma, et al. The early warming aquaticorganophosphorus pesticide contamination by on-line monitoring behavioral changesof Daphnia magna [J]. Environ Monit Assess, 2007,134(1-3):373-383.
    [73] Zongming Ren, Zhiliang Li, Jinmiao Zha, et al. The Avoidance Responses ofDaphnia magna to the Exposure of Organophosphorus Pesticides in an On-LineBiomonitoring System [J]. Eviron Model Assess, 2009, 14(3):405-410.
    [74]任宗明,马梅,查金苗,等.在线生物监测技术应用于典型农药污染的研究[J].给水排水,2007,33(3):20-23.
    [75] Selye H. The evolution of the stress concept[J]. American Scientist,1973,61(6):692-699.
    [76]任宗明,李志良,饶凯锋,等.氰戊菊酯和氯化镉暴露下日本青鳉的行为反应差异[J].生态毒理学报,2008b,3(6):563-569.
    [77]刘勇,付荣恕,任宗明.2种有机磷农药联合胁迫下日本青鳉的逐级行为响应[J].环境科学,2010,31(5):1328-1332.
    [78]任宗明,付荣恕,王子健.饮用水中余氯对大型溞的急性和慢性毒性[J].给水排水,2005,31(4):26-28.
    [79]任宗明,李志良,王子健,等.大型溞和日本青鳉在水质在线生物安全预警应用中的比较[J].给水排水,2009,35(5):32-37.
    [80] ISO (International Standards Organization). ISO 7346-3 WaterQuality-Determination of the Acute Lethal Toxixity of Substances to a Fresh WaterFish [ Brachydanio Rerio Hamilton Buchanan (Teleostei, Cyprinidae)] [S]. Geneva.ISO, 1996.
    [81]王淑琴,高晓奇,白成龙.灭多威的毒理学研究[J].农药,1991,30(3):23-29.
    [82]刘均,何燕,蔡克健.溴氰菊酯残留物的分析方法研究[J].云南环境科学,1995,14(2):56-60.
    [83] Bradford M M.A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,72(5):248-254.
    [84]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009,23(3):40-41.
    [85]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000.8:42-47.
    [86] Gorun V , Proinov I, B Itescu V, et al. Modified Ellman procedure for assay ofcholinesterase in crude enzymatic preparations [J]. Analytical Biochemistry ,1978,86(1):324-326.
    [87]葛士林,曹传旺,王志英. 3种农药对红裸须摇蚊体内蛋白质质量分数和AChE活性的影响[J].东北林业大学学报,2011,39(1):108-109
    [88] Naomi L. Cooper, Joseph R. Bidwell. Cholinesterase inhibition and impacts onbehavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphateinsecticide [J]. Aquatic Toxicology,2006,76:258-267.
    [89] Morgan M J, Fancey L L, Kiceniuk J W. Response and recovery of brainacetylcholinesterase activity in Atlantic Salmon(Salno salar) exposed toFenitronthion[J]. Can.J.Fish.Aquat.Sci., 1990,47:1652-1654.
    [90] Beno t Xuereb, Estelle Lefvre, Jeanne Garric, et al. Acetylcholinesterase activityin Gammarus fossarum (Crustacea Amphipoda): Linking AChE inhibition andbehavioural alteration[J]. Aquatic Toxicology,2009,94:114-122.
    [91]李昕,王英,张佳,等.家蝇中乙酰胆碱酯酶的提取纯化及应用研究[J]. 2008,27(3):87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700