玉米粉对水源性肠球菌抗生素耐药形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立模型生态系统研究玉米粉引发水源性肠球菌对氯霉素(CHL)、红霉素(ERY)、氨苄西林(AMP)、土霉素(OTC)、万古霉素(VAN)和环丙沙星(CIP)耐药表型产生的影响,初步探讨玉米粉引发水源性肠球菌对红霉素和环丙沙星耐药的机理。
     方法:从福州森林公园采集土样,检测土样中肠球菌对试验用6种抗生素的敏感性,结果表明这些土样中的肠球菌对这6种抗生素都敏感,可作为模型生态系统的底泥。模型生态系统建立后,将系统分为6个剂量组,分别添加8g/L、4g/L、1g/L、0.25g/L、0.05g/L和0g/L的灭菌玉米粉,每个剂量组两个重复。采集第0d、第1d、第3d、第7d、第14d、第30d、第40d、第61d和第130d系统中的泥样,检测泥样中肠球菌对6种抗生素的敏感性,了解玉米粉对水源性肠球菌抗生素耐药表型形成的影响;应用PCR方法检测ermB、mefA、gyrA和Esp等基因,序列测定和分析gyrA基因83位点和87位点是否发生突变;结晶紫染色法检测不同葡萄糖浓度对肠球菌生物膜形成的影响。
     结果: (1)添加不同剂量玉米粉对肠球菌分离率的影响不同,影响程度和添加玉米粉的剂量呈正相关,添加8g/L玉米粉对肠球菌分离率影响最大,可使分离率从40%上升为100%,添加4g/L玉米粉时肠球菌的分离率最高只上升到80%,添加1g/L、0.25g/L、0.05g/L和0g/L玉米粉时肠球菌的分离率变化不大。
     (2)添加不同剂量玉米粉没有引发肠球菌对氨苄西林和万古霉素的敏感性产生可检测到的影响。添加0.05g/L-8g/L玉米粉对环丙沙星的耐药性都产生了影响,且添加玉米粉的剂量越大产生的影响越大,环丙沙星耐药菌株的出现时间越早,耐药率也越大。添加8g/L玉米粉可在第1d就出现了耐环丙沙星的菌株,而在第7d时就使肠球菌对环丙沙星的耐药率达到了100%;添加4g/L玉米粉时对环丙沙星的影响虽然也在第1d就出现,但到了第14d时才出现了最高的耐药率85.7%;添加1g/L玉米粉对环丙沙星的影响较小,在第7d才出现25%的耐药率,影响最大时的耐药率也才达到50%。对氯霉素的影响也因添加玉米粉剂量不同而不同,添加8g/L和4g/L玉米粉时没有出现对氯霉素耐药的肠球菌,而添加0.05g/L-1g/L玉米粉时都出现了氯霉素耐药菌株,且耐药程度与添加玉米粉的剂量呈正相关,耐药率分别为20%、25%和55.5%。对红霉素和土霉素耐药性的影响情况较一致,耐药程度与添加玉米粉的剂量不完全呈正比,且耐药菌株出现的时间较晚。
     (3)对红霉素耐药的28株肠球菌中,ermB基因的阳性率为78.6%,而对红霉素敏感的16株肠球菌均未检测到ermB耐药基因,另外,无论是对红霉素敏感的肠球菌还是对红霉素耐药的肠球菌均未检测到mefA耐药基因。模型生态系统中分离的102株肠球菌gyrA基因的阳性率为96.1%,但83位点和87位点均没有发生突变。
     (4)表达肠球菌表面蛋白的Esp基因检出率为0%。不同浓度的葡萄糖对分离自模型生态系统中肠球菌的生物膜形成能力有不同的促进作用,1.0%葡萄糖比0.5%葡萄糖有更强的促进生物膜形成作用。
     结论: (1)添加玉米粉可引发模型生态系统中的肠球菌对红霉素、土霉素、环丙沙星和氯霉素产生耐药,但对万古霉素和氨苄西林没有产生可检测到的影响。
     (2)添加不同剂量的玉米粉引发水源性肠球菌对红霉素、土霉素、环丙沙星和氯霉素耐药的程度不同;对环丙沙星的影响程度与添加玉米粉的剂量呈正比,添加剂量越大对环丙沙星耐药性形成速度与程度的影响越大;对氯霉素的影响在添加0.05g/L-1g/L剂量区间,影响程度与添加玉米粉的剂量呈正相关;对土霉素和红霉素的影响较不规律,影响程度与添加玉米粉的剂量不完全呈正比,但整体趋势还是表现为添加剂量越大,影响程度越大。
     (3)模型生态系统中的肠球菌对环丙沙星耐药不是由gyrA基因突变引起,但对红霉素的耐药绝大部分与ermB耐药基因有关。
     (4)肠球菌生物膜的形成与Esp基因之间没有必然的联系,但肠球菌在葡萄糖诱导下具有形成生物膜的能力,且生物膜的形成与葡萄糖的浓度在一定范围内呈正相关。肠球菌耐药的产生与环境中葡萄糖的浓度以及生物膜的形成有一定的相关性。
Objective: Model ecosystems were established to study the effect of cornmeal on the resistant phenotype of water source enterococcus to chloramphenicol (CHL), erythromycin (ERY), ampicillin (AMP), oxytetracycline (OTC), vancomycin (VAN) and ciprofloxacin (CIP). The resistant mechanism of enterococcus to erythromycin and ciprofloxacin were studied as well.
     Methods: Soil samples were collected from forest park in Fu-zhou, enterococcus strains were isolated from these soil samples and the sensitivity of these strains to the six kinds of antibiotics were detected, the results showed that these enterococcus stains were sensitive to the six kinds of antibiotics, so they could be used as the sediment in model ecosystems. After the model ecosystems were established, they were divided into six groups, sterilization cornmeal were added at the doses of 8g/L, 4g/L, 1g/L, 0.25 g/L, 0.05 g/L and 0g/L respectively, each group had two replications. Enterococcus strains were isolated from the model ecosystems at the time of 0d, 1d, 3d, 7d, 14d, 30d, 40d, 61d and 130d, sensitivity test of these enterococcus strains to six kinds of antibiotics were detected; the ermB, mefA, gyrA and Esp gene of enterococcus strains were detected with the method of PCR, gyrA gene sequence was determined and the 83 site and 87 site were analyzed, in order to get the imformation of mutation; the impact of different concentration glucose on the enterococcus biofilm formation was tested by the method of crystallization purple stained.
     Results: (1) The effect of cornmeal to the separation rate of enterococcus was different when different doses cornmeal were added, the more the cornmeal added the higher the separation rate was. when added 8g/L cornmeal, the rate of separation elevated from 40% to100%, while the rate of separation could only rose to 80% when 4g/L cornmeal were added; meanwhile, there were little changes on the separation rate of enterococcus when 1g/L, 0.25g/L, 0.05g/L and 0g/L cornmeal were added.
     (2) There were no detactable resistant phenotype changes of enterococcus to vancomycin and ampicillin caused by different doses of cornmeal. The changes of resistant phenotype of enterococcus to ciprofloxacin were corelated to the dosages of cornmeal. when cornmeal was added at dose of 8g/L, the ciprofloxacin resistance strains appeared at one day, the resistance rate to ciprofloxacin reached 100% at 7d; when 4g/L cornmeal was added, ciprofloxacin resistance strains aslo appeared at one day, but the resistance rate to ciprofloxacin only reached to 87.5% at 7d; when 1g/L cornmeal was added, ciprofloxacin resistance strains appeared at 7d, the resistance rate to ciprofloxacin only reached to 50% at 14d and 30d. The changes of resistant phenotype of enterococcus to chloramphenicol were corelated to the dosages of cornmeal while it was in the ranges of 0.05 g/L to 1g/L, the resistanc rate was 20%, 25% and 55.5% respectively. when 8g/L and 4g/L cornmeal were added there were no cholramphenicol resistance strains detacted. The changes of resistant phenotype of enterococcus to erythromycin and oxytetracycline were similar, which were not corelated to the doses of cornmeal and the time of resistance strains could be detected was late.
     (3) In the 28 strains of erythromycin resistant enterococcus, the rate of ermB gene was 78.6% while the rate was 0% in the 16 strains of erythromycin sensitive enterococcus; meanwhile there were no mefA gene detected in both erythromycin sensitive or resistant enterococcus. In the 102 strains of enterococcus which were isolated from model ecosystems, the rate of gyrA gene was 96.1%; but there were no mutation detected at the site of 83 and 87 in the gyrA gene.
     (4) The were no Esp gene detected in the 102 enterococcus strains, which function was expressing enterococcus surface protein. Both concentration of glucose could induce the formation of biofilm in the enterococcus isolated from model ecosystems. 1% glucose has the better effect on the induction of biofilm formation than 0.5% glucose.
     Conclusion: (1) There were no detactable resistant phenotype changes of enterococcus to vancomycin and ampicillin caused by different doses of cornmeal. Meanwhile, resistant phenotype of enterococcus to ciprofloxacin, chloramphenicol, erythromycin and oxytetracycline changed while different doses of cornmeal were added into the model ecosystems.
     (2) Different doses of cornmeal have different effects on the formation of resistance and the level of resistance of enterococcus to erythromycin, oxytetracycline, ciprofloxacin and chloramphenicol. In the case of ciprofloxacin, the higher the dose was the earlier the resistant enterococcus appeared and the higher the resistant level was. In the case of chloramphenicol, while the doses of cornmeal were at the ranges of 0.05 g/L to 1g/L, it has similar effect on the form of resistance to ciprofloxacin. In the cases of erythromycin and oxytetracycline there were no obvious relationship between the doeses of cornmeal and the form and the level of resistance.
     (3) In the model ecosystem, the appearance of ciprofloxacin resistant enterococcus was not caused by the mutation of gyrA gene; while, the appearance of erythromycin resistant enterococcus has strong correlation to the appearance of ermB gene.
     (4) Esp gene did not necessary correlate to the formation of Enterococcus biofilm. In certain concentration range, the ablity of enterococcus form biofilm was correlated to the concentration of glucose. There was certain relationship between antibiotics resistance of enterococcus and the concentration of glucose in the emvironment and the formation of biofilm.
引文
[1] Carla Renata Arciola,Lucilla Baldassarri,Davide Campoccia,etal. Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections[J]. Biomaterials,2008,29:580-586.
    [2] Stefanie Koch, Markus Hufnagel, Christian Theilacker,et al. Enterococcal infections: host rEsponse, therapeutic,and prophylactic possibilities [J].Vaccine, 2004,22:822-830.
    [3] A.Lakshmy, V.K. Srivastava, R. Dutta,et al.Characterization of enterococci from paediatric enterococcal infections—hospital-based study in India [J].International Congress Series,2006,1289: 58-61.
    [4] G. Giraffa, Enterococci from foods[j]. FEMS Microbiology Reviews, 2002,26:163-171.
    [5] Miranda CD, Zemelman R. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms[J].The Science of The Total Environment,2002,293 (13):207-218.
    [6]段高飞,韩峰,李京宝,等.细菌生物膜相关感染的防治方法研究进展[J].中国海洋大学学报,2010,40(5):107-111.
    [7] Maryam Shafahi, Kambiz Vafai. Synthesis of biofilm resistance characteristics against antibiotics [J].International Journal of Heat and Mass Transfer, 2010,53:2943-2950.
    [8] Tom Coenye , Hans J. Nelis. In vitro and in vivo model systems to study microbial biofilm formation[J]. Journal of Microbiological Methods,2010,83:89-105.
    [9] Manuel Simoes,, Lucia C. Simoes, Maria J. Vieira. Species association increases biofilm resistance to chemical and mechanical treatments[J]. water research,2009,43:229-237.
    [10] Virginia Aiassa, Ana I. Barnes, Inés Albesa. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis[J]. Biochemical and Biophysical Research Communications, 2010,393:84-88.
    [11] Sean P.Gorman, James G.McGovern, A.David Woolfson, etal. The concomitant development of poly (vinyl chloride)-related biofilm and antimicrobial resistance in relation to ventilator-associated pneumonia [J]. Biomaterials, 2001,22:2741-2747.
    [12] Chi-Yu Huang , Shou-Pin Hsieh , Pei-An Kuo,etal. Impact of disinfectant and nutrient concentration on growth and biofilm formation for a Pseudomonas strain and the mixed cultures from a fine papermachine system[J]. International Biodeterioration &Biodegradation, 2009,63:998-1007.
    [13]郑冰.“三大营养物质代谢与人体健康”复习教学[J].生物学教学,2007,32(3):13-14.
    [14]苗卫卫,江敏.我国水产养殖对环境的影响及其可持续发展[J].农业环境科学学报,2007,26(增刊):319-323.
    [15]王玮,陈军,刘晃,等.中国水产养殖水体净化技术的发展概况[J].上海海洋大学学报,2010,19(1):41-47.
    [16]季明.集约化养殖对环境的危害与预防措施[J].环境科学与技术,1999,2:32-34.
    [17]李金钟.肠球菌分类与鉴定新进展[J].临床检验杂志2006,24(3):228-230.
    [18] M.R. Foulquie Moreno, P. Sarantinopoulos, E. Tsakalidou,etal. The role and application of enterococci in food and health[J]. International Journal of Food Microbiology,2006,106:1-24.
    [19]黄华山.肠球菌氨基糖苷类高水平耐药机制的研究进展[J].安徽医药,2007,11(7):577-579. [ 20] Patrick R, Murray, editer in chief Manual of Clinical Microbiology[M ]. Sixth Edition ASM press, 1995: 308-309.
    [21]杜蓉.肠球菌的耐药机制研究进展[J].华西医学,2006,21(2):395-396.
    [22] Ingo Klare, Carola Konstabel, Dientlinde Badstubner,et al.Occurrence and spread of antibiotic resistances in Enterococcus faecium[J].International Journal of Food Microbiology,2003,88: 269-290.
    [23]李爽,张正.肠球菌耐药性的研究进展[J].中华检验医学杂志,2004,27(10):710-713.
    [24] M.G. Zouain, G.F. Araj.Antimicrobial resistance of Enterococci in Lebanon[J].International Journal of Antimicrobial Agents, 2001,17:209-213.
    [25]刘学勇.某医院肠球菌感染现状及其耐药性分析[J].中国临床研究,2010,23(7):623.
    [26]郭建萍.肠球菌感染分布及耐药性分析[J].中国实用医药,2009,4(28):132-133.
    [27]方小龙.肠球菌耐药机制研究进展[J].医学综述,2006,12(19):1165-1168.
    [28]黄宪章,庞雪云,李强,等.486株肠球菌菌型分布及耐药性研究[J].广东医学,2005,26(1):72-73.
    [29] Cabllero-Granado FJ, Cisneros JM, Luque R, et al. Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin[J].Journal of Clinical Microbiology,1998,36(2):520-525.
    [30] Evelina Tacconelli , Maria A. Cataldo .Vancomycin-resistant enterococci (VRE): transmission and control[J].International Journal of Antimicrobial Agents, 2008,31:99-106.
    [31] Aylin Kasimoglu-Dogru, Y. Emre Gencay, N. Deniz Ayaz。Prevalence and antibioticresistance profiles of Enterococcus species in chicken at slaughter level; absence of vanA and vanB genes in E.faecalis and E.faecium[J] Research in Veterinary Science, 2010,89:153-158.
    [32] Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci[J].Clinical Microbiology Reviews,2000,13(4):686-707.
    [33] J.Barbosa,V.Ferreira,P.Teixeira.Antibiotic susceptibility of enterococci isolated from traditional fermented meat products[J]. Food Microbiology,2009,26:527-532.
    [34] Paulo Martins da Costaa, Paulo Vaz-Pires, Fernando Bernardoc, et al. Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants[J].Water research,2006(40):1735-1740.
    [35] Harwood VJ, Brownell M, Perusek W, et al. Vancomycin-Resistant Enterococcus spp. Isolated from Wastewater and Chicken Feces in the United States[J].Applied and Environmental Microbiology,2001,67(10):4930-4933.
    [36] Luca Busani, Maria Del Grosso, Claudio Paladini,et al. Antimicrobial susceptibility of vancomycin-susceptible and -resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections[J].International Journal of Food Microbiology, 2004, 97: 17-22.
    [37] Ramin Mazaheri Nezhad Fard , Michael W. Heuzenroeder , Mary D. Barton. Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs[J]. Veterinary Microbiology, 2011,148:276-282.
    [38]吴林伯,古丽,周广.肠球菌耐药现状和药敏分析[J].川北医学院学报,2004,19(4):126-127.
    [39]杨洋,陈欣,熊鹿言,等.正常人肠道肠球菌耐药谱研究[J].现代预防医学,2008,35(7):1383-1385.
    [40]赵丽青,雷质文,王树峰,等.动物源性肠球菌的分离鉴定及耐药性分析[J].中国动物检疫,2008,25(1):31-32.
    [41]王玉宝.肠球菌对大环内脂类抗生素的耐药机制[J].国外医药抗生素分册,2003,24(1):5-6.
    [42] Portillo A, Ruiz-Larrea F,Zarazaga M,et al. Macrolide resistance genes in Enterococcus spp [J] . Antimicrob Agents Chemother,2000,44 (4) :967.
    [43] Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA [J] . Antimicrob Agents Chemother ,2001,45 (1) :1.
    [44]瞿婷婷,杜小幸,陈亚岗.等.氨基苷类高水平耐药肠球菌的耐药性及修饰酶基因分布[J].中国感染与化疗杂志,2006,6(3):163-167.
    [45] Brett D. Shepard, Michael S. Gilmore. Antibiotic-resistant enterococci: the mechanisms anddynamics of drug introduction and resistance[J].Microbes and Infection, 2002 ,4:215-224.
    [46]陆佳,李一经.东北部分地区猪链球菌对四环素类药物耐药机制的研究[J].黑龙江畜牧兽医,2010,1:11-13.
    [47]吕萍.肠球菌的耐药性研究进展[J].国外医药抗生素分册,2006,27(3):132-135.
    [48] Joseph M. Blondeau, MSc, et al. Fluoroquinolones: Mechanism of Action, Classification, and Development of ResistancePJ]. Survvy Of Ophthalmology,2004,49 (Suppl 2):S73-S77.
    [49]唐曼娟.肠球菌对氟喹诺酮类抗菌药的耐药机制[J].国外医药抗生素分册,2004,25(3):128-130.
    [50]童乐艳,许淑珍.肠球菌对β-内酰胺类抗生素耐药机制的研究进展[J].临床和实验医学杂志,2005,4(1)34-38.
    [51] Mark S Wilke,Andrew L Lovering,Natalie CJ Strynadka. b-Lactam antibiotic resistance: a current structural perspective[J]. Current Opinion in Microbiology 2005, 8:525-533.
    [52]唐先兵,司书毅,张月琴.耐万古霉素肠球菌耐药机制的研究进展[J].国外医学药学分册,2003,30(3)166-171.
    [53] Y.Gholizadeh, Patrice Courvalin. Acquired and intrinsic glycopeptide resistance in enterococci[J]. International Journal of Antimicrobial Agents, 2000,16:S11–S17.
    [54] Wolfgang Witte. Ecological impact of antibiotic use in animals on different complex microflora environment[J].International Journal of Antimicrobial Agents,2000(14):321-325.
    [55] Evelina Tacconelli, Maria A. Cataldo. Vancomycin-resistant enterococci (VRE): transmission and control[J]. International Journal of Antimicrobial Agents,2008,31:99-106.
    [56]周洁,韦莉萍.细菌生物膜的形成及其耐药性研究进展[J].第一军医大学分校学报,2005,28(2):194-196.
    [57] Costerton,JW, G Geesey,and GK Cheng.How bacteria stick[J].sci Am,1978,238:86-95.
    [58] Sophie Moreau-Marquis,Bruce A. Stanton, George A. O’Toole.Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway[J]. Pulmonary Pharmacology & Therapeutics, 2008,21:595-599.
    [59]李冬梅,赵秀媛.细菌生物膜在临床中的研究进展[J].实用医技杂志,2007,14(16) :2251-2253.
    [60]唐俊妮,史贤明,王红宁,等.细菌生物膜的形成与调控机制[J].生物学杂志,2009,26(2):48-50.
    [61] Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required forbacterial biofilm formation. Science,2002;295:1487.
    [62] Philip S. Stewart.Mechanisms of antibiotic resistance in bacterial biofilms[J]. Int. J. Med. Microbiol,2002,292:107 -113.
    [63]贾鸣,胡晓梅,胡福泉.细菌生物被膜的耐药机制及控制策略[J].生命的化学,2008,28(3):315-317.
    [64] Anthony W. Smith. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems?[J]. Advanced Drug Delivery Reviews, 2005,57:1539-1550.
    [65]史巧,王红宁,刘立.细菌生物膜与耐药性相关性研究进展[J].微生物学通报,2008,35(10):1633-1637.
    [66]彭青,钱元恕.细菌生物被摸及其相关感染的研究进展[J].中国抗感染化疗杂志,2004,4(2):126-128.
    [67] Thien-Fah C. Mah and George A. O’Toole.Mechanisms of biofilm resistance to antimicrobial agents[J]. TRENDS in Microbiology,2001,19(1): 34-39.
    [68]常桂娇,王艾琳.细菌生物膜及其与细菌耐药性关系的研究进展[J].山东医药,2007,47(5):81-82.
    [69]陈铁柱,李晓声,曾文魁,等.细菌生物膜耐药机制研究与进展[J].中国组织工程研究与临床康复,2010,14(12):2205-2208.
    [70] Niels Hoiby, Thomas Bjarnsholt, Michael Givskov, et al. Antibiotic resistance of bacterial biofilms [J]. International Journal of Antimicrobial Agents, 2010,35:322-332.
    [71]陈波曼,余加林.细菌生物膜形成和耐药机制研究进展[J].中国抗生素杂志,2005,30(10):641-644.
    [72] Patel, Robin MD. Biofilms and Antimicrobial Resistance[J].Clinical Orthopaedics & Related Research,2005,437:41-47.
    [73]颜艳,徐晨彪,牛卫东.原子力显微镜观察粪肠球菌的超微结构及生物膜的动态形成过程[J].华西口腔医学杂志,2010,28(4):447-449.
    [74]李燕,李冬冬,陶传敏,等.表皮葡萄球菌生物膜形成及相关基因的检测及评价[J].中华医院感染学杂志,2010,20(4):473-476.
    [75]吴晓燕,陈松劲,倪侃翔.表皮葡萄球菌生物膜形成对实验室检测及耐药性的影响[J].中国卫生检验杂志,2008,18(6):1112-1114.
    [76]郑璐,余加林,芦起,等.白色念珠菌生物膜体外模型的建立及不同检测方法比较[J].中国微生态学杂志,2010,22(5):406-410.
    [77] Josephine Shera, Kadaba S. Sriprakash, David J. McMillan.The nutritional requirements for biofilm formation by Group A streptococcus[J].International Congress Series,2006,1289: 139– 142.
    [78]李静,马勋.粪肠球菌生物膜的形成及影响因素[J].中国预防兽医学报,2008,30(7):523-526.
    [79] S Jayanthi,M Ananthasubramanian,B Appalaraju.Assessment of pheromone rEsponse in biofilm forming clinical isolates of high level gentamicin resistance enterococcus faecalias[J].Indian Journal of Medical Microbiology,2008,26(3):248-251.
    [80] Andrea Marra, Fadia Dib-Hajj, Lucinda Lamb,etal. Enterococcal virulence determinants may be involved in resistance to clinical therapy[J]. Diagnostic Microbiology and Infectious Disease,2007,58:59-65.
    [81] V. Santos, M. Oliveira, A. Fernandes, C. Carneiro,etal. In vitro biofilm-forming ability and antimicrobial resistance of enterococci from intensive and extensive farming boilers[J]. Poultry Science Association,2010,89:1065-1069.
    [82] Preeti M. Tendolkar, Arto S. Baghdayan,Michael S. Gilmore, etal. Enterococcal Surface Protein, Esp, Enhances Biofilm Formation by Enterococcus faecalis [J]. Infection and Immunity,2004,72(10):6032-6039.
    [83]程梅,高良,梅亚林.肠球菌Esp基因检测及其致病作用[J].江西医学检验,2006,24(3):217-218.
    [84] A A Ramadhan, E Hegedus. Biofilm formation and Esp gene carriage in enterococci[J]. J Clin Pathol,2005,58:685-686.
    [85] Christopher J. Kristich,Yung-Hua Li,Dennis G. Cvitkovitch,etal. Esp-Independent Biofilm Formation by Enterococcus faecalis [J]. Journal of Bacteriology,2004,186(1):154-163.
    [86]马立艳,许淑珍.肠球菌表面蛋白基因与生物膜形成关系的探讨[J].山东医药,2006,46(5):11-12.
    [87]杜秀英,竺乃恺,夏希娟,等.微宇宙理论及其在生态毒理学研究中的应用[J].生态学报,2001,21(10):1726-1733.
    [88]黄玉瑶,高玉荣,任淑智,等.模型池塘生态系统设计与应用研究[J].应用与环境生物学报,1995,1(2):103-113.
    [89]李金钟,兼性厌氧、触酶阴性革兰阳性球菌分类新进展[J].临床检验杂志,2004,22(4):308-311.
    [90]易秀丽.水源粪肠球菌耐药情况调查及耐药影响因素研究[D].福建农林大学,2008.
    [91] Nguyen Thi Minh Hang , Nguyen Cao Don , Hiroyuki Araki,etal. Applications of a new ecosystem model to study the dynamics of phytoplankton and nutrients in the Ariake Sea, west coast of Kyushu, Japan[J]. Journal of Marine Systems, 2009,75:1-16.
    [92]俞道进,曾振灵,陈杖榴.土霉素残留对底泥细菌耐药性的影响[J].毒理学杂志,2005,19(3):307.
    [93]杨华为,蒋迪,王璨,等.细菌鉴定和耐药性检测方法的发展[J].临床药物治疗杂志,2004,4(4):39-45.
    [94]周庭银,赵虎,倪语星,等.临床微生物学诊断与图解[M].上海:上海科学技术出版社,2001.34-40.
    [95]张嵘,朱百荣,俞爱群,等.引起医院感染的肠球菌和肠道中的肠球菌耐药性差异的研究[J].中华医院感染学杂志,2001,1l(2):139-140.
    [96] Intetsu K,Hiroe M,Takako L,et a1.Antimicrobial susceptibility testing of vancomycin- resistant Enterococcus by the VITEK 2 system,and comparison with two NCCLS reference methods[J].Med Microbiol,2004,3(12):1229-1232.
    [97]张远,郑丙辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护,2005,21(6):23-26.
    [98]尹兵.动物源和水源肠球菌万古霉素耐药表型、基因型检测及同源性研究[D].福建农林大学,2009.
    [99] Anita Hallgren,Carina Claesson,Baharak Saeedi.Molecular detection of aggregation substance,enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin [J].International Journal of Medical Microbiology,2009,299:323-332.
    [100] L.M. Perea-Mejia, C. Rivas, A.E. Inzunza-Montiel,etal. Erythromycin resistance associated to mefA gene and emm75 allele in Streptococcus pyogenes from uncomplicated pharyngitis in Mexico[J]. International Congress Series,2006,1289:99-102.
    [101] A. Martel, L.A. Devriese, A. Decostere, etal.Presence of macrolide resistance genes in streptococci and enterococci isolated from pigs and pork carcasses[J].International Journal of Food Microbiology,2003, 84:27-32.
    [102] Jacques Tankovic, Faouzia Mahjoubi,Patrice Courvalin,et al. Development of Fluoroquinolone Resistance in Enterococcus faecalis and Role of Mutations in the DNAGyrase gyrA Gene[J]. Antimicrobial Agents and Chemotherapy,1996,40(11):2558-2561.
    [103] Rosario Ramalheira,Joana Silva,Tim Hogg,etal.Survival of Listeria monocytogenes previously isolated from traditional Portuguese fermented sausages through the gastro-intestinal tract[J].Abstract / Journal of Biotechnology, 2007,131S:S251.
    [104] Daojin Yu,Xiuli Yi, Yufang Ma,etal. Effects of administration mode of antibiotics on antibiotic resistance of Enterococcus faecalis in aquatic ecosystems[J]. Chemosphere, 2009,76:915-920.
    [105]马立艳,许淑珍.健康成人与住院病人肠球菌致病基因及表型和耐药性的比较研究[J].临床和实验医学杂志,2006,5(1):5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700