车身覆盖件冲压模型面参数化设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国工业的快速发展和消费者个性消费对汽车制造企业的改型换代提出了新的要求,在新车型开发的过程中,覆盖件冲压模具的开发和制造能力将很大程度上决定开发周期和开发成本。为了实现缩短覆盖件冲压模具开发周期和降低开发成本的目的,在模具设计过程中使用板料成形CAE软件是切实可行的方法之一。通常在冲压模具设计阶段,设计人员将使用CAD软件设计好的仿真模型导入CAE软件,在CAE环境中设定相关仿真参数后进行成形模拟,模拟结果可以显示模具设计方案的优劣,并为模具修改提供参考。冲压模具型面是在零件模型的几何数据基础上,通过模型修复和编辑、补孔、法兰展开、边界光顺和工艺补充等工序完成的,在零件几何模型基础上生成冲压模具的过程成称之为模面设计过程,因此,冲压模具型面设计的关键就是模面设计。
     为了实现在CAE环境中完成冲压模具模面设计的目的,本文对模面设计的相关功能进行了分析,对部分关键技术进行了深入研究,并结合ACIS开发平台完成了部分关键算法,主要内容如下:
     冲压件模型在不同CAD造型系统间传输很容易出现非二边流形体错误和因系统最小容差不同导致的曲面间存在裂缝等缺陷,这些缺陷会严重妨碍冲压件仿真前处理的工作,同时存在裂缝的冲压件模型也不能生成符合仿真分析的有限元网格,因此,研究模型转换缺陷修复技术具有非常重要的学术价值。本文针对冲压件模型转换存在的缺陷进行了较深入的研究,着重对非二边流形体和几何修复后的拓扑重构进行了研究,分析了冲压件模型转换缺陷的类型及产生的原因,针对不同的类型提出了相应的修复方法。
     为了实现模型的参数化编辑目的,结合ACIS提供的InterOp数据输入接口,研究了三维模型的修改和编辑功能,并编写了适用不同编辑目的组件,包括边界重构功能、局部操作功能、混合和抽壳等。针对边界重构操作可能产生的多解问题进行了分析和处理;混合操作生成Coons混合曲面,并针对等半径混合、变半径混合和顶点混合编制了不同的实现程序,还设计了混合操作后的拓扑重构。
     根据现有的一步逆成形有限元基础理论,以弹塑性成形体积不变和不关心加载过程为假设条件,完全考虑成形板料物理性能的前提下实现曲面的合理展开。曲面展开的算法过程中,充分考虑板料物理性能的一步逆成形展开算法克服了几何展开尺寸不准确的弊端,在比例加载的假设条件,按照金属的弹塑性变性理论对法兰面进行展开,达到冲压模具型面设计的要求。通过对典型冲压件的法兰展开测试以及试模样件的尺寸测量,证明了法兰展开算法的准确性。
     传统的基于知识系统的工艺补充设计、基于参数化的工艺补充设计等工艺补充设计算法解决了工艺补充面的插值生成,但对工艺补充面本身在零件“尖角”处的连续程度,工艺补充面与零件的过处及工艺补充面与压料面间的过渡连续性一直没有很好的解决。另外,传统算法生成的工艺补充面的连续性仍然是依靠设计人员的经验,通过选择、设定参数的过程来保证的。而且传统的基于截面线的工艺补充面设计过程需要设计人员在冲压件的每条边界上构造多条用于生成插值曲面的截面线,这种在多条截面线间插值生成工艺补充曲面片的方法容易造成曲面片不连续的情况。本文提出了截面线和指定方向的方法生成参数化的压料面的方法,该方法能够生成符合拉延仿真要求的压料面。摒弃了工艺补充曲面片生成过程中采用三段截面线的做法,提出采用两段6控制点的可调B样条曲线作为截面线,以截面线、边界线和截面线的连接线为边界轮廓的插值曲面生成工艺补充曲面片的方法。为了满足工艺补充曲面片的C1连续性要求,采用“滚动球”的混合方法实现了锋利边和尖点的光顺过程。
     KMAS/Die_Face冲压模型面参数化设计模块基本功能包含:网格生成、法线一致、冲压方向优化、补孔、翻边隐藏、镜面对称、边界光顺、法兰展开、压料面设计、工艺补充设计及拉延筋设计等功能,但如何将这些基本功能进行合理安排、整合,实现准确、快速的完成设计是覆盖件冲压模型面设计模块的核心内容。覆盖件冲压模型面参数化设计基本功能的实现为KMAS/Die_Face实现提供了前提,本文通过研究覆盖件冲压模型面设计的工艺特点,结合各个基本功能的特点、覆盖件产品特征和成型预测结果设计并实现了具有零件模型特征匹配和成型结果预测的型面快速设计模块。设计模块着重就冲压件型面特征和相似性进设计,研究分类算法并建立数据库,建立模型属性特征模板,从而实现快速型面设计模块。
Rapid development of china industry and individual demand put into a higher level for reform and regeneration of automobile-manufacturing enterprises, in the process of development of a new car type, the design and manufacture capacity of panel stamping die determines the circle and cost of development to a large degree. In order to reduce the development circle and lower the development cost of panel stamping die, one of the methods is that the CAE software for sheet metal forming be used in the process of die design. At the phase of design of panel stamping die, designer usually import the simulation model to the CAE software and simulates in the environment of CAE after some parameters is inputted, the simulation judges superior or inferior of the die design scheme and provides the preference for modify of die. Stamping die is designed on the base of geometry data of part model through mending holes, flange expansion, boundary smoothing and addenda. The stamping die that is created on the base of the geometry model of the part is defined as die-face design, so the die-face design is the key to design of stamping die.
     The related theories and key technologies of panel die face digital design are studied thoroughly based on CAE system. This paper has researched on the following several key technical issues. In order to realize the die-face design for stamping die, the related function of die-face design is analyzed and the key algorithm on ACIS platform is finished, the main content is as following:
     It is easy to make the error that non two edges form when the stamping die is transferred among the system of CAD styling. The defect, such as crack among the surface, appears due to the different of minimal tolerant, these defects hinder the simulation of pre-process of stamping parts, at the same time, the cracking stamping parts do not produce the finite element meshes that meet the simulation analysis. Therefore, the study of fixing technology at the process of the transformation of model has very important academic value of study. The study is made for the transformations defect of tamping model and the type and reason of transformation is analyzed, more important is, the study of manifold and topology re-building. The corresponding fixing method is proposed in view of different types.
     In order to realize the purpose of model parametric editing, through the InterOp of ACIS platform, the modification and editing of 3D model is studied, and some components for different editing purposes are also compiled, including the following functions: boundary re-building, local editing, blending and shell, etc. In accordance with the problem of possible multi-solutions, when the boundary re-building operation is executed, the analysis and solution are studied in this paper. The blending operation creates Coons surfaces, and according to the equal radius blending, variable radius blending and point blending, the corresponding programs are compiled. The topology of blending operation is also re-built.
     According to the finite element basis theory of one-step inverse forming and assumption conditions that constant volume of elastic-plastic remains, the premise of the consideration of physical properties, the rational expansion of surface is realized. In the algorithm of surface expansion, one-step inverse forming expansion overcame drawbacks of inaccurate size in the geometry expansion. Under the condition of proportional loading, the flange-face is expanded according to the theory of metal elastic-plastic and the expansion accuracy of surface is improved. Through the testing of flange-face expansion for typical stamping parts and dimension measurement, the accuracy of flange-face expansion algorithm is proved.
     The traditional algorithms of addenda design, which based on knowledge system and parameter, can realize the interpolation generation of addenda surfaces, but can not solve the following problems well: the continuity degree between addenda surfaces on the sharp corner of parts, the continuity degree between addenda surfaces and parts’surfaces or blank surfaces. Additionally, the continuity of addenda surfaces by traditional algorithms can only be realized by the experience of designer and setting parameters. And the traditional addenda design basing section curves need the designer to build several section curves on every edges of stamping parts for the interpolation generation, and this kind of method of construct interpolation surfaces basing several section curves will cause the continuity fault of addenda surfaces. The method of section curves and defined direction to build parametric blank surfaces are proposed in this paper, and these blank surfaces can fulfill the requirement of simulation of drawing. The method of using three parts of section curves during the construction of addenda surfaces is disused in this paper, and two alterable B-Splines with 6 controlling points are proposed as sections curves in this paper, and the method of construction boundary of interpolation surfaces basing section curves, boundary curves and connecting curves are also proposed in this paper. In order to fulfill the requirement of C1 continuity of addenda surfaces, the blending method with rolling ball is used to realize the smoothing of sharp corners and sharp edges.
     The parametric design of stamping die face module of KMAS/Die_Face includes the following basic functions: meshing, normal consistence, stamping direction optimizing, holes filling, flange hiding, symmetry operation, boundary smoothing, flange expansion, blank surface design, addenda surfaces design and draw bead design. But how to rational arrange and integration the above basic functions, and realizes fast and precise die face design is the kernel content of stamping die face design module. The basic functions of parametric design of stamping die face provide the premise of KMAS/Die_Face. Through the study of technology characteristics of stamping die face design, and the integration of corresponding basic functions, and the product characteristics of stamping parts, and the simulation results of forming, the fast design module of stamping die face is designed and realized, which includes the matching of parts model features and the prediction of forming results. This design module focus on the design according to the geometry characteristics and similarity of stamping parts, and the research of classify-algorithm, and construction of databank, and the construction of model characteristics templates, thus the fast design module of die face is realized.
引文
[1]北汽收购萨博[EB/OL].http://www.chinanews.com.cn/160/2009/1126/190.html.
    [2]吉利成功收购沃尔沃[EB/OL]. http://auto.sohu.com/s2010/geelygetvolvo/.
    [3]跑赢美国中国汽车产销全球第一[EB/OL]. http://finance.sina.com.cn/roll/20110129/02227330959.html.
    [4]柳岩,管晓芳,宋玉泉.中国轿车自主创新的现状[J].吉林大学学报(工学版), 2009(01):266-273.
    [5]柳岩,管晓芳,宋玉泉.中国轿车走向世界面临的关键问题[J].吉林大学学报(工学版)2009,39(01)274-280.
    [6]柳岩,管晓芳,宋玉泉.中国轿车发展的三个阶段[J].吉林大学学报(工学版) 2009,39(01)259-265.
    [7]中国汽车工程学会.车辆工程学科发展研究报告2007[M].北京:中国汽车工程学会, 2008.3.
    [8]中国汽车相关工业“十二五”专题发展规划研究概要[EB/OL]. 2010-12-15. http://www.autoinfo.gov.cn/autoinfo_cn/lbj/tbgz/syw/webinfo/1182388344493521.htm
    [9]中国汽车工业“十二五”发展规划[EB/OL]. 2010-12-10. http://blog.sina.com.cn/s/blog_566ccfee01000bce.html.
    [10]汽车业“两会”三大关键词新能源汽车自主研发兼并重组[EB/OL]. http://finance.sina.com.cn/stock/t/20090313/01492726025.shtml.
    [11]杨玉英.大型薄板成形技术[M].北京:国防工业出版社,1996:76-77.
    [12]郭春生.汽车大型覆盖件模具[M].北京:国防工业出版社, 1993:12-15.
    [13]王恒.汽车覆盖件拉伸模的设计现状及发展方向[J].电加工与模具. 2001, (2):13-15.
    [14] J.C.CHOI. A Compact and Practical CAD/CAM System for the Blanking or Piercing of Irregular Shaped-sheet Metal Products for Progressive Working [J]. Journal of Material Processing Technology, 2001, 110(1):36-46.
    [15]杨光等,板材冲压切边回弹有限元模拟中的切边处理技术,塑性工程学报, 2004, 10: Vol.11, No.5.
    [16]李芳华.模具CAD中复杂曲面的造型方法研究.模具工业, 2003, 8:11-13.
    [17] W.B.Hou,H.Z.Zhang,R.F.Chi,etc.Development of an Intelligent CAE System for Auto-body Concept Design[J].International Journal of Automotive Technology,2009,10(2):175-180.
    [18] Nishio S, Igarashi M . Investigation of Car Body Structural OptimizationMethod[J].Int.J.of Vehicle Design,1990,11(1):10-12.
    [19] Lan Fengchong,Chen Jiqing,Lin Jianguo.Research on Parameterized Modeling and Application for Car[J].Computer Integrated Manufacturing System,2005,11(2):183-188.
    [20] Zhiguo LIU, Ping HU, Wei GUO, Yuechen HOU. Research on surface filling for stamping simulation of automobile panel. Suxing Gongcheng Xuebao/Journal of Plasticity Engineering. 2007, Vol.14, No.6 (72-77).
    [21] Zhiguo LIU, Ping HU, Wei GUO, Yuechen HOU. Study on Filling Technology of Die-Face in Forming Simulation of Automobile Panel. International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics (CMESM 2006).
    [22]刘志国,胡平,郭威.汽车覆盖件成型仿真中虚拟曲面的填充技术研究.汽车技术,2007, Vol.05 (40-44).
    [23]董洪智等,曲面拼接在车身覆盖件仿真成形几何建模中的应用研究,锻压机械, 1998.6: 40-43.
    [24] Adi Levin, Further Filling an N-sided hole using combined subdivision schemes, SAE 1999-02-0345.
    [25] Shankar Krishnan and Dinesh Manocha, An Efficient Surface Intersection Algorithm based on Lower Dimensional Formulation, SAE 1994-02-0125.
    [26] Reference Manual of PAM-STAMPTM 2G 2003. ESI Corp, 2003.09.
    [27] User’s Guide of PAM-STAMPTM 2G 2003. ESI Corp, 2002.10.
    [28]胡平等,一种高效率弹塑性有限元分析新方法-增量杂交/混合修正弦线模量法,应用力学学报. 1991,Vol.8.
    [29]胡平等,车身覆盖件成形与模具设计数值仿真一体化技术,第四届全国塑性力学及其应用学术研讨会论文集,1997.8.
    [30]胡平等, KMAS软件系统与冲压模具虚拟制造技术,虚拟工程与科学,2001.05.
    [31]郭树华等,基于截面线方法的汽车覆盖件曲面识别,机械工程学报,2002.10.
    [32] ZHIGANG CHENG, FENLI QIAO, HONGBIN MIAO eta. CAD2000 Secondary Exploitation Based on the ActiveX Technique[C]. Proceedings of the International Symposium on Test and Measurement, 2003(1):631-633.
    [33] SHEHATA T, A.E MOHAMED. Computer aided die-design [J], International Journal of Computer Applications in Technology, 2005, 24(1):55-59.
    [34] PILANI R., NARASIMHAN K., MAITI S.K., SINGH U.P. Intelligent systems approach for die design in sheet metal forming [J]. International Journal of Advanced Manufacturing Technology, 2000, 16(5):370-375.
    [35] T.OHATA, Y.NAKAMURA, T.KATAYAMA, E.NAKAMACHI. Improvement of Optimum Process Design System by Numerical Simulation [J]. Journal of MaterialsProcessing Technology, 1998, 80-81(1):635-641.
    [36] S.BADRINARAYANAN, NICHOLAS Z. A Sensitivity Analysis for the Optimal Design of Metal-forming Process [J]. Computer Methods in Applied Mechanics and Engineering, 1996(129):319-348.
    [37] LUET D, DUVAL J.L, D.ASQUALE E, RIGAUD V, LE ROCH Y. Quality Function Approach to Design and Optimization of Stamping Process: Application to Industrial Case[C], Int. Congress and Exposition(SAE), Detroit, USA, 1998.
    [38] OLAF SCHENK, MATTHIAS HILLMANN. Optimal designs of metal forming die surfaces with evolution strategies [J]. Computers and Structures, 2004, 82:1695-1705.
    [39] S.S.KANG, D.H.PARK. Application of Computer-aided Process Planning System for Non-axisymmetric Deep Drawing Products [J]. Journal of Material Processing Technology, 2002(124):36-48.
    [40] GASPER GANTAR, TOMAZ PEPELNJAK, KARL KUZMAN. Optimization of sheet metal forming processes by the use of numerical simulations. Journal of Materials Processing Technology, 2002, 130-131(10):54-59.
    [41]刘伟,杨玉英,邢忠文.车身覆盖件冲压工艺多目标优化系统的集成与应用[J].计算机集成制造系统, 2006(06):888-892.
    [42]王义林,王耕耘,李志刚,肖景容.模具型面优化设计方法的研究与实现[J].中国机械工程, 1995(06):53-55.
    [43]张向奎,鲍益东,胡平,胡斯博,郎志奎,王宇.板材三维曲面翻边的逆成形预示与修边线确定[J].力学学报, 2007(04):488-494.
    [44] KIM S H, HUH H. Finite element inverse analysis for the design intermediate dies in multi-stage deep drawing processes with large aspect ratio [J]. Materials Processing Technology, 2001, 113:779-785.
    [45] Gill Barequet, Christian A. Duncan, Subodh Kumar. IEEE, 1998, 6, vol.4, NO.2
    [46] Gill Barequet, Subodh Kumar. Repairing CAD Models. IEEE, 1997,10(20):363-370
    [47] Gill Barequet, Micha Sharir. Filling Gaps in the Bourndary of a Polyhedron. ComputerAided Geometry Design, 1995, 12 (2): 207-229.
    [48] Antonio E.Uva, Giuseppe Monno, Bernd Hamann. A New Method for Repair of CAD Data with Discontinuities.
    [49] S.M.Morvan, G.M.Fadel. IVECS: An interactive virtual environment for the correction of .STL files. In Conference on Virtual Design, U.California Irvine, 1996, 8.
    [50] G.Turk, M.Levoy. Zippered polygon meshes from range images. In: proceedings of ACM SIGGRAPH, 1994:311-318.
    [51] Heon Young Kim, Sang Bum Kim, Sang Soon Kwon, etal. A Study on the Hybrid Finite Element Modeling for Side Impact Simulation[C]. SAE 1999-01-3185.
    [52] Nicklas Bylund, Magnus Eriksson. Simulation Driven Car Body Development Using Property Based Models[C]. SAE 2001-01-3046.
    [53] Hilmann J. PaasM,Hasenschke A,etc. Automatic Concept Model Generation for Optimization and Robust Design of Passenger Cars [J]. Advances in Engineering Software,2007,38(11-12) :795-801.
    [54] Vivek Bhise,Ghassan Kridli,Huzefa Mamoola,etc.Development of a Parametric Model for Advanced Vehicle Design[C].SAE2004-01-0381.
    [55] Nishigaki H,Nishwak1 S, Amago T,etc.First Order Analysis New CAE Tools for Automotive Body Designers[C].SAE World Congress,Detrolt,USA:2001.
    [56]施法中.计算机辅助几何设计与非均匀有理B样条[M].高等教育出版社,2005,第二版.
    [57]孙家广.计算机图形学[M].清华大学出版社,2002,第十版.
    [58]朱心雄等.自由曲线曲面造型技术[M].科学技术出版社,2000.
    [59]李强,席光,王尚锦. NURBS表示圆弧曲线的使用方法[J].计算机辅助设计与图形学学报,1999.
    [60] B.R.GOSSIH. Hamilton’s Physical and Principle System [M]. Academic Press, NewYork and London, 1997.
    [61] [5] D.MEXAS, D.TERZOULOS. Dynamic deformation of solid primitive with constraint [J]. Computer Graphics, 1998, 26(2): 209-212.
    [62] Bruse Eckel,刘宗田,等译. C++编程思想(第2版)第1卷:标准C++[M].北京:机械工业出版社, 2003.
    [63] Stanley Lipman,潘爱民,等译. C++Primer(第三版) [M].北京:中国电力出版社, 2002.
    [64]詹海升,李广鑫,马志新.基于ACIS平台的几何造型技术与系统开发[M].北京:清华大学出版社, 2002.
    [65]马毕友,雷跃明.基于ACIS平台的几何模型管理[J]: Machine Building & Automation, 2007, 36 (1):74 ~77.
    [66] David J, Krugliski, Scot Wingo, etc.朱继满等译. Programming Visual C++ 6.0技术内幕(第五版)(修订版) [M].北京:北京希望电子出版社, 2005.
    [67] Gill Barequet, Christian A. Duncan, Subodh Kumar. IEEE, 1998, 6, vol.4, NO.2
    [68] Gill Barequet, Subodh Kumar. Repairing CAD Models. IEEE, 1997, 10(20):363-370.
    [69] Gill Barequet, Micha Sharir. Filling Gaps in the Boundary of a Polyhedron. Computer Aided Geometry Design, 1995, 12 (2): 207-229.
    [70] Antonio E.Uva, Giuseppe Monno, Bernd Hamann. A New Method for Repair of CAD Data with Discontinuities.
    [71] S.M.Morvan, G.M.Fadel. IVECS: An interactive virtual environment for the correction of .STL files. In Conference on Virtual Design, U.California Irvine, 1996, 8.
    [72] G.Turk, M.Levoy. Zippered polygon meshes from range images. In: proceedings ofACM SIGGRAPH, 1994:311-318.
    [73]毛书欣.基于缺陷曲面的CAD数据修复.吉林大学硕士学位论文, 2004, 4.
    [74]林彩霞. CAD数据修复算法研究.吉林大学硕士学位论文2005,4
    [75]詹海生,李广鑫,马志欣.基于ACIS的几何造型技术与系统开发.清华大学出版社,2002.
    [76] Paul Dvorak.A few guidelines for generating reusable geometry Machine Design.ABI/INFORM Global,1999,11(4):126
    [77] Braid.I. Solid Modeling.PhD Thesis, Cambridge University, 1972.
    [78]董洪伟,周儒荣,周来水等.在ACIS平台上开发三维软件.计算机辅助工程, 2002, 10:53-55.
    [79] Corney J,Lim T.3D Modeling with ACIS.Saxe-coburg Publications Stirling,UK,2001
    [80] Gill Barequet, Christian A.Duncan, Subodh Kumar.IEEE, 1998, 6, vol.4, NO.2.
    [81] Gill Barequet, Subodh Kumar.Repairing CAD Models. IEEE, 1997, 10(20):363-370.
    [82] Gill Barequet, Micha Sharir.Filling Gaps in the Boundary of a Polyhedron. Computer Aided Geometry Design, 1995, 12(2):207-229.
    [83] S.M.Morvan, G.M.Fadel.IVECS: An interactive virtual environment for the correction of STL files. In Conference on Virtual Design, U.California Irvine, 1996, 8.
    [84] G.Turk, M.Levoy. Zippered polygon meshes from range images.In: proceedings of ACM SIGGRAPH, 1994:311-318.
    [85] J.H.Bohn, M.J.Wozny. Automatic cad-model repair: Shell-closure.In H.L.Marcus et al., editor, Proc.Solid Freefrom Fabrication Svmposium, 1992, 8:86-94.
    [86] J.H.Bohn, M.J.Wozny. A topology-based approach for shell-closure.In P.R.Wilson etal.,editor,Geometric Modeling for Product Realization 1993,8:297-319.
    [87]王仁,黄文彬,黄筑平.塑性力学引论.北京大学出版社,1992.
    [88]李国琛,M耶纳.塑性大应变微结构力学(第二版).科学出版社,1998.
    [89]蒋友谅.非线性有限元.北京工业学院出版社,1988.
    [90]王勖成,邵敏.有限单元法基本原理与数值方法.清华大学出版社,1997.
    [91]何君毅,林祥都.工程结构非线性问题的数值解法.国防工业出版社,1994.
    [92] Tamas Varady, Ralph Martin, Jordan Cox. Reverse engineering of geometric models—an introduction [J]. Computer Aided Design, 1997, 29:253-257.
    [93] Abella Robert J, Daschbach James M, McNichols Roger J. Reverse engineering industrial applications [J]. Computers & Industrial Engineering, 1994, 26(2):380-386.
    [94] Pal Benko, Ralph R Martin, Tamas Varady. Algorithms for reverse engineering boundary representation models [J]. Computer Aided Design, 2001, 33:839-851.
    [95] Witkin A, Heckbert P. Using particles to sample and control implicit surfaces[C]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, Florida, 1994:269-277.
    [96] Keren D, Gotsman D. Fitting curves and surfaces with constrained implicit polynominals [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(1):31-41.
    [97] ESI Software. PAM-STAMP 2G REFERENCE MANUAL. The Virtual Try-out Space Company of ESI Group. 2003.
    [98] AutoForm Engineering. AutoForm-DieDesigner User’s Manual. AutoForm Engineering Company. 2001.
    [99] Altair Engineering. HyperWorks User’s Manual. Altair Engineering Company. 2004.
    [100] Marcal P V, King I P. Elastic-plastic analysis of two-dimension system by the finite element method. International Journal of Mechanical Science, 1967, 9.
    [101] McMeeking R M, Rice J R. Finite-element formulations for problems of large elastic-plastic deformation. International Journal of Solides Structures, 1975, 11:601~616.
    [102] Mehta HS, Kobayashi S. Finite element analysis and experimental investigation of sheet metal stretching. Journal of Applied Mechanics, 1973, 40:874~880.
    [103] Toh C H, Kobayashi S. Finite element process modeling of sheet metal forming of general shapes. In: Proc of Symposium on Fundamentals of Metal Forming Technique– State and Trends. Stuttart, 1983, 38~56.
    [104] Yang D Y, Chuang W J, Shim H B. Rigid-plastic finite element analysis of sheet metal forming processes with initial guess generation. International Journal of Mechanical Science, 1990, 32(8):687~708.
    [105] Tang S C. Analysis of spring-back in sheet forming operation. In: Proc. of the Second Int. Conference on Technology of Plasticity (ICTP). Stuttgart, 1987, 193~197.
    [106] Yang D Y, Shim H B, Chung W J. Comparative investigation of sheet metal forming processes by the elastic-plastic finite element method with emphasis on the effect of bending. Engineering Computation, 1990, 7:274~284.
    [107] Kawka M, Makinouchi A. Shell-element formulation in the static explicit FEM code for the simulation of sheet stamping. In: Proc of NUMISHEET’93 Numerical Simulation of 3-D Sheet Metal Forming Processes– Verification of Simulation with Experiment. Tokyo, 1993, 105~115.
    [108] Mamalis A G, Manolakos D E, Baldoukas A K. Simulation of sheet metal forming using explicit finite-element techniques: effect of material and forming characteristics (Part 1. Deep-drawing of cylindrical cups). Journal of Materials Processing Technology, 1997, 72:48~60.
    [109] Hibbitt H D, Marcal P V, Rice J R. A finite element formulation for problems of large strain and large displacement. International Journal of Solids Structures, 1970, 11:601~616.
    [110] Keer T J, Sturt R M V. Sheet metal pressings– the integration of finite elementanalysis with the design process. SAE Trans Journal of Materials and Manufacturing, 1991, No.910771:736~741.
    [111] Taylor L, Cao J, Karafillis A P et al. Numerical simulations of sheet-metal forming. In: Proc of NUMISHEET’93 Numerical Simulation of 3-D Sheet Metal Forming Processes– Verification of Simulation with Experiment. Tokyo, 1993, 168~179.
    [112] Chen W, Yang, J C, Lin Zongqin. Expansion ratio analysis for initial die-face design of panel drawing dies. International Journal of Machine Tools and Manufacture, 2002, 42(10):1195~1202.
    [113] Liu Gang, Lin Zhongqin, Xu Weili, Bao Youxia. Variable blank holder fordce in U-shaped part forming for eliminating springback error. Journal of Materials Processing Technology, 2002, 120(1~3)259~264.
    [114] Dong Hongzhi, Lin Zhongqin. Investigation of sheet metal forming by numerical simulation and experiment. Journal of Materials Processing Technology, 2000, 103(3):404~410.
    [115] Wang Huaibao, Xu Weili, Lin Zhongqin, Yang Yuying. Stamping and stamping simulation with a blank holder gap. Journal of Materials Processing Technology, 2002, 120(1-3):62~67.
    [116] Chen Wei, Lin Zhongqin. Application of integrated formability analysis in designing die-face of automobile panel drawing dies. Journal of Materials processing technology, 2002, 121(2~3):293~300.
    [117] VV Hanzek, K Lange. Use of the slip line field method in deep drawing large irregular shape components. Pro 7th NAMRC, 1979, 65~71.
    [118] H Gloeckl, K Lange. Computer aided design of blank for deep drawn irregular shaped components. Proc 11th NAMRC, 1983, 243~251.
    [119] R Sowerby, N Chandrasekaren. The development of computer aids for sheet metal stampings. In CAD/CAM and Fem in metal working, SK Ghosh and A Niku Lari EDS Pergamon Press, 1987, 187~203.
    [120] Z. Zhaotao, L. Bingwen. Determination of blank shapes for drawing irregular cups using an electrical analogue method. International Journal of Mechanical Sciences, 1986, 28(8):499~503.
    [121] R Sowerby, E Chu. Determination of large strains in metal forming. J Strain Anal, 1982, 95(1):711.
    [122] CH Lee, H Huh. Blank design and strain prediction of automobile stamping parts by an inverse finite element approach. Journal of Materials Processing Technology, 1997, 63:645~650.
    [123] CH Lee, H Huh. Three dimensional multi-step inverse analyses for the optimum blank design in sheet metal forming process. Journal of Materials Processing Technology, 1998, 80-81:76~82.
    [124] CH Lee, H Huh. Blank design and strain estimates for sheet metal forming process by a finite element inverse approach with initial guess of linear deformation. Journal of Materials Processing Technology, 1998, 82:145~155.
    [125] F Barlat, J L Batoz. Optimum design of blank contours using the inverse approach and a mathematical programming technique. Proc NUMISHEET’96:178~185.
    [126] M Tisza. Expert system for metal forming. Journal of Materials Processing Technology, 1995, 53:423~432.
    [127] Takeo Nakagawa. Recent Developments in Auto Body Panel Forming Technology. Journal of Material Processing Technology, 1994, 46:277~290.
    [128]郭乙木,陶伟明,庄茁等.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003.
    [129]雷正保.汽车覆盖件冲压成形CAE技术.湖南:国防科技大学出版社,2003.
    [130]汪大年.金属塑性成形原理.北京:机械工业出版社,1982.
    [131]梁炳文,胡适光.板料成形塑性.北京:机械工业出版社,2003.
    [132]崔令江.汽车覆盖件冲压成形技术.北京:机械工业出版社,2003.
    [133]李尚键.金属塑性成形过程模拟.北京:机械工业出版社,1999.
    [134]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用.北京:北京理工大学出版社,1998.
    [135]林忠钦等.车身覆盖件冲压成形仿真.北京:机械工业出版社,2005.
    [136]张晓静,周贤宾,李东升等.板料成形数值模拟研究进展.塑性工程学报,2005,7:1~10.
    [137]段成龙.金属板料成形性能及其CAE分析.南方金属,2005,10:10~12.
    [138]孙立君,黄敏飞,阮峰等.汽车覆盖件冲压成形有限元分析方法及其软件的应用.机电工程技术,2005,2:18~20.
    [139]周贤宾.冲压技术的发展与数值模拟. ChinaPAM 2002数值模拟与工程应用技术研讨会论文集.广州:博赛仿真工程技术(广州)有限公司. 2002,2~4.
    [140]赵军,马瑞.板料成形新技术及其发展趋势.金属成形工艺,2002,20(6):1~4.
    [141]赵军,马瑞.板料成形新技术及其发展趋势II金属成形工艺,2003,2(21):1~5.
    [142]龚红英,何丹农,张质良.计算机仿真技术在现代钣金成形过程中的应用.锻压技术,2003,5:35~38.
    [143]陈文亮.板料成形CAE分析教程.北京:机械工业出版社,2005.
    [144]阮雪榆. 21世纪数字化塑性成形技术与科学.模具技术,2003(2):3~8.
    [145] Clough R W. The finite element method in plane stress analysis. J Struct Div ASCEProc of 2nd conf Electronic Computation, 1960, 345~350.
    [146] Wang N M, Budiansky S. Finite element analysis and experimental investigation of sheet metal stretching. Journal of Applied Mechanics, 1973, 40:874~880.
    [147] Oh S I, Kobayashi S. Finite element process modeling of sheet metal forming of general shapes, In Process of Symposium on Fundaments of Metal Forming Technique-State and Trends. Stuttart, 1983, 38~56.
    [148] Toh C H, Kobayashi S. Deformation analysis and blank design in square cup drawing. International Journal of Machine Tool Design Engineering, 1985, 25:15~32.
    [149] Nakamachi E Sowerby R. Finite element modeling of the punch stretching of square plates. Journal of Applied Mechanics, ASME, 1988, 55: 667~671.
    [150] Ted Belytschko, Wing Kim Liu, Brain Moran. Nonlinear Finite Elements for Continua and Structure,北京:清华大学出版社,2002.
    [151]郎志奎.汽车车身曲面展开一步逆成形有限元法及其应用.吉林大学博士学位论文. 2008年9月.
    [152]胡斯博,鲍益东,胡平.车身部件一步逆成形有限元法及翻边成形坯料形状预示.中国力学学会学术大会2005. 2005年.
    [153]王玉国,卫原平,沈启埃,赵春林,阮雪榆.覆盖件拉伸模工艺补充部分和压料面设计.上海交通大学学报. 1999年2月:45~50.
    [154]王宇.逆成形有限元法若干关键问题与整车碰撞精细仿真研究.吉林大学博士学位论文. 2008年10月.
    [155]郑国君.车身覆盖件成形仿真软件平台若干新技术研究.吉林大学博士学位论文. 2010年3月.
    [156]狄驰.基于CAE的覆盖件模面工程系统若干关键算法研究.吉林大学博士学位论文. 2009年8月.
    [157]张向奎.汽车车身部件快速成形仿真技术平台与关键算法研究.吉林大学博士学位论文. 2008年10月.
    [158]刘瑞军.覆盖件冲压模具型面参数化仿真设计方法与关键技术研究.吉林大学博士学位论文. 2010年8月.
    [159]龚如华,乐晓波.数据相关性分析的非精确算法.中南工业大学学报. Vol.28, No.4. 1997年8月:387~390
    [160]吴水艳.非线性互补问题的非精确算法研究.西安电子科技大学硕士学位论文. 2010年8月
    [161] (1) S. Y. Wu, J. C. Yao, J. S. Pang. Inexact algorithm for continuous complementarity problems on measure spaces. Journal of Optimization Theory and Applications. Vol.1. 141~154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700