用户名: 密码: 验证码:
非插入式液压系统管路压力与流量测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以普通钢质液压管路为工程对象,对通过应变法来测量液压管道内流体压力、流量的方法做了深入而系统的研究。
     综述了压力、流量的非插入式测量技术和液压系统故障诊断技术的历史、现状、问题及发展方向。为了满足对于液压设备的状态检测与故障诊断的实际要求,提出了利用管道形变测量管路压力与流量非插入式测量的新方法。
     在理论方面,总结了管道动态模型的理论,对管路动态基本方程中的非线性因素进行研究,指出该方程是来源于微波技术中的微波传输线长线理论,液压系统相对于电学中的微波传输过程的非线性因素太多,应对方程中各参数的设定加以调整。对各非线性因素分别加以分析,发现管路综合弹性模量是对通过管路两端动态压力推导管路动态流量过程中最大的非线性环节,必须对该环节引起的误差进行纠正。
     对介质的体积弹性模量变化规律进行了理论与实验研究,提出介质弹性模量在本文中的赋值方案必须用实时测量的结果;同时,在仿真计算与工程设计中,必须考虑弹性模量在一定范围内的变动,给出最大与最小值之间变化时系统内各参数变化的范围。
     在实践方面,从动态特性与静态特性两个方面在理论上论证了用应变电测方法直接测量管道形变的可行性,并为夹具的进一步设计提供了基础。
     在产品化方面,为了实现现场的多点测量,根据测量要求,设计了夹具,首先提出各种结构形式,并一一进行实验,其次,根据实验反馈的结果不断调整夹具的各种参数,最后设计出了满足要求的夹具,方便了工程使用。
     根据工程实际应用的需要,设计了简单、便携的数据采集系统。
     最后,进行了试验分析。通过试验,验证了液压管路动态压力测量可以使用应变电测法,并得出了夹具安装的规范,为工程使用提供了指导意见,验证了可以使用管路动态压力法推算介质流量。
The ordinary steel pipe for the hydraulic system is considered as the mainsubject. Fluid pressure and flow rate measurement in the pipeline based on strain mouthed have been studied.
     Outlines the background of this issue, the importance, the purpose and practical significance. The history, status, and the problem of the pressure and flow and the technology for fault diagnosis to the hydraulic system are reviewed. In order to meet the need of hydraulic equipment fault detection and diagnosis, the dissertation proposed a new measurement method using pipe distortion to measure the pressure and flow of the fluid in the pipe based on non-inserting technology.
     In the aspect of theories, the pipeline dynamic model and recent developments have been summed up systematically. According to the transmission line theory in microwave technology, the time-domain representation of the pipeline dynamic model has been taken. The non-linear factors of the pipeline dynamic model have been studied, pointing out because this equation is derived from microwave technology, and compared with the hydraulic system of electrical microwave transmission, there are too many non-linear factors in the hydraulic system and the non-linear factors should be based on the actual situation of the equation in setting the parameters to be adjusted. The non-linear factors were analysied.It was be found that the impedance modulus the largest non-linear factors, and must be eliminated.
     The theoretical research to the elasticity modulus changes has been made. It was been proposed that the elasticity modulus changes randomly, and must use the real-time measurement results of operations at the same time. And in simulation and engineering design, modulus of elasticity must be considered in a certain range of changes, between the minimum and maximum change. We can not determine the value or use a function of determining the amount in setting modulus calculation and designing work.
     In the aspect of system implementation, for the deformation rate of hydraulic pipe is small, so there is suspicion to the feasibility corresponding measuring deformation of the pipeline by strain method. So the feasibility is proved in the static and dynamic characteristics and theoretical basis for the next fixture is provided.
     In the aspect of commercialization, a clamp has been designed for measurement. First, the various structure forms have been brought forward, and then the experiment was carried out. According to the experiment result, the clamp parameter continually has been readjusted. At last, an appropriate clamp has been designed.
     Tests were analyzed. These tests proved the dynamic pressure in hydraulic pipe can be measured by strain method, the guidance for the location of the clamps in the pipe have been given. It shows that using the dynamic pressure to calculate the flow was feasible.
引文
[1]祝海林.管道流量非接触测量及液压系统故障诊断的研究.(博士学位论文).北京:北京科技大学,1995.
    [2]Alan Krigman. Flow Measurement. Intech:Some Recent Progress.,1983,30 (4):9-13.
    [3]R.S.Medlock. The historical development of flow metering.Measu+Control,1983,19 (5):11-22.
    [4]梁国伟,蔡武吕.流量测量技术及仪表.北京:机械工业出版社,2002.
    [5]R C Baker. An Introductory Guide to Flow Measurement. Mechanical Engineering Publications Ltd,London.1992.
    [6]Vladimir-loan Crelu,Train JUrca.Mihai V. Micea,Loana Sora. Instrumentation and Measure-ment in Romania. IEEE Instrumentation & Measurement Magazine,September 2003.
    [7]王玉,刘东升.液压系统压力与流量非插入式测量方法的研究与进展.液压与气动,2005(7):58-60.
    [8]王俊梅,梁冠营.超声波流量测量技术浅析.中州煤炭,2005(6):34-35.
    [9]王秉仁,张雷,姜小丽.超声波测速技术在流量测量中的应用.矿山机械,2006(2):77-79
    [10]于凤,崔玉亮,靳世久,李兆庆.液压系统油液压力非插入测量的新方法.仪器仪表学报,2001(5):476-478.
    [11]T.J.Scarpa. Acoustic Flowmeter. US Patent, No.3.580.092.1971.
    [12]Takamoto M,Ishikawa H,Shimizu K,et al. New measurement method for very low liquid flow rates using ultrasound. Flow Measurement and Instrumentation,2001(4)
    [13]Sato Y, Mori M, Takeda Y, et al. Signal processing for advanced correlation ultrasonic velocity profiler. Third International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering,2002,5-1.
    [14]A R Guiib'ert and M L Sanderson.A novel ultraonic mass flowmenter for liquids.1996 the institution of Electrical Engineers. Printed and published by the IEE. Savoy Place, London WC2R OBL,UK,1996.
    [15]A R Guilbert, M Law, M L Sanderson. A Novel Ultrasonic/Thermal Clampon Flowmeter for Low Liquid Flowrates in Small Diameter Pipes,.Ultrasonics International '95, Edinburgh. Scotland,1995.
    [16]V. Pavlovic M., StojEev B., Dimitrijevic Lj., Gol u bovic M., zivkovid Lj.Stankovic. Ultrasonic pulse-phase method applied in fluid flow measurements.IEE Proc.-Sei. Meas. Technol., Vol.143, No.5.1996:327-333.
    [17]蔡武吕.超声流量计的市场与应用.世界仪表与自动化,2006(11):14-15.
    [18]罗守南.基于超声多普勒方法的管道流量测量研究.(博士学位论文).北京:清华大学,2004.
    [19]Ozaki Y, Kawaguchi T, Takeda Y, et al. High time resolution ultrasonic velocity profiler. Experimental Thermal and Fluid Science,2002,26:253-258.
    [20]王爱明,李艾华,冯永保,王得君.超声波流量检测中信号处理算法研究.机床与液压,2003(3):280-281.
    [21]姜万录,孙红梅,高明.基于超声检测的动态流量测试技术研究.机床与液压,2004(10):227-229.
    [22]吴晓庆,李艾华,李芳.基于互相关理论的时差法超声波流量检测系统.上海计量侧试,2006(2):22-23.
    [23]王天杰,雷振山,杨志刚.基于虚拟仪器的流量测试技术研究.液压与气动,2004(4):36-38.
    [24]唐勇,王益群,姜万录.动态流量软测量系统中神经网络训练策略的研究.流体传动与控制,2007(4):5-7.
    [25]周召发,李锋.大型武器装备液压系统快速故障诊断系统设计.机床与液压,2005(3):123-124.
    [26]K A Edge.Cylinder Pressure Transients in Oil Hydraulic Pumps with Sliding PLate Valves. Proc In—stn Mech Engrs, Vol 200. No. B1.
    [27]李小波,吴浩,王如,孙炳章.基于小波变换的超声波液压测量系统.液压与气动,2005(10):41-42.
    [28]Li Zhang,Robert X.Gao,David O. Kazmer.Analytic Wavelet-Based Ultrasonic Pulse Different-iation for Injection Mold Cavity Pressure Measurement.Journal of Manufacturing Science and Engineering,2006(128):371-374.
    [29]于凤,崔玉亮,靳世久,李兆庆.液压系统油液压力非插入式测量的新方法.仪器仪表学报,2001(5):476-478.
    [30]李芳,王爱明,吴朝军,冯永葆,李艾华,赵霞.液压超声波小管径压力测量研究.液压与气动,2004(7):38-39.
    [31]郑大腾,柴光远,陈丰峰.非接触式压力测量方法初探.液压与气动,2005(1):79-81.
    [32]尹文波.可压缩流体工作介质轴向柱塞泵配流及瞬时流量仿真研究.(硕士学位论文).兰州:兰州理工大学,2003:5-8.
    [33]余经洪陈兆能,陆元章.油液综合体积弹性模量压力模型的研究.液压与气动,1991(1):2-5.
    [34]时培成,王幼民,王立涛.液压油液数字建模与仿真.农业机械学报,2007(12):148-152.
    [35]冀宏,王峥嵘,李少年.张玮.油液弹性模量对高压叶片泵性能的影响.兰州理工大学学报,2006(6):65-67.
    [36]LU Yong-xiang.Proceedings of the Sixth International Conference on Fluid Power Transmis-sion and Control.Beijing:International Academic Publishers World Publishing Corporation, 2005:527-531.
    [37]何勇灵,赵致和,刘建新,范永健,邓本都,郭继尧.在两相流状态下柴油机供油系统中音速的测定.洛阳工学院学报,1995(3):54-59.
    [38]J.H.Laub.The Boundary-layer Mass Flowmeter.lnstru.& Control Systems.1961(4):642-644.
    [39]R.S.Medlock&R.A.Furness.Madd flow measurement—a state of the art review. Measu+con-trol,1990 (4):100-113.
    [40]A. Harrison. A non-invasive flow monitor for metal pipelines. J. Phys, E.Sci.Instrum,1981 (11):1266-1268.
    [41]J. Courtyard ET al.Non-restrictive measurement of solids mass flow rate in pneumatic conveying system. Measu+control,1991 (4):113-119.
    [42]三井金属矿业株式会社.流量传感器、温度传感器及流量检测装置.中国,发明专利,申请号.03106775.1.1998.
    [43]三井金属矿业株式会社.流量传感器及流量检测装置.中国,发明专利.申请号.200510051726.9.1998.
    [44]M.Matsuki,Y.B. Xu,T. Nagasawa.Gingival blood flow measurement with a non-contact laser flowmeter.Journal of Oral Rehabilitation,28 (7):630-633.
    [45]Yan Y, Byme B, Woodhead, S, Coulthard J.Velocity measurement of pneumatically-conveyed solids using electrodynamics sensors.Meas Sci Techno, (1995):515-537.
    [46]A. Michal ski and S.Wincenciak. Weight vector in designing of primary transducers for electromagnetic flow meters. Archives of Electrical Engineering.PWN vol. XLⅦ,No. 183.1998:81-99.
    [47]J Menuell, B Byme, Y.Non -invasive two phase flow measurement using soft X-ray attenuation.The institution of Electrical Engineers.Printed and published by the IEE. Savoy Place. London WC2R OBL, UK.1996.
    [48]Yan Y, Byme B, Coulthard J.Radiometric determination of dilute inhomogeneous solids loadmg in pneumatic conveying systems.Meas Sci Technol,1994:110-119.
    [49]G A Johatlsen.E Abro.Advances in nuclear radition detectors for flow measurement. The institution of Electrical Engineers. Printed and published by the IEE. Savoy Place, London WC2R OBL, UK.1996.
    [50]R.S.Medlock.Cross correlation flow measurement.Measu+control,1985(8):293-298.
    [51]刘涛,王益群,姜万录.基于软测量技术的虚拟动态流量计的模型研究.液压与气动,2002(9):4-5.
    [52]黄姣英,袁海文,安晨亮等。一种电容非介入式压力测量方法研究.仪器仪表学报,2009(8):1773-1777.
    [53]李一凡.基于互相关理论的液压管路参数非介入式测量的研究(博士学位论文).北京:北京航空航天大学,2009:20-28.
    [54]彭光正.管道动态特性及其在非定常流量测量中的应用研究.(博士学位论文).哈尔滨:哈尔滨工业大学,1990.
    [55]赵彤,彭光正,许耀铭.高频脉动流量方法的研究.计量学报,1992(4):145-153.
    [56]余经洪,张勇.测试液系压统非恒定流量的新方法.中国机械工程,1992(5):15-16.
    [57]Chandler,Jon K; Flowler, Don P.External pressure measurement system.International Instrumentation Symposium 35th.Orlando,FL.Research Triangle Park, NC, Instrument Society of America.1989:653-661.
    [58]R.S.麦圭恩,D.L.吉斯林,C.R.温斯顿,A.R.达维斯,J.M.福斯蒂诺.用于测量管道内的不稳定 压力的非插入式纤维光学压力传感器.中国,发明专利,申请号.99807831.2001.
    [59]ftp.iotech.com/pub/iotech/outgoing/Manuals/ProgrammersManual.pdf
    [60]盛敬超.液压流体力学.杭州:浙江大学出版社,1981:286-301.
    [61]孔晓武.负载敏感系统中反馈管路的动态特性.机床与液压,2005(8):70-72.
    [62]Kong Xiaowu, Wei Jianhua, Qiu Minxiu, wu Genmao. Improvement of Fluid Pipe Lumped Parameter Model. Chinese Journal of Mechanical Engineering,2004(1):56-59.
    [63]Ernest D.Doebelin.童均芳,关国枢译.系统的建模和响应——理论及实验方法.上海科学技术文献出版社,1986:239.
    [64]Toet G.& Willekens F.A.M..Determination of the Vibration Behaviour in Simple. Hydraulic Systems HPMP,.June 1976:24010.
    [65]Robert S. Lynch, Jr., Peter K. Willett.Bayesian Classification and Feature Reduction Using Uniform Dirichlet Priors.IEEE Transations on systems, man and cybernetics Part B:cybernetics, 2003, VOL.33, NO.3:448-464.
    [66]S.Basu, N.Ebrahimi.Estimating the number of undetected errors:Bayesian model selection. Software Engineering,1998 (9):22-31.
    [67]H.Jiang, K.Hirose, Q.Huo.ImprovingViterbiBayesianpredictive classification via sequential Bayesian learning in robust recognition. Speech Common. vol.28, No.4, Aug.1999:313-326.
    [68]Lyon R.E...Diffusion of Sound Waves in a Turbulent Atmosphere.1960 (9) NASA TN D:456.
    [69]孔晓武.带长管道的负载敏感系统研究.(博士学位论文),杭州:浙江大学.2003.
    [70]Brown F.T..The Transient Response of Fluid Lines.Trans.ASME Series D V84 N4,1962:547-553.
    [71]赵彤,彭光止,许耀铭.液压管路分布参数模型的精确近似(之一).机床与液压,1989(1):43-50.
    [72]赵彤,彭光止,许耀铭.液压管路分布参数模型的精确近似(之二).机床与液压,1989(2):31-40.
    [73]李洪人,陈照弟.新的液压管路分段集中参数键图模型及其实验研究.机械工程学报,2000(3):61-64.
    [74]阎世敏,陈照弟,李洪人.紊流流体管路分段集中参数键图模型研究.机械工程学报,2001 (7):12-14.
    [75]田树军,张宏.液压管路动态特性的Simulink仿真研究.系统仿真学报,2006(5):1136-1138.
    [76]Liu H,setiono,R.Reature selection via discretion.IEEE Transactions On Knowledge and Data Engineering(S1041—4347),1997(4):642—645.
    [77]Mittal A,cheong L-F.Classification of Video Ustag High-dimeasioaal Features.IEEE Transactions on Knowledge and Data Engineering(S1041—4347),2004,16(2):230-244.
    [78]Bergant A, Simpson A R, VitkovskyJ. Developments in unsteady pipe flow friction modeling J. Hydraul.Res.,2001,39 (3):249~257.
    [79]Vardy A E, Brown J M B. Transient turbulent friction in smooth pipe flowsJ. J. Sound. Vib. 2003,259 (5):1011~1036.
    [80]Brunone B, Golia UM, Greco M. Effectsof two2dimensionalityof pipe transients modeling. J. Hyd. Div.,1995,121 (12):906~912.
    [81]Pezzinga G. Evaluation of unsteady flow resistances by quasi22D or ID modelsJ. J. Hydraul. Eng.,2000,126 (10):778~785.
    [82]VitkovskyJ P, Bergant A, Simpson A R, et al. Systematic evaluation of one2dimensional unsteady friction models in simple pipelinesJ. J. Hydraul. Eng.,2006,132 (7):696~708.
    [83]陈海泉,谷学华,孙玉清.液压介质的仿真.大连海事大学学报,2002,28(2):97-29.
    [84]郭关柱,范毓润,贾风昌.空气在二甲基硅油和液压油中的溶解度.物理化学学报,2008,24(7):1225-1232.
    [85]雷天觉.液压工程手册.北京:机械工业出版社,1990.
    [86]蒋丹,李松晶,包钢.伴随气泡和气穴低压管路瞬态的建模与分析.航空动力学报,2007(12):2062-2067.
    [87]李志旺,严家禄.一个新的液体状态方程.工程热物理学报,1990(2):126-128.
    [88]林鸿,段远源.卤代烃的Peng-Robinson状态方程的密度修正.工程热物理学报,2006,27(1):13-16.
    [89]冯斌,龚国芳,王静,胡国良.油液体积弹性模量检测装置的结构设计及有限元分析.机床与液压,2007(5):177-179.
    [90]杜大华,张继桐.液压系统管路内流体声速研究.液压与气动,2006(10):7-9.
    [91]阎昌琪.气液两相流,哈尔滨:哈尔滨工程大学出版社,2007.
    [92]蔡亦钢,盛敬超,路甬祥.液压油中压力波传递速度特性的研究.浙江大学学报,1988增刊:48-53.
    [93]安骥.非插入式测量管内压力与流量的方法.中国,发明专利.专利号:ZL03142688.3.2004.
    [94]E.J.赫恩(英)著,孙立谔译.材料力学.北京:人民教育出版社,1981:143-163.
    [95]傅周东,路甬祥.耐高压动态流量计的研究.液压与气动,1986(2):2-9.
    [96]贾宏志.光纤光栅传感器的理论和技术研究.(博士学位论文)西安:中国科学院西安光学精密机械研究所,2000.
    [97]www.dsc.net.cn
    [98]戴会超,蒋定国.三峡永久船闸高边坡综合锚固技术研究.岩石力学与工程学报.2008(3):465-476.
    [99]施文康,徐锡林主编.测试技术(第一版).上海:上海交通大学出版社,1996:50-54.
    [100]马良理主编,冯仁贤,徐德炳,沈观林,陆志方.应变电测与传感技术.北京:电子工业出版社,1995.
    [101]http://saiying.cn/
    [102]http://saiying.cn/admin/uploadfile/200592614317546.jpg
    [103]周生国主编.机械工程测试技术.北京:北京理工大学出版社,1995:239.
    [104]苏军.传感器技术在生产实践中的研究与应用.电子仪器仪表用户,1997(6):42-43.
    [105]Phtllip McGlone,Joseph McGhee,Ian A.Henderson,Frequency domain identigication of differnetial pressure cells.The institution of Electrical Engineers. Printed and published by the IEE. Savoy Place:London WC2R OBL, UK.1999.
    [106]McGlone, P., McGhee, F., Henderson, I.A...Identification of Defects in Differential Pressure Cells.Proc. Of interactional Symposium on System Science. Wroclaw, Poland, September 1998:230-236.
    [107]马卫东,申丽丽,朱彦彬,李志国.半导体器件鉴定试验技术的研究——从纠正一项错误鉴定结论谈起.封装测试技术,2005(9):39-42.
    [108]Harris C M, Crede, C,E..振动和冲击手册.李德葆编译.北京:科学出版社,1998:990.
    [109]李德葆,陆秋海.试验模态分析及应用.北京:科学出版社,2001.
    [110]朱彦彬,许秀民.兵工器件振动环境试验中的若干问题.真空电子技术,1997(1):5-7.
    [111]孙丽,梁德志,李宏男.管式封装FBG应变传感器应变传递率影响因素分析.沈阳建筑大学学报,2007(6):881-885.
    [112]刘德华,金伟良,张玉香.光纤传感器与结构基体的应变传递关系.浙江大学学报(工学版),2006(11):1847-1851.
    [113]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析.力学学报,2005(4):435-441.
    [114]张奔牛,张俊乾,黄尚廉.压电传感材料与结构的变形传递模型.重庆大学学报,2000(4):38-43.
    [115]张玉庆,朱建国,骆英.压电智能结构的变形传递因素分析.盐城工学院学报(自然科学版),2004(2):16-19.
    [116]周雪芳,梁磊.应变传递规律研究.传感器世界,2007(8):14-18.
    [117]孙丽,李宏男,任亮.光纤光栅传感器监测混凝土固化期收缩实验研究.建筑材料学报,2006(2):148—153.
    [118]Baldwin C, Poloso T, Chen P. Structural monitoring of composite marine piles using fiber optic sensors. In:Liu SC, eds. Proc of SPIE, vol 4330:487~497, SPIE'S Smart Structures and Materials and Nondestructive Evaluation for Health Monitoring and Diagnostics.Newport Beach, California, USA.2001. SPIE, Bellingham,W A.2001.
    [119]Pak Y Eugene.Longitudinal shear transfer in fiber opticsensors.Smart Materials and Structures,1992(1):57-62.
    [120]Ansari Farhad,Yuan Libo. Mechanics of bond and interface shear transfer in optical fiber sensors. Journal of Engineering Mechanics,1998,124(4):385-394.
    [121]Lau Kin—tak,Yuan Libo,Zhou Li—min,et al. Strain mon— itoring in FRP laminates and concrete beams using FBG sensors.Composite Stru ctures,2001,51:9—20.
    [122]张丝雨.最新金属材料速用速查实用手册.北京:中国科技文化出版社,2005.
    [123]王晓凤,冯之敬.压电驱动微位移灵敏度的影响因素分析.航空精密制造技术,2007(4):25-27.
    [124]徐灏.机械设计手册.北京:机械工业出版社,第一卷.
    [125]余经洪,陆元章.测试液压系统油液综合体积弹性模量的互相关测速方法.机床与液 压,1991(5):38-40.
    [126]余经洪,陈兆能,陆元章.油液综合体积弹性模量压力模型的研究.液压与气动,1991(1):69-71.
    [127J GB/T8162-1999.
    [128]http://www.mitech-ndt.com/productinfo.asp?productid=51
    [129]http://www.ht-chaosheng.cn/20.htm
    [130]http://www.canytec.com.cn/product_detail.aspx?product_id=250&solution=
    [131]周秀银.误差理论与实验数据处理.北京:北京航空学院出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700