沥青混合料内部应力分布及其对粘弹性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面由于具有表面平整、无接缝、便于舒适行车和噪声较低的优点,在现代高等级道路建设中得到了广泛的应用。为了探究沥青混合料的受力特性和破坏机理,长期以来,国内外学者对沥青混合料力学特性的研究和探讨从未终止过。传统研究中,一般将沥青路面和沥青混合料作为各向同性均质材料进行处理,通过试验测试的方法获得材料弹性和粘弹性力学参数,然后将这些参数用于力学计算分析。然而沥青混合料实际上是一种由沥青胶浆、集料、填料和空隙构成的多相复合材料。由于不规则集料的复杂排列方式,混合料内部真实的受力特性和变形特性与各向同性材料的假设存在较大的差距。因此,为了准确分析混合料内部真实的受力特性不得不寻找能够反映混合料真实结构的分析方法。
     本文结合国家自然科学基金项目(51278222)“基于数字图像处理技术的沥青混合料各向异性特性研究”和吉林大学研究生创新基金项目(20121079),对沥青混合料的真实应力分布状态和粘弹性变形特性进行了系统研究,通过本文的研究取得了如下成果:
     1.采用CCD数码相机采集了沥青混合料的数字图像,由于受到噪声和采集精度影响,混合料图像中存在严重的集料粘连现象,提出采用分水岭分割方法对集料粘连进行分割处理,收到了良好的效果。同时采用等效圆直径法对混合料的面积级配进行识别,针对粗细集料粒径尺寸相差较大,等间距分组难以兼顾粗细集料的缺陷,提出采用对数等间距分组的方法对面积级配进行体视学转换,进而推测了沥青混合料的体积级配,修正后的级配与设计级配吻合较好,采用此方法进行转换能够同时识别粗细级配,解决了以往只能识别粗集料级配的问题。
     2.通过对沥青混合料图像的矢量化方法的研究,针对混合料图像中多尺度集料的分布问题,提出采用与尺度无关的拆分合并强度为判断指标,在充分考虑集料特征点不均匀分布的情况下,对集料边缘轮廓和空隙边缘轮廓进行多边形逼近迭代。基于逼近误差保证率原则提出采用均方根误差作为迭代收敛控制指标。根据所提出的的方法自行编制了相应的迭代程序,完成了沥青混合料数字图像的矢量化。对迭代收敛效率和稳定性的分析表明,本文所提出的多边形逼近方法能够有效的处理多尺度轮廓矢量化问题,同时具有较高的收敛效率。对不同矢量化方法所建立的数值模型规模的比较分析表明,本文所提出的多边形逼近方法能够有效的减小数值模型的规模,降低了大规模分析模型对计算机硬件的依赖程度,提高了数值分析的计算效率。
     3.针对沥青混合料内部复杂的应力状态分布问题,对混合料内部沥青胶砂的应力状态进行了统计分析,提出采用高斯函数模型描述沥青混合料在单轴应力作用下的应力状态。针对不同级配形式的沥青混合料分别建立了相应的数值分析模型,研究了材料参数、级配形式、空隙含量、成型方式等对胶砂应力状态的影响规律,结果表明骨架密实结构的沥青胶砂其应力统计平均值和应力偏差均好于其他类型的沥青混合料。空隙的存在能够减小沥青胶砂的应力统计平均值,但同时也会使沥青胶砂的应力分布更加均匀,高应力区域出现的频率明显增大。此外,对比分析了多尺度模型和各向同性假设下沥青路面应力分布的差异性,表明采用传统理论分析得到的沥青路面的应力值低于多尺度模型的计算结果。
     4.针对Burgers粘弹性参数识别问题,提出采用最优分段方法进行拟合,采用时域搜索拟合的方式并结合非线性寻优方法确定出拟合残差最小的分段时刻,最终得到了最优拟合参数。该方法与现有方法的对比分析结果表明,按照本文方法进行粘弹性参数拟合识别所产生的残差平方和是所有可能分段方案中最小的。拟合残差平方和随着蠕变时间的增加趋于稳定。改进方法的残差平方和相对原有方法大为降低。
     5.针对沥青混合料内部沥青胶砂的应力分布特点,在室内制备了沥青胶砂试件,采用单轴压缩蠕变试验对沥青胶砂的非线性粘弹性行为进行了试验研究,提出采用实用非线性粘弹性模型描述沥青胶砂的非线性粘弹性能,建立了粘弹性模型参数与应力水平的函数关系,分析结果表明沥青胶砂的弹性元件参数与应力水平呈现幂函数关系,松弛时间随着应力水平的变化呈现非线性变化的趋势。此外,通过二次开发将非线性粘弹性模型运用到沥青混合料粘弹性变形的预测中,结果表明由于没有考虑集料横向加强作用的影响,采用平面多尺度数值模型预测的混合料粘弹性变形低于试验值,非线性粘弹性模型的预测值高于线性粘弹性预测值,并且与试验结果更加接近。考虑沥青胶砂的非线性粘弹性效应能够更好反映沥青混合料的真实粘弹性变形特性。对碾压成型试件不同方向的模拟和试验结果表明,沥青混合料呈现微弱的各向异性特性,与以往各向同性材料的假设存在一定的差异。
Asphalt pavement has been widely used in the modern high grade road engineeringbecause of its smooth surface, without seams, facilitate comfortable driving and theadvantages of low noise. However, in order to investigate the mechanical characteristics andfailure mechanism of the asphalt mixture, the discussion on mechanical properties of asphaltmixture has never been terminated. In previous studying, asphalt pavement and asphaltmixture were assumed as isotropic homogeneous material in general engineering analysis.The elastic or viscoelastic mechanical parameters of asphalt mixture for these analysis werenecessarily tested by experiments. In actuality, asphalt mixture is a multiphase compositematerial that consist of asphalt mortar, aggregate, filler and voids. Therefore, the assumptionof isotropic materials has a big gap with real mixture as a result of the complexity ofirregular aggregates arrangement. The internal mechanical characteristics and deformationproperties of mixture were complex and different form the isotropic material. Wherefore, Itis needed find a new method that can reflect the real mixture structure for internalmechanical characteristics evaluation.
     Combining with Project supported by the National Natural Science Foundation ofChina (Grant No.51278222)"Investigation on anisotropic properties of asphalt mixturebased on digital image processing technology" and Project20121079Supported by GraduateInnovation Fund of Jilin University, the internal stress distribution and the viscoelasticdeformation characteristics of asphalt mixture were investigated. The following results wereobtained with research of this paper:
     1. The asphalt mixture digital images were obtained with CCD digital camera.Aggregates has a serious adhesion phenomenon because of the influence of noise and pixelaccuracy. The watershed segmentation method was proposed for break up aggregateadhesions in digital images. It was proved that this method was suit for aggregate adhesionsegmentation. And then the method of equivalent diameter was adopted to distinguish the area gradation of mixture. According to the particle size of aggregate has a large gap,equidistant grouping can not considered the defect of coarse and fine aggregatessimultaneously. The logarithmic spacing block method was proposed to transform areagradation to real gradation, and speculated the volume gradation of the asphalt mixture. Thecorrected and designed gradation are consistently well. This method can simultaneouslyidentify the coarse and fine aggregates, the problem of identify aggregates gradationsuccessful solved.
     2. Vectorized method of asphalt mixture image was investigated, the split strength andmerge strength were adopted as judgment indexes which has nothing to do with the diffrentscale of aggregates. Feature points of aggregates can be reserved effectively under thecondition of uneven distribution. The aggregates edge contour and voids edge contour werevectorized with polygon approximation iteration. Root Mean Square Error was used asiterative convergence control index based on the approximation error of the reliabilityprinciple as is presented in this paper. The iterative program was made for contourvectorization. Edge contour of aggregates and voids in asphalt mixture digital image werevectorized. The analysis of iteration convergence efficiency and stability show that thepresented polygonal approximation method can effectively deal with the problem ofmulti-scale contour vector problem. It has a high convergent efficiency. The comparativeanalysis of the numerical model for different Root Mean Square Error shows that thepresented polygonal approximation method can effectively reduce the scale of the numericalmodel, reduces the model dependence on computer hardware, and improves the computationefficiency for numerical analysis.
     3. The internal stress state of asphalt mortar in mixture was investigated. Stress state ofasphalt mortar was complex and can’t be characterization with a index. And then Gaussfunction was used to describes the state of asphalt mortar under the uniaxial stress.Numerical model of different gradation asphalt mixture were established. Effect of materialparameters, grading form, void content and manufacture method on stress state of mortarwere investigated. The results showed that statistical average value of its stress and stressdeviation of the skeleton dense structure are better than other types of asphalt mixture. The existence of voids can reduce the statistical average stress of asphalt mortar, and stressdistribution of asphalt mortar is more uniform. The frequency of the high stress area appearsincrease obvious. In addition, the multi-scale model of asphalt pavement was established.through comparative analysis of asphalt pavement was carried out for multi-scale model andisotropic model. It suggests that stress value comes from traditional theory is lower than thecalculation results of multi-scale model.
     4. A optimal segmentation method for Burgers viscoelastic parameters identificationwas proposed. A optimal segmentation scheme of time that has a min fitting residual errorwas obtained. The best parameters of Burgers model was obtained with time-domainsearching method and nonlinear fitting method. This method was compared with existingmethods. It shows that the residual quadratic sum produced by identify is the smallest of allpossible segmentation programme if parameter fitting in accordance with this method. Sumof residual error squares tends to be stable as the creep time increase. And residual errorsquares sum of improved methods reduced significantly compared with the original method.
     5. Asphalt mortar specimens were prepared in the room. The uniaxial compressivecreep tests were conducted in order to investigate the nonlinear viscoelastic behavior ofasphalt mortar. A practical nonlinear viscoelastic model was used to describe the nonlinearviscoelastic properties of asphalt mortar. And then the parameters of nonlinear viscoelasticmodel were obtained by nonlinear fitting. The parameters function of stress level wereestablished finaly. It shows that the elastic parameters of the model were power function ofstress. The relaxation time changes render non-linear trend as the level of stress. In addition,the nonlinear viscoelastic model of asphalt mastic was applied in the viscoelasticitydeformation prediction by the secondary development. The results show that the predictedviscoelastic deformation of plane multi-scale numerical model is lower than test resultswithout considering the influence of aggregate in lateral strength. The predicted viscoelasticdeformation with nonlinear viscoelastic model is higher than that of linear viscoelasticpredictive value, and it is more close to experimental results. Therefore the nonlinearviscoelasticity effect of asphalt mortar will be reflect the real viscoelasticity deformationcharacteristics of the asphalt mixture better. Asphalt mixture specimens were prepared by rolling. The simulation and test results of specimens in different directions show that asphaltmixture appears weak anisotropic characteristics. This is different with the assumption ofisotropic materials.
引文
[1] Scarpas, A, Gurp, C.A.M.P. van, Al-Khoury, R.I.N. and Erkens, S.M.J.G., Finite ElementSimulation of Damage Development in Asphalt Concrete Pavements[C].8thInternational Conference on Asphalt Concrete Pavements, Seattle, Washington, U.S.A.,1997.
    [2] Sousa.JB.Permanent.Deformation.of.Aggregate.Mixes [R]. Washington.D C: StrategicHighway. Research.Program, National Research Program Council, Report. NO. SHRP-415,1994.
    [3] Barksdal RD.Laboratory Evaluation of Rutting in Base Course Materials[C].ProceedingsThird International Conference on the Structural Design of AsphaltPavements, Vol.1, London,1972.161-174.
    [4] Dukatz, E.L. Aggregate properties in relation to pavement performance[J]. Journal of theAssociation of Asphalt Paving Technologists,1989,58:492-501.
    [5] Gorkem C, Sengoz B. Predicting stripping and moisture induced damage of asphaltconcrete prepared with polymer modified bitumen and hydrated lime[J].Constr BuildMater2009;23(6):2227-2236.
    [6] Chen X, Huang B. Evaluation of moisture damage in hot mix asphalt using simpleperformance and superpave indirect tensile tests[J]. Constr Build Mater2008,22(9):1950-62.
    [7] Wu S, Ye Q, Li N. Investigation of rheological and fatigue properties of asphalt mixturescontaining polyester fibers[J]. Constr Build Mater2008,22(10):2111-2115.
    [8] Sayyed Mahdi Abtahi, Mohammad Sheikhzadeh, Sayyed Mahdi Hejazi. Fiber-reinforcedasphalt-concrete-A review[J]. Construction and Building Materials.2010,24(6):871-877.
    [9]邓学筠.路基路面工程[M].北京:人民交通出版社.2004.
    [10]郭大智,任瑞波.层状粘弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社.2001.
    [11] Barksdale,R.D., J.Alba,N, Khosla,Y.R.Kim,P.C.Lambe and M.S.Rahman. Laboratorydetermination of resilient modulus for flexible pavement design[R]. NationalCooperative Highway Research Program1-28Project, National Research Council,Washington,D.C.1997.
    [12] Rong Luo; and Robert L. Lytton, P.E., F.ASCE. Characterization of the TensileViscoelastic Properties of an Undamaged Asphalt Mixture[J]. Journal of TransportationEngineering,2010,136(3):173-180.
    [13] Di Benedetto, H., Delaporte, B., and Sauzeat, C. Three dimensional linear behavior ofbituminous materials: Experiments and modeling[J]. Int. J. Geomech..7(2):149-157.
    [14]张肖宁,尹应梅,邹桂莲.不同空隙率沥青混合料粘弹性能[J].中国公路学报.2010,23(4):1-7.
    [15]吕松涛,田小革,郑健龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用[J].长沙交通学院学报.2005,21(1):37-42.
    [16] H. Di Benedetto, C. de La Roche, H. Baaj, A. Pronk and R. Lundstrom. Fatigue ofbituminous mixtures[J]. Materials and Structures/Materiaux et Constructions,2004,37:202-216.
    [17] Hill R., A self-consistent mechanics of composite materials[J], Journal of the Mechanicsand Physics of Solids,1965,13:213-222.
    [18] Hashin, Z. and Shtrikman S., A variational approach to the theory of the elastic behaviorof multiphase materials[J] Journal of the Mechanics and Physics of Solids,1963,11(5):127-140.
    [19] Mori T., Tanaka K., Average stress in matrix and average elastic energy of materialswith misfitting inclusions[J]. Acta Metallurgica.1973,21(5):571-574.
    [20] Brinson L.C., Lin W.S. Comparison of micromechanics methods for effective propertiesof multiphase viscoelastic composites[J]. Composite Structures.1998,41(2):353-367.
    [21] Buttlar W.G. and Roque R. Evaluation of Empirical and Theoretical Models toDetermine Asphalt Mixture Stiffnesses at Low Temperatures[J]. Journal of Associationof Asphalt Paving Technologists.1996,65:99-130.
    [22] Abbas A.R., Papagiannakis A.T. and Masad E.A. Linear and nonlinear viscoelasticanalysis of the microstructure of asphalt concretes[J]. Journal of Materials in CivilEngineering.2004,16(2):133-139.
    [23] Anderson D.A., Christensen D.W., Bahia H.U., Dongre R., Sharma M.G., Antle C.E.,and Button J. Binder Characterization and Evaluation (SHRP A-369)[M]. StrategicHighway Research Program, National Research Council, Washington DC1994.3.
    [24] Airey G.D., Rahimzadeh B. and Collop A.C., Linear rheological behavior of bituminouspaving materials[J]. Journal of Materials in Civil Engineering.2004,16(3):212-220.
    [25] H.M. Yin; W.G. Buttlar; G.H. Paulino; H. Di Benedetto. Assessment of ExistingMicro-mechanical Models for Asphalt Mastics Considering Viscoelastic Effects[J].Road Materials and Pavement Design.2008,9(1):31-57.
    [26] N. Shashidhar, A. Shenoy. On using micromechanical models to describe dynamicmechanical behavior of asphalt mastics[J]. Mechanics of Materials.2002,34(10):657-669.
    [27] Li Guoqiang, Li Yongqi, Metcalf J B, et al. Elastic modulus prediction of asphaltconcrete [J]. Journal of Materials in Civil Engineering.1999,11(3):236-241.
    [28] Li Yongqi, Metaclf J B. Two-step approach to prediction of asphalt concrete modulusform two-phase micromechanical models [J]. Journal of Materials in Civil Engineering.2005,17(4):407-415.
    [29] Shu Xiang, Huang Baoshan. Dynamic modulus prediction of HMA mixtures based onthe viscoelastic micromechanical model [J]. Journal of Material in Civil Engineering,2008,20(8):530-538.
    [30] Lytton R. Materials property relationships for modeling the behavior of asphaltaggregate mixtures in pavements [R]. Internal Memorandum, Strategic HighwayResearch Program,Washington D C,1990.
    [31] Zhu H, Nodes J. Contact based analysis of asphalt pavement with the effect ofaggregate angularity [J]. Mechanics of Materials.2000,32(3):193-202.
    [32]张裕卿,黄晓明,基于微观力学的沥青混合料黏弹性预测[J].吉林大学学报(工学版),2010,40(1):52-57.
    [33]黄晓明,李汉光,张裕.卿考虑粗集料和空隙的沥青混合料粘弹性细观力学分析[J].华南理工大学学报(自然科学版).2009,37(7):31-36.
    [34]薛国强,张裕卿,黄晓明.沥青混合料粘弹性能微观力学分析[J].公路交通科技.2009,26(6):18-23.
    [35]闵召辉,黄卫,钱振东.环氧沥青玛蹄脂粘弹性能的细观研究[J].公路交通科技,2004,21(7):9-11.
    [36] Alberola N.D, Mele.P. Viscoelasticity of polymers filled by rigid or soft particles: theoryand experiment [J]. Polymer Composites,1996,17(5):751-759.
    [37]郭乃胜,赵颖华.基于细观力学的沥青混合料动态模量预测[J].工程力学.2012,29(10):13-19.
    [38]吴俊,杨新华,叶永.基于Eshelby等效夹杂理论的沥青混合料有效粘弹性质分析[J].工程力学.2012,29(10):244-248.
    [39]朱兴一,黄志义,陈伟球.基于复合材料细观力学模型的沥青混凝土弹性模量预测[J].中国公路学报.2010,23(3):30-34.
    [40] Zhu.X.Y, Huang.Z.Y, Yrang.Z.X, Chen.W.Q. Micromechanics based Analysis forPredicting Asphalt Concrete Modulus[J]. Journal of Zhejiang University-SCIENCES A.2010,11(6):415-424.
    [41] Kennedy T W, Huber G A, Harrigan E T. Superior performing asphalt pavement(Superpave)[R].Auburn: National Center for Asphalt Technology,1994.
    [42] A.E. Hunter, G.D. Airey and A.C. Collop. EFFECT OF ASPHALT MIXTURECOMPACTION ON AGGREGATE ORIENTATION AND MECHANICALPERFORMANCE[C]. Proceedings of the8th Conference on Asphalt Pavements forSouthern Africa (CAPSA'04),12-16September2004. Sun City, South Africa.
    [43]万成,张肖宁,贺玲凤,王端宜,张吉庆.基于真实细观尺度的沥青混合料三维重构算法[J].中南大学学报(自然科学版).2012,43(7):2813-2820.
    [44] Yue Z Q, Bekking W, Morin I. Application of digital image processing to quantitativestudy of asphalt concrere microstructure[J]. Transportation Research Record.1995,61492:53-60.
    [45] Yue Z Q, Morin1. Digital image processing for aggregate orientation in asphaltconcrete mixtures[J]. Canadian Journal of Civil Engineering.1996,23(2):479-489.
    [46] Masad E., Muhunthan B., Shashidhar N., Harman, T.. Aggregate orientation andsegregation in asphalt concrete[C]. Application of Geotechnical Principles in PavementEngineering, Proceedings of Sessions of Geo-Congress98. ASCE Geotech. Special Pub.1998,10:69-80.
    [47] E.Masad, V.K.Jandhyala. Characterization of Air Void Distribution in Asphalt MixesUsing X-Ray Computed Tomography[J]. Journal of Materials in Civil Engineering.2002,14(2):777-790.
    [48] Kwan A K, Mora C F, Chan H C. Particle shape analysis of coarse aggregate usingdigital image processing[J]. Cement and Concrete Research.1999,29(9):1403-1410.
    [49] L.Tashman,E. Masad,B.Peterson,H.Saleh. Internal structure analysis of asphalt mixesto improve the simulation of Superpave gyratory compaction to field conditions[J].Journal of the Association of Asphalt Paving Technologists,2001,70:605-645.
    [50] Masad E, Button J. Implications of experimental measurements and analyses of theinternal structure of HMA [C]. TRB. Transportation Research Record1891. WashingtonD C: TRB,2004:212-220.
    [51] Leonardo Bruno,Giuseppe Parla,Clara Celauro. Image analysis for detecting aggregategradation in asphalt mixture from planar images[J]. Construction and BuildingMaterials,2012,28(1):21-30.
    [52]张婧娜.基于数字图像处理技术的沥青混合料微观结构分析方法研究[D].上海:同济大学交通运输工程学院.2001,6.
    [53]彭勇,杨宇亮,董瑞琨,孙立军.沥青混合料的细观结构分析软件MASAC指标体系[J].重庆建筑大学学报.2007,29(3):115-119.
    [54]李智.基于数字图像处理技术的沥青混合料体积组成特性分析[D].哈尔滨:哈尔滨工业大学交通科学与工程学院.2002,7.
    [55] Chen J S, Liao M C. Evaluation of internal resistance in hot-mix asphalt (HMA)concrete [J]. Construction and Building Materials,2002,16(6):313-319.
    [56]肖云. SBS改性沥青微细观分散性分析[D].华南理工大学土木与交通学院.2004.6.
    [57]姚秋玲.基于数字图像处理技术的沥青混合料组成特性研究[D].长安大学信息工程学院.2004,6.
    [58]李晓军,张肖宁. CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技.2005,22(2):14-16.
    [59]王端宜,李维杰,张肖宁.用数字图像技术评价沥青路面的表面离析[J].华南理工大学学报(自然科学版).2005,33(1):16-20.
    [60]徐科,张肖宁,李智,等.沥青混合料级配离析定量评价与相关性研究(英文)[J].深圳大学学报(理工版).2006,23(04):296-302.
    [61]汪海年,郝培文,庞立果,等.基于数字图像处理技术的粗集料级配特征[J].华南理工大学学报(自然科学版).2007,35(11):54-58.
    [62]乔英娟,王哲人,陈静云等.沥青结构层芯样分层变形的数字图像测量方法[J].公路交通科技.2007,24(10):11-15.
    [63]余永宁,刘国权.体视学-组织定量分析的原理和应用[M].北京:冶金工业出版社.1989.
    [64]黄碧霞.体视学与图像分析技术在沥青混合料级配分析中的应用[D].成都:西南交通大学.2007,6.
    [65]张蕾.基于细观分析的沥青混合料组成结构研究[D].哈尔滨:哈尔滨工业大学交通科学与工程学院.2008,6.
    [66]吴文亮,王端宜,张肖宁,李智.沥青混合料级配的体视学推测方法[J].中国公路学报.2009,29(5):29-32.
    [67]沙爱民,王超凡,孙朝云.一种基于图像的沥青混合料矿料级配检测方法[J].长安大学学报(自然科学版).2010,30(5):1-5.
    [68]徐文杰岳中琦胡瑞林.基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J].工程地质学报.2007,15(3):289-313.
    [69] Z.Q. Yue, S. Chen, L.G. Tham,Finite element modeling of geomaterials using digitalimage processing[J]. Computers and Geotechnics,2003,30:375-397.
    [70] QINGLI DAI and MARTIN H. SADD. Parametric Model Study of MicrostructureEffects on Damage Behavior of Asphalt Samples[J]. The International Journal ofPavement Engineering.2004,5(1):19-30.
    [71] Qingli Dai and Zhanping You. Prediction of Creep Stiffness of Asphalt Mixture withMicromechanical Finite-Element and Discrete-Element Models[J] Journal ofEngineering Mechanics.2007,133(2):163-173.
    [72] Zhanping You, P.E.1; Sanjeev Adhikari; and Qingli Dai. Three-Dimensional DiscreteElement Models for Asphalt Mixtures[J]. Journal of Engineering Mechanics,2008,134(12):1053-1063.
    [73] Qingli Dai. Two-and three-dimensional micromechanical viscoelastic finite elementmodeling of stone-based materials with X-ray computed tomography images[J].Construction and Building Materials.2011,25:1102-1114.
    [74] Qingli Dai, Zhanping You. Micromechanical finite element framework for predictingviscoelastic properties of asphalt mixtures[J]. Materials and Structures.2008,41(6):1025-1037.
    [75] Silvia Caro, Eyad Masad, Amit Bhasin, Dallas Little. Micromechnical modeling of theinfluence of material properties on moisture-induced damage in asphalt mixtures[J].Construction and Building Materials.2010,24:1184-1192.
    [76] Erdem Coleri, John T. Harvey, Kai Yang, John M. Boone. A micromechanical approachto investigate asphalt concrete rutting mechanisms[J]. Construction and BuildingMaterials.2012,30:36-49.
    [77] Erdem Coleri, John T. Harvey, Kai Yang, John M. Boone. Development of amicromechanical finite element model from computed tomography images for shearmodulus simulation of asphalt mixtures[J]. Construction and Building Materials2012,30:783-793.
    [78]李芬.沥青混凝土路面细观结构和水破坏研究[D].武汉:武汉理工大学交通学院.2006,6.
    [79]黄碧霞,陆阳,张华.基于图像识别的沥青混合料有限元建模[J].路基工程.2007,6:5-6.
    [80]陆阳,周永江.廖敬梅.粗级配沥青混合料骨架结构的细观分析[J].公路交通科技2008,25(2):1-5.
    [81]王端宜;赵熙;.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报.2009,36(7):31-36.
    [82]万成.基于X-ray CT和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学土木与交通学院.2010,4.
    [83]张肖宁.基于X-ray CT的沥青混合料计算机辅助设计技术的研究进展[J].交通科学与工程.2010,26(2):1-8.
    [84]万成;张肖宁;王邵怀;吴文亮;吴志勇.基于X-CT技术的沥青混合料三维数值化试样重建[J].公路交通科技.2010,26(2):33-37/42.
    [85]朱兴一.沥青混凝土的细观力学模型及数值模拟[D].杭州:浙江大学.2010.5.
    [86]刘福明,王端宜.沥青混合料损伤演化的多尺度模拟[J].中国公路学报.2010.23(2):1-6.
    [87]胡迟春,王端宜,Nelson GIBSON,Emin KUTAY,Jack YOUTCHEFF.基于CT技术沥青混合料集料的识别与分离[J].公路交通科技.2011,28(1):13-18.
    [88] ZHANG Xiao-ning, WAN Cheng, WANG Dong, HE Ling-feng. Numerical simulationof asphalt mixture based on three-dimensional heterogeneous specimen[J]. J. Cent.South Univ. Technol.2011,18(6):2201-2206.
    [89]王嘉骏,张宏超.基于离散单元法的沥青马蹄脂模型细观参数确定[J].公路工程.2011,36(5):140-143.
    [90]周基,田琼,芮勇勤,英红.基于数字图像的沥青混合料离散元几何建模方法[J].土木建筑与环境工程.2012,34(1):136-140.
    [91]陈俊,黄晓明.基于三维离散元法的沥青混合料断裂过程模拟[J].华南理工大学学报2012,40(7):21-26.
    [92]万成,张肖宁,贺玲凤,王绍怀,段跃华.沥青混合料动态模量数值预测方法[J].中国公路学报.2012,25(4):16-21.
    [93]杨新华,王习武,陈传尧,蒙培生,用图像处理技术实现沥青混合料有限元建模[J].中南公路工程.2005,30(3):5-7.
    [94]王斌,施朝健,多边形近似曲线的基于排序选择的拆分合并算法[J],计算机辅助设计与图形学学报.2006,18(8):1149-1154.
    [95]贾玉钧,胡长顺,王秉纲.复合式路面荷载应力的统一分析方法[J].西安公路交通大学学报,1995,15(4):1-13.
    [96]周富杰,孙立军.沥青罩面层荷载应力的三维有限元分析[J].中国公路学报,1999,12(4):1-6.
    [97]戴震.沥青路面结构受力机理分析[D].南京:东南大学交通学院,2004,4.
    [98]薛亮,张维刚,梁鸿颇.考虑层间不同状态的沥青路面力学响应分析[J].沈阳建筑大学学报,2006,22(4):575-578.
    [99]刘英伟.基于层状弹性体系理论的沥青路面结构分析[D].长春:吉林大学交通学院,2007.6.
    [100]谢军,郭忠印.重载非均布荷载下沥青路面力学响应分析[J].长沙交通学院学报,2007,23(1):56-62.
    [101]赵延庆,潘友强,黄荣华.基于动态模量的沥青路面力学响应分析[J].重庆交通大学学报(自然科学版).2008,27(1):57-60.
    [102]郭乃胜,石峰,赵颖华,谭忆秋.沥青路面层间粘结性能的黏弹性有限元分析[J].大连海事大学学报.2009,35(4):81-85.
    [103]邱欣,杨青.钱劲半刚性基层沥青路面模量参数反演的影响因素分析[J].交通运输工程与信息学报.2010,8(4):43-48.
    [104] L.T. Mo, M. Huurman, S.P.Wu, A.A.A. Molenaar. Investigation into stress states inporous asphalt concrete on the basis of FE-modelling[J]. Finite Elements in Analysisand Design.2007,43:333-343.
    [105] L.T.Mo, M.Huurman, S.P.Wu, A.A.A.Molenaar.2D and3D meso-scale finite elementmodels for ravelling analysis of porous asphalt concrete[J]. Finite Elements in Analysisand Design.2008,44186-196.
    [106]王端宜,吴文亮,张肖宁,虞将苗,李智,基于数字图像处理和有限元建模方法的沥青混合料劈裂试验数值模拟[J].吉林大学学报(工学版).2011,41(4):968-973.
    [107] Chien-Wei Huang, Eyad Masad, Anastasia H. Muliana, Hussain Bahia. Nonlinearlyviscoelastic analysis of asphalt mixes subjected to shear loading[J]. Mech Time-DependMater.2007,11:91-110.
    [108] Collop, A.C., Airey, G.D., Khanzada, S.: Creep testing of bitumens using the dynamicshear rheometer[J]. Int. J. Pavement Eng.2002,3(2):107-116.
    [109] Airey, G.D., Rahimzadeh, B., Collop, A.C.: Linear rheological behavior of bituminouspaving material[J]. J. Mater. Civ. Eng.2004,16(3):212–220.
    [110] Masad, E., Somadevan, N.: Microstructural finite-element analysis of influence oflocalized strain distribution of asphalt mix properties[J]. J. Eng. Mech.2002,128(10),1105-1114.
    [111] Abbas, A.R.: Simulation of the micromechanical behavior of asphalt mixtures usingthe discrete element method[D]. Washington: Washington State University,2004.
    [112] Abbas, A.R., Papagiannakis, A.T., Masad, E.: Linear and nonlinear viscoelasticanalysis of the microstructure of asphalt concretes[J]. J. Mater. Civ. Eng.2004,16(SPECIAL ISSUE):133-139.
    [113] Otsu N.A threshold Selection Method from Gray-Level Histogram[J]. IEEE TransonSMC-9,1979,9(1):62-66.
    [114]郝文化. MATLAB图形图像处理应用教程[M].北京:中国水利水电出版社.2004.
    [115] Vincent L,Soill EP.Watersheds in digital spaces:An efficient algorithm based onimmersion simulations[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence.1991,13(6):583-598.
    [116] Masad, E., Muhunthan, B., Shashidhar, N., and Harman T. Internal StructureCharacterization of Asphalt Concrete Using Image Analysis[J]. ASCE Journal ofComputing in Civil Engineering.1999,13(2):88-95.
    [117]李智,徐伟,王绍怀,张肖宁.沥青混合料压实状态的数字图像分析[J].岩土工程学报.2002,24(4):451-455.
    [118] Kasthurirangan Gopalakrishnan,Naga Shashidhar and Xiaoxiong Zhong. Attempt atQuantifying The Degree Of Compaction In HMA Using Image Analysis[C].Geo-Frontiers Congress2005.Austin, Texas, United States. January24-26,2005.
    [119]关琳琳,孙媛.图像边缘检测方法比较研究[J].现代电子技术.2008,31(22):96-99.
    [120]刘丹.计算机图像处理的数学和算法基础[D].北京:国防工业出版社.2005.
    [121]李晓军,张金夫.基于CT图像处理技术的岩土材料有限元模型[J].岩土力学,2006,27(8):1331-1334.
    [122] Ramer U.An iterative procedure for the polygonal approximation of plane closedcurves[J].Computer Graphics and Image Processing.1972,1:244-256.
    [123] Alexander Kolesnikov. ISE-bounded polygonal approximation of digital curves.Pattern Recognition Letters.2012,33:1329-1337.
    [124] You Z P, Adhikari S, Dai Q L, Three-dimensional discrete element models for asphaltmixtures[J]. Journal of Engineering mechanics.2008,134(12):1053-1062.
    [125] CH OUBANE B G. Investigation of water permeability of coarse graded superpavepavements[J]. Journal of the Association of Asphalt Paving Technologists.1998,67:58-65.
    [126]李立寒,曹林涛,郭亚兵,罗方艳.初始空隙率对沥青混合料性能影响的试验研究[J].同济大学学报(自然科学版).2006,34(6):757-760.
    [127]李好新,索智,王培铭.不同空隙率沥青混合料的形变及破坏[J].建筑材料学报.2008,11(3):306-310.
    [128]朱梦良,王民,邱鑫贵.空隙率对沥青混合料性能的影响分析[J].长沙交通学院学报.2005,21(3):25-31.
    [129]中华人民共和国交通部.公路沥青路面施工技术规范(JTGF40-2004)[S].北京:人民交通出版社.2004.
    [130]吕彭民,董忠红.车辆-沥青路面系统力学分析[M].北京:人民交通出版社.2010.
    [131] Flavio V. Souza, Leandro S. Castro. Effect of temperature on the mechanical responseof thermo-viscoelastic asphalt pavements[J]. Construction and Building Materials2012,30:574-582.
    [132] J.M. Bugers, Mechanical consideration-model systems phenomendogical theories ofrelation and of viscosity[J]. In: J.M.Burgers, Editors, First Report on Viscosity andPlasticity Nordeman Publishing Company. NewYork (1935).
    [133] Liu S et al. Analysis and relationships between low-temperature rheologicalperformance of asphalt binders[J]. Constr Build Mater.2010,24:471-478.
    [134]程永春,许淳,梁春雨,黄珊,邵俊华.沥青混合料蠕变柔量的试验研究与力学解析.吉林大学学报(工学版).2008,38(sup.2):70-73.
    [135]黄卫东,吕伟民.用流变模型评价改性沥青及其混合料的高温性能[J].石油沥青.1997,11(2):1-5.
    [136] Shutang Liu, Cheng Ma, Weidong Cao, Jianguo Fang. Influence of aluminate couplingagent on low-temperature rheological performance of asphalt mastic. Construction andBuilding Materials2010,24:650-659.
    [137] Yu Liu, FENG SHI-rong, Hu Xia-guang. Discrete Element Simulation of AsphaltMastics Based on Burgers Model[J]. Jounal of Southwest Jiaotong University (EnglishEdition).2007,15(1):20-26.
    [138] Yu Liu and Zhanping You. Determining Burger’s Model Parameters of AsphaltMaterials using Creep-recovery Testing Data[C]. Proceedings of the Symposium onPavement Mechanics and Materials at the Inaugural International Conference of theEngineering Mechanics Institute.2008,5:26-36.
    [139]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社.2006.
    [140]田莉,胡霞光,刘玉,沙爱民.沥青玛蹄脂粘弹性模型参数分段线性拟合法[J].交通运输工程学报.2007,7(3):66-69.
    [141]朱珉仁. Gompertz模型和Logistic模型的拟合[J].数学的实践与认识.2002,32(5):705-709.
    [142] BandyopadhyayaR, Das A, Basu S. Numerical simulation of mechanical behaviour ofasphalt mixture[J]. Construction and Building Materials.2008,22(6):1051-1058
    [143]王文进,余梁蜀.沥青砂浆的单轴拉伸蠕变特性[J].西安理工大学学报,1999,15(1):145-149.
    [144]叶永,杨新华,陈传尧.不同应力水平下沥青砂蠕变模型实验对比[J].华中科技大学学报(自然科学版).2009,37(3):116-118.
    [145]叶永,陈燕飞.沥青砂非线性流变模型实验研究[J].华中科技大学学报(城市科学版).2009,26(1):57-59.
    [146]李向东,叶永.砂沥青混合料非线性粘弹模型[J].三峡大学学报(自然科学版).2008,30(4):36-38.
    [147]蔡宜洲,叶永.沥青砂粘弹特性实验研究[J].工程力学.2010,27(Sup. I):200-204.
    [148] Kasula L R, Krishnan J M, Rajagopal K R, Little D N.Normal stress and relaxationdata for sand asphalt undergoing torsional flow [J]. Mechanics.2004,32:43-52.
    [149] Ye Yong, Yang Xinhua, Chen Chuanyao. Experimental researches onvisco-elastoplastic constitutive model of asphalt mastic [J]. Construction and BuildingMaterials.2009,23:3161-3165.
    [150] Gordon D A, Behzad R. Combined bituminous binder and mixture linear rheologicalproperties [J]. Construction and Building Materials.2004,18:535-548.
    [151]刘朝晖,李轶鹤.非线性粘弹性本构理论的讨论[J].南华大学学报(理工版),2003,17(2):1-7.
    [152] Schapery, R.A. On the characterization of nonlinear viscoelastic materials[J]. Polym.Eng. Sci.1969,9:295-310.
    [153] Schapery, R.A.: Nonlinear viscoelastic solids[J]. Int. J. Solids Struct.2000,37:359-366.
    [154] S.P.Zaoutsos, G..C.Papanicolaou&A.H.Cardon. On the non-linear viscoelasticbehaviour of polymer-matrix composites. Composites Science Technology[J].1998,58:883-889.
    [155] Hongtao Liu,1Maria Anna Polak,1Alexander Penlidis.A Practical Approach toModeling Time-Dependent Nonlinear Creep Behavior of Polyethylene for StructuralApplications[J]. POLYMER ENGINEERING AND SCIENCE.2008,48(1):159-167.
    [156]赵荣国,罗文波,张淳源.聚合物应力松弛行为的应力模型[J].湘潭大学学报.2001,23(1):37-40.
    [157] Liu Y. A direct method for obtaining discrete relaxation spectra from creep data[J].Rheologia Acta.2001,40(3):256-260.
    [158] S. W. Parka R.A. Schapery. Methods of interconversion between linear viscoelasticmaterial functions Part I-a numerical method based on Prony series[J]. InternationalJournal of Solids and Structures.1999,36:1653-1675.
    [159]黄仰贤,余定选,齐诚.路面分析与设计[M].北京:人民交通出版社.1994.
    [160] S. Mun G. R. Chehab, Y. R. Kim Determination of time-domain viscoelastic functionsusing optimized interconversion techniques[J]. Road materials and Pavement design.2007,8(2):351-366.
    [161] J. Kim, G.A.Sholar, S.Kim. Determination of accurate creep compliance and relaxtionmodulus at a single temperature for viscoelastic solids[J]. Journal of Materials in CivilEngineering.2008,20(2):147-156.
    [162] American Association of State and Highway Transportation Officials. StandardMethod of Test for Determining the Creep Compliance and Strength of Hot-MixAsphalt (HMA) Using the Indirect Tensile Test Device[S]. AASHTO T322-2007.
    [163] Jaeseung Kim; Hyung Suk Lee; and Namho Kim. Determination of shear and bulkmoduli of viscoelastic solids from the indirect tension creep test[J]. Journal ofengineering mechanics.2010,136(9):1067-1075.
    [164]尹应梅.基于DMA方法的沥青混合料动态粘弹性特性及剪切模量预估方法研究[D].广州:华南理工大学土木与交通学院.2010.12.
    [165]金日光,华幼卿.高分子物理[M].北京:化学工业出版社.1997.
    [166]陈静云,周长红.沥青混合料蠕变试验数据处理与粘弹性计算[J].东南大学学报(自然科学版).2007,37(6):1091-1095.
    [167] Lai, J., Bakker, A.,1996.3-D Schapery representation for nonlinear viscoelasticity andfinite element implementation[J]. Computational Mechanics.1996,18(3),182-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700