用户名: 密码: 验证码:
饮用水应急处理技术集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于化学品和石油泄漏、工业事故排放等造成的突发性水污染事件的发生频率不断上升,成为威胁城市饮用水安全的主要来源。而我国的城市供水行业普遍不具备应对突发性水污染的应急处理能力、缺乏系统、全面应对突发性水污染的应急处理技术,供水行业迫切需要进行饮用水应急处理技术的研究。
     本文选取粉末活性炭吸附、化学沉淀、化学还原和强化消毒四种应急处理技术,采用先小试确定基本控制参数再中试动态模拟的方法,针对不同特性的污染物,选择其中较为典型的若干种进行研究,并对操作参数进行了优化。主要研究成果和结论如下。
     通过小试和中试对应急处理技术的研究,建立了粉末活性炭对五种农药类有机物、一种芳香族化合物和两种氯代烃类有机污染物的吸附动力学方程、吸附等温线模型,并确定了粉末活性炭技术可应对的最大污染物浓度;针对金属类金属污染物不同性质,采用相应的化学沉淀技术进行去除,确立了混凝剂种类和投加量、硫化钠投加量、pH等操作参数;按还原剂与污染物反应的化学计量比进行投加,研究了化学还原技术对三种氧化性污染物的去除效果,确定了较佳的化学计量比投加方案。
     强化消毒应急处理研究表明:随着pH值的上升,自由氯和一氯胺的灭活率减小,二氧化氯的灭活率则增大;温度对一氯胺的影响较小,自由氯和二氧化氯的影响较显著;将灭活速率常数表示为pH和温度的函数,带入Chick-Watson模型,拟合出含有pH和温度两参数的消毒剂灭活模型,增强了模型的通用性;加入有机物后,三种消毒剂的灭活效果下降;粪肠球菌的灭活率随着颗粒粒径的增大而降低,增加消毒剂投加量可减小颗粒对消毒效果的影响。
     用灰色关联方法分析粉末活性炭吸附2,4-二氯苯氧基乙酸、化学沉淀法除镉和氯灭活粪肠球菌过程中各因素的关联性大小,得出关联性大小的顺序为:活性炭投加量>吸附时间>污染物浓度>CODMn;滤后pH>污染物原始浓度>混凝剂种类>混凝剂投加量;Ct值>消毒接触时间>温度>消毒剂浓度>pH。
     使用BP神经网络模型对各应急处理工艺的处理效果进行了预测,结果显示粉末活性炭工艺、化学沉淀工艺和消毒工艺的相关系数分别为0.976、0.996和0.943,均方标准差分别为0.0100、0.0033和0.0050,证明该BP神经网络模型对三种应急处理工艺的去除效果有较好的预测能力。
     以BP神经网络为基础,采用遗传算法对所建的BP神经网络模型进行寻优。结果显示,粉末活性炭投加量为67mg/L,吸附时间为45min时,即可将初始浓度为0.67mg/L的2,4-二氯苯氧基乙酸去除至0.027mg/L;投加4.3mg/L的三氯化铁混凝剂,在反应前投加NaOH调节pH,控制反应后pH值为9.0,即可将初始浓度为0.9mg/L的镍去除到0.018mg/L。
     对饮用水应急处理技术进行集成,并将课题成果应用到了天津市某水厂的示范工程中。
In recent years, emergent water pollution caused by chemicals and oil spills,industrial accidents frequently happened, become the main threat to the city drinkingwater safety. China's urban water supply industry is generallly lack of emergencytreatment capacity, systematic and comprehensive emergent treatment technology todeal with the emergent water pollution incident. This makes the industry an urgent needfor drinking water emergent treatment technology.
     Powdered activated carbon adsorption, chemical precipitation, chemical redox anddisinfection were chosen to deal with the typical pollutants of different property, andoperating parameters were optimized. Bench-scale experiment was applied to determinethe basic control parameters and then pilot-scale experiment for dynamic simulation.The main results and conclusions are as follows.
     The adsorption kinetics equation and adsorption isotherm model of powderedactivated carbon were established and the maximum concentrations of pollutantspowdered activated carbon can deal with were obtained based on the investigation ofemergent treatment technology carried in bench and pilot scale experiment. Thecorresponding chemical precipitation technology was chosen to deal with the metal andmetalloid pollutants of different property. The operating parameters including the kindof coagulant, coagulant dose, sodium sulfide dose and pH were established. Chlorite canbe removed greatly using ferrous sulfate, and the maximum removal efficiency at morethan98%arrived with reaction time of5minutes, but it could not be effectivelyremoved with sodium sulfide. Neither sodium sulfide nor ferrous sulfate had goodefficiecy on removing bromate and chlorate.
     The emergent treatment technology of strengthen disinfection results of freechlorine, chloramines and chlorine dioxide on Escherichia coli, Enterococcus faecalisand Clostridium perfringens showed that the inactivation rate of free chlorine andchloramine decrease while that of chlorine dioxide increases with the rise of pH.Temperature had more significant influence on free chlorine and chlorine dioxidecompared with chloramines. Expressing inactivation rate constant as a function of pHand temperature and applying to the Chick-Watson model, a disinfection model with thetwo parameters of pH and temperature is established with enhanced versatility. Theinactivation rate constant of the disinfectants declined when adding organic matter. Theinactivation rate of E.faecalis decreased with bigger particle size, and increasing thedosage of disinfectant could reduce the impact of particle.
     The relationship of various factors and the remove effect of powdered activatedcarbon adsorption of2,4-D, chemical precipitation of cadmium and chlorineinactivation of E.faecalis by using the grey analysis method were as follows: powderedactivated carbon dosage> adsorption time> pollutant concentration> CODMn, filteredwater pH> initial concentration of pollutants> coagulant type> coagulant dosage, Ctvalue> disinfection contact time> temperature> disinfectant concentration> pH.
     BP neural network model was employed to predict the effect of emergencytreatment process. The results showed that the correlation coefficient Rs of powderedactivated carbon, chemical precipitation and the disinfection were0.976,0.996and0.943, respectively, and the RMSE was0.0100,0.0033and0.0050, respectively, whichindicated that the BP neural network model has a good predictive ability of threeemergency treatment processes.
     Genetic algorithm (GA) had been used to select the optimal parameters ofemergency treatment process based on BP neural network. The results indicated thatunder the condition of powdered activated carbon dosage at67mg/L and adsorptiontime at45min,2,4-D could be reduced to0.027mg/L from the initial concentration of0.67mg/L. Nickel could be decreased to0.018mg/L from the initial concentration of0.9mg/L when pH of filtered water was9.0and the dosage of ferric chloride was4.3mg/L.
     Integration of emergency treatment technology of drinking water was carried out,and research results were applied in a demonstration project at a waterworks in Tianjin.
引文
[1]何文杰,李伟光,张晓健,黄廷林.安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
    [2]张自杰,林荣忱,金儒霖.排水工程(下册)[M].中国建筑工业出版社,2000:13.
    [3]黄廷林,丛海兵,柴蓓蓓.饮用水水源水质污染控制[M].北京:中国建筑工业出版社,2010.
    [4]蒋兴锦.饮水的净化和消毒[M].中国环境科学出版社,1989.
    [5]崔福义.城市给水厂应对突发性水源水质污染技术措施的思考[J].给水排水,2006,32(7):7-9.
    [6]马军,李圭白.高锰酸钾的氧化助凝效能研究[J].中国给水排水,1992,8(4):4-7.
    [7]金伟,李怀正,范瑾初.粉末活性炭吸附技术在水厂中应用的关键问题[J].给水排水,2001,27(10):11.
    [8]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002.
    [9] Vedat Uyak, Sema Yavuz, Ismail Toroz, et al. Disinfection by-products precursors removalby enhanced coagulation and PAC adsorption [J]. Desalination,2007,216(1):334-344.
    [10] Maria Tomaszewska, Sylwia Mozia, et al. Removal of organic matter by coagulationenhanced with adsorption on PAC [J]. Desalination,2004,161(1):79-87.
    [11] Lionel Ho, Gayle Newcombe. Lionel Ho, Gayle Newcombe [J]. Water Research,2005,35(15):3668-3674.
    [12] David Cook, Gayle Newcombe, Pascale Sztajnbok. The application of powdered activatedcarbon for mib and geosmin removal: predicting pac doses in four raw waters [J]. WaterResearch,2001,35(5):1325-1333.
    [13] Qilin Li, Vernon L. Snoeyink, Benito J. Mari as et al. Pore blockage effect of NOM onatrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOMmolecular weight [J]. Water Research,2003,37(20):4863-4872.
    [14]傅金祥,王峰,由昆,等,粉末活性炭吸附工艺应急处理苯酚污染[J].沈阳建筑大学学报(自然科学版),2008,24(4):633-636.
    [15]蒋晓风,朱斌,盛梅.有机污染水源水的粉末活性炭处理技术研究[J].工业水处理,2009,29(4):74-76.
    [16]纪峰,朱灵敏,贾丽莉,等.粉末活性炭对硝基氯苯类污染物的吸附特性研究[J].中国给水排水,2010,26(7):105-108.
    [17]陈蓓蓓,高乃云,刘成,等.粉末活性炭去除原水中阿特拉津突发污染的研究[J].给谁排水,2007,33(7):9-13.
    [18]赵志伟,崔福义,张振宇,等.粉末活性炭吸附去除水源水中硝基苯的优选试验[J].沈阳建筑大学学报(自然科学版),2007,23(1):134-137.
    [19]张振宇,崔福义,黄鹏飞,等.松花江水源粉末活性炭去除硝基苯的试验研究[J].哈尔滨商业大学学报(自然科学版),2008,24(6):672-677.
    [20] Wu F B, Zhang G P. Alleviation of Cd-toxicity by Application of Zinc and Ascorbic Acid inBarley [J]. Journal of Plant Nutrition,2002,25(12):2745-2761.
    [21]许秀琴,朱勇,杨挺.水体重金属的污染危害及其修复技术[J].污染防治技术,2007,20(4):67-70.
    [22]李敏,宗栋良.地表水中重金属类环境激素污染调查[J].广州化工,2010,38(8):217-221.
    [23]程麟钧,张颖,付强,等.官厅水库重金属污染状况调查研究[J].中国环境监测,2009,25(3):82-85.
    [24]雷鸣,秦普丰,铁柏清.湖南湘江流域重金属污染的现状与分析[J].环境管理,2010(2):62-65.
    [25]陈正夫,朱坚,周亚康.环境激素的分析与评价[M].北京:化学工业出版社,2004:51-60.
    [26]张玉政,黄廷林,邸尚志.饮用水水源突发性Cd(Ⅱ)污染应急处理实验研究[J].安全与环境学报,2008,8(5):19-22.
    [27]汪万芬,钱东升,黄润.六安市城区饮用水源水重金属健康风险评价[J].皖西学院学报,2010,26(2):140-142.
    [28]赵清华,全学军,谭怀琴,等.柑橘皮渣生物吸附剂对Ni2+的吸附特性[J].重庆工学院学报,2009,23(5):50-54.
    [29]郭平,郎兴华,郭鹏.固定化细菌吸附铜、锌和镍最佳包埋条件的确定[J].环境保护科学,2009,35(1):9-11.
    [30]任仁,黄俊.哪些物质属于内分泌干扰物(EDCs)[J].安全与环境工程,2004,11(3):7-10.
    [31]张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(6):6-14.
    [32]窦佩琼,候方东,包晓风.株洲市清水塘工业区地表水底泥重金属污染评价[J].四川环境,2008,27(4):74-78.
    [33]李大成.国家饮用水标准与砷、镉去除技术[J].污染防治技术,2009,22(2):74-76.
    [34]张志军,李玲,朱宏,等.化学沉淀法去除电镀废水中铬的实验研究[J].环境科学与技术,2008,31(7):93-97,131.
    [35]车荣睿.离子交换法在治理含镉废水中的应用.离子交换与吸附,1993,(3):276.
    [36] B.Benguella, H. Benaissa. Cadmium removal from aqueous solutions by chitin: kinetic andequilibrium studies [J]. Water Research,2002,36(10):2463-2474.
    [37] Amir Fouladi Tajar, Tahereh Kaghazchi, Mansooreh Soleimani. Adsorption of cadmium fromaqueous solutions on sulfurized activated carbon prepared from nut shells [J]. Journal ofHazardous Materials,2009,165(1):1159-1164.
    [38]王晓荣,徐俊,沈吉敏. KMnO4与PAC联用强化混凝去除水中微量重金属的效能及其影响因素[J].黑龙江大学自然科学学报,2009,26(3):363-370.
    [39]王利平,丁福圣,高乃云. KDF滤料去除自来水中铅、铬和镉的试验研究[J].水资源保护,2009,25(6):73-75.
    [40]夏德强,冷宝林,王彬,等.新型絮凝剂APAC处理含Cr(Ⅵ)废水的研究[J].中国给水排水,2010,26(31):121-123.
    [41]高中方,周克梅,陈志平,等.镉污染源水的应急处理技术研究[J].中国给水排水,2009,25(11):86-88.
    [42] Kozlowski C A, Walkowiak W. Removal of Chromium(VI) from Aqueous Solutions byPolymer Inclusion Membranes [M]. Water Research,2002:187-188.
    [43]马萌,魏永宁,张胜利,等.石灰水预处理垃圾渗滤液的研究[J].工业安全与环保,2008,34(3):7-8.
    [44]胡小芳,丁卫,张建国等.化学沉淀法对水中钼、钴金属污染物的应急处理技术研究[J].供水技术,2010,4(1):21-24.
    [45]袁润权,张焕伟,张建国,等.利用化学沉淀发快速去除水中钛和钼的应急处理研究[J].给水排水,2010,36(增刊):22-24.
    [46]张金松.饮用水二氧化氯净化技术[M].北京:化学工业出版社,2002,12.
    [47]颜金良,颜勇卿,王立.二氧化氯消毒饮用水中毒副产物污染的初步研究[J].中国预防医学杂志,2006,7(6):513-515.
    [48]施小平,周明浩.二氧化氯消毒饮用水中亚氯酸盐污染的初步研究[J].环境与健康杂志,2000,17(6):341-342.
    [49] G Gordon,et al. Minimizing chlorite ion and chlorate ion in water treated with chlorinedioxide [J]. AWWA,1990,82(4):160.
    [50] G Gordon,et al. Minimizing chlorate ion formation.[J]. AWWA,1995,87(6):97.
    [51] Gegory H, William RK. Evaluating ferrous iron for chlorite ion removal [J]. AWWA,1997,89(8):98-105.
    [52] Ant horry Tarquin. Reduction of chlorite concent rations in potable water with ferrouschloride [J]. Water Eng Management,1995,(2):35.
    [53] USEPA. National Primary Drinking Water Regulations,2003. Downloaded fromhttp://www.epa.gov.
    [54] Annie Rompre, Pierre Servais, et al. Detection and enumeration of coliforms in drinkingwater: current methods and emerging approaches [J]. Journal of Microbiological Methods,2002,49(1):31–54.
    [55]马颖,龙腾锐,方振东. PCR技术检测饮用水中大肠杆菌[J].中国给水排水,2004,20(9):93-95.
    [56] Paul T. Monis And ChristopHer P. Saint. Develeopment of a nested-PCR assay for thedetection of cryptoaporidum parvum in finished water [J]. Water Research,2001,35(7):1461-1468.
    [57] Kaucner C. and Stinear T. Sensitive and rapid detection of viable Giardia cysts andCryptosporidium parvum oocysts in large-volume water samples with wound fiberglasscartridge filters and reverse transcription-PCR [J]. Environmental Microbiology,1998,5:1743–1749.
    [58] Jonas Behetsa, Priscilla Declerck, et al. A duplex real-time PCR assay for the quantitativedetection of Naegleria fowleri in water samples [J]. water research,2007,41(1):118-126.
    [59]刘路,卢益新.特定底物技术快速检测水中大肠菌群相关指标[J].净水技术,2004,23(6):30-33.
    [60] Yolanda Moreno, Patricia Piqueres, et al. Survival and viability of Helicobacter pylori afterinoculation into chlorinated drinking water [J]. Water Research,2007,41(15):3490-3496.
    [61] S. Saby, I. Sibille. Influence of Water Chlorination on the Counting of Bacteriawith DAPI(4',6-Diamidino-2-Phenylindole)[J]. Applied And Environmental Microbiology,1997,63(4):1564-1569.
    [62] Johanna M. Rinta-Kanto, Markku J. Lehtolaa, et al. Rapid enumeration of virus-like particlesin drinking water samples using SYBR green I-staining [J]. Water Research,2004,38(10):2614-2618.
    [63]鲁巍,王云,张晓健.饮用水中几种细菌计数方法的比较[J].环境科学,2004,25(4):167-169.
    [64] Frederik Hammes, Michael Berney, et al. Flow-cytometric total bacterial cell counts as adescriptive microbiological parameter for drinking water treatment processes [J]. WaterResearch,2008,42(1):269-277.
    [65] Meng-Huot PHe, Manuel Dossot, et al. Nucleic acid fluorochromes and flow cytometry proveuseful in assessing the effect of chlorination on drinking water bacteria [J]. Water Research,2005,39(15):3618-3628.
    [66]中华人民共和国卫生部.生活饮用水卫生标准(GB/T5750-2006).中国标准出版社,2007.
    [67] Qilin Li, Shaily Mahendra, et al. Antimicrobial nanomaterials for water disinfection andmicrobial control: Potential applications and implications [J]. Water Research,2008,42(18):4591-4602.
    [68] Singer P.C. Disinfection by-product in US drinking waters: Past, present and future [J]. WaterScience and Technology: Water Supply,2004,1:161-157.
    [69]路凯,井海宁,李士英.美国小型供水系统饮用水消毒调查报告[J].环境与健康杂志,2002,19(4):346-347.
    [70]刘珂,秦晓,韩柏平.美国自来水行业消毒现状和展望[J].江苏环境科技,2007,20(1):65-68.
    [71]刘文君.给水处理消毒技术发展展望[J].给水排水,2004,30(1):2-5.
    [72]邓玉良.二氧化氯的生产和应用评述[J].化学世界,2002(1):46-49.
    [73]王占生,刘文君.我国给水深度处理应用状况与发展趋势[J].中国给水排水,2005,21(9):29-33.
    [74]姚新梅.二氧化氯消毒技术在贵州农村水厂中的应用[J].贵州大学学报(自然科学版),2009,26(1):134-136.
    [75]刘文君,孙文俊.农村地区饮用水消毒技术的应用[J].中国水利,2005(19):23-25.
    [76]裴剑,张璐,李伟英.饮用水消毒剂二氧化氯研究进展[J].四川环境,2009,28(3):75-78.
    [77]徐贤英.二氧化氯在饮用水消毒中的应用研究[J].湖北师范学院学报(自然科学版),2006,26(2):9-13.
    [78]徐建英.水消毒处理中膜技术的应用[J].环境污染治理技术与设备,2001,2(2):86-90.
    [79] Min Cho, Hyenmi Chung, and Jeyong Yoon. Quantitative Evaluation of the SynergisticSequential Inactivation of Bacillus subtilis Spores with Ozone Followed by Chlorine.[J].Environment Science Technology,2003,37:2134-2138.
    [80] H.M. Murphy, S.J. Payne, G.A. Gagnon. Sequential UV-and chlorine-based disinfection tomitigate Escherichia coli in drinking water biofilms [J].Water Research,2008,42:2083-2092.
    [81] Ason L. Rennecker, Amy M. Driedger, et al. Synergy in sequential inactivation ofcryptosporidium parvum with ozone/free chlorine and ozone/monochloramine [J]. WaterResearch,2000,17:4121-4130.
    [82] Benito Corona-Vasquez, Jason L. Rennecker, et al. Sequential inactivation ofCryptosporidium parvum oocysts with chlorine dioxide followed by free chlorine ormonochloramine [J]. Water Research,2002,36(1):178-188.
    [83] Hanbin Li, Gordon R. Finch, et al. Sequential inactivation of cryptosporidium parvum usingozone and chlorine [J]. Water Research,2001,18:4339-4348.
    [84]张永吉,刘文君,等.氯对紫外线灭活枯草芽孢杆菌的协同作用[J].环境科学,2006,27(2):329-332.
    [85]易芳,吴立波,等.饮用水二氧化氯-氯/氯胺联合消毒工艺的研究进展[J].净水技术,2007,26(6):34-36.
    [86]王颖,李娜等.二氧化氯、次氯酸钠及其联合消毒模拟水样效果的比较[J].卫生研究,2008,37(3):285-289.
    [87]孙傅,陈吉宁,等.给水处理厂氯消毒模型研究进展[J].中国给水排水,2005,21(5):22-25.
    [88]陈超,张晓健,何文杰,等.顺序氯化对微生物、副产物和生物稳定性的综合控制[J].环境科学,2006,27(1):74-79.
    [89]陈超,张晓健,何文杰,等.顺序氯化消毒工艺的研究[J].中国环境科学,2006,26(4):454-458.
    [90]陈超,张晓健,何文杰,等.安全氯化消毒工艺的消毒副产物控制[J].中国给水排水,2004,20(9):13-16.
    [91]陈超,张晓健,韩宏大,等.顺序氯化消毒控制卫生学指标的效果[J].中国给水排水,2005,21(10):5-8.
    [92] Hyunju Son, Min Cho, et al. Enhanced disinfection efficiency of mechanically mixed oxidantswith free chlorine [J]. Water Research,2005,39:721-727.
    [93] C. H. Johnson, M. M. Marshall, et al. Chlorine Inactivation of Spores of Encephalitozoon spp.[J]. Applied and environmental microbiology,2003,2:1325-1326.
    [94] Kay Howard, Timothy J.J. Inglis. The effect of free chlorine on Burkholderia pseudomallei inpotable water [J]. Water Research,2003,37(18):4425-4432.
    [95] Damian E. Helbling, Jeanne M. VanBriesen. Free chlorine demand and cell survival ofmicrobial suspensions [J]. Water Research,2007,41(19):4424-4434.
    [96] Benoit Barbeau, Lina Boulos, et al. Examining the use of aerobic spore-forming bacteria toassess the efficiency of chlorination [J]. Water Research,1999,33(13):2941-2948.
    [97] Corinne Le Dantec, Jean-Pierre Duguet, et al. Chlorine Disinfection of Atypical MycobacteriaIsolated from a Water Distribution System [J]. Applied And Environmental Microbiology,2002,3:1025-1032.
    [98] David E.Johna, Charles N.Haas. Chlorine and ozone disinfection of Encephalitozoonintestinalis spores [J].Water Research,2005,39(11):2369-2375.
    [99]钱振宇,崔玉杰,等.两种不同剂型二氧化氯消毒剂饮水消毒效果试验观察[J].中国卫生检验杂志,2009,19(7):1678-1679.
    [100]韩艳淑,陈素良,等.二氧化氯发生器对饮用水消毒效果观察[J].中国消毒学杂志,2005,22(1):43-45.
    [101] Amy M. Driedger, Jason L. Rennecker. Sequential inactivation of cryptosporidium parvumoocysts with ozone and free chlorine [J].Water Research,2000,34(14):3591-3597.
    [102] Kristen M. Ruffell, Jason L. Rennecker, et al. Inactivation of cryptosporidium oocysts withchlorine dioxide[J]. Water Research,2000,34(3):868–876.
    [103] Juan P. Vicu a-Reyes, Jeanne Luh, Benito J. Mari as. Inactivation of Mycobacterium aviumwith chlorine dioxide [J].Water Research,2008,42(6):1531-1538.
    [104]武海霞,黄廷林,等.二氧化氯灭活供水系统中摇蚊幼虫的实验研究[J].西安建筑科技大学学报(自然科学版),2006,38(1):42-46.
    [105] Sudha Goel, Edward J. Bouwer. Factors influencing inactivation of Klebsiella pneumoniaeby chlorine and chloramines [J].Water Research,2004,38:301-308.
    [106] Joseph O. Falkinham. Factors Influencing the Chlorine Susceptibility of Mycobacteriumavium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum [J]. Applied andEnvironmental Microbiology,2003,9:5685-5689.
    [107] Robert H. Taylor et al. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility ofMycobacterium avium [J]. Applied and Environmental Microbiology,2000,4:1702-1705.
    [108]李青松,高乃云,等.贾第虫与隐孢子虫与饮用水浑浊度的关系[J].哈尔滨工业大学学报,2008,40(6):985-988.
    [109]李青松,高乃云,等.贾第鞭毛虫病及其水媒传播控制[J].中国给水排水,2007,23(2):5-8.
    [110]张翼,张晖.控制水体隐孢子虫的研究进展[J].环境科学与技术,2004,27(2):110-114.
    [111]崔福义,左金龙,等.饮用水中贾第鞭毛虫和隐孢子虫研究进展[J].哈尔滨工业大学学报,2006,38(9):1487-1491.
    [112]金云霄,孙艳,张立成.饮用水中隐孢子虫的紫外线灭活[J].洛阳大学学报,2004,19(2):35-39.
    [113]樊伟,傅金祥,等.隐孢子虫介水传播与在水环境中存在水平[J].沈阳建筑工程学院学报(自然科学版),2003,19(2):150-153.
    [114]傅金祥.隐孢子虫在水环境中存在水平与灭活技术[J].沈阳建筑工程学院学报(自然科学版),2003,16(4):27-29.
    [115] Kay Howard, Timothy J.J. Inglis. Disinfection of Burkholderia pseudomallei in potable water[J].Water Research.2005,39:1085-1092.
    [116] Marie Deborde, Urs von Gunten. Reactions of chlorine with inorganic and organiccompounds during water treatment—Kinetics and mechanisms: A critical review [J]. WaterResearch,2008,(42):13-51.
    [117] Ridgway H F, Olson B H. Scanning electron microscope evidence for bacterial colonizationof a drinking water distribution system [J]. Apprial Environmental Microbiology,1981,41(1):274-287.
    [118] Gideon P. Winward, Lisa M. Avery. Chlorine disinfection of grey water for reuse: Effect oforganics and particles [J].Water Research,2008,42:483-491.
    [119] Joseph P. Dietrich, et al. Preliminary assessment of transport processes influencing thepenetration of chlorine into wastewater particles and the subsequent inactivation ofparticle-associated organisms [J]. Water Research,2003:(37)139-149.
    [120] Benoit Barbeau, Raymond Desjardins, et al. Impacts of water quality on chlorine and chlorinedioxide efficacy in natural waters [J]. Water Research,2005,39:2024-2033.
    [121] Joseph P. Dietrich, Frank J, et al. Inactivation of particle-associated microorganisms inwastewater disinfection: Modeling of ozone and chlorine reactive diffusive transport inpolydispersed suspensions [J].2007,41:2189-2201.
    [122]郑丹,刘文君,徐洪福.模拟配水管网中悬浮颗粒物对生物膜形成的影响[J].环境科学,2007,28(6):1236-1240.
    [123]孙文俊,刘文君, Brian Petri,等.颗粒物对紫外线灭活二级出水中粪大肠菌的影响[J].环境科学,2009,30(4):1095-1098.
    [124]张永吉,刘文君.浊度对紫外灭活大肠杆菌和MS-2噬菌体的影响[J].中国给水排水,2006,22(1):27-31.
    [125] Gwy-Am Shin, Mark D. Sobsey. Inactivation of norovirus by chlorine disinfection of water[J].Water Research,2008,42:4562-4568.
    [126] Jeanette A. Thurston-Enriquez, Charles N. Haas, et al. Chlorine Inactivation of AdenovirusType40and Feline Calicivirus [J]. Applied and Environmental Microbiology,2003,7:3979-3985.
    [127] Hiroshi Urakami, Kumiko Ikarashi, et al. Chlorine Sensitivity of Feline Calicivirus, aNorovirus Surrogate [J]. Applied and Environmental Microbiology,2007,17:5679-5682.
    [128]林毅,刘文君,李德生,冯兆敏.水源中溶解性有机物分子量分布特性[J].供水技术,2007,1(5):10-13.
    [129] R. Virto, P. Man as. Membrane damage and microbial inactivation by chlorine in the absenceand presence of a chlorine-demanding substrate [J]. Applied And EnvironmentalMicrobiology,2005,9:5022-5028.
    [130] Onder Ayyildiz, Burcu Ileri and Serdar Sanik. Impacts of water organic load on chlorinedioxide disinfection efficacy [J]. Journal of Hazardous Materials,2009,168:1092-1097.
    [131]卢宁,高乃云,等.从DOC、AOC的变化分析二氧化氯消毒工艺[J].中国给水排水,2008,24(19):84-86.
    [132]胡国臣,赵琪微,白京生. COD浓度对水消毒效果的影响[J].环境卫生工程,2004,12(1):38-39.
    [133]周舒月,张玉先,等.二氧化氯预氧化处理微污染水源水及影响因素研究[J].给水排水,2008,34(5):150-153.
    [134]王晓蕾,徐燕.二氧化氯对水中细菌杀灭效果及影响因素的观察[J].中国消毒学杂志,2005:22(3):280-281.
    [135] Zhimin Qiang, and Craig D. Adams.Determination of Monochloramine Formation RateConstants with Stopped-Flow Spectrophotometry [J]. Environment Science Technology.2004,5:1435-1444.
    [136] Wontae Lee, Paul Westerhoff. Formation of organic chloramines during water disinfection-chlorination versus chloramination [J]. Water Research,2009,43:2233-2239.
    [137] Manar K. Fayyad and Ahmad M. Al-Sheikh. Determination of N-chloramines in As-samrachlorinated wastewater and their effect on the disinfection process [J].Water Research,2001,5:1304-1310.
    [138]谢兴,胡洪营.污水氯消毒过程中有机氯胺的生成及其影响[J].中国给水排水,2007,23(24):20-23.
    [139]陈杰,李星,等.氨氮对预氯化工艺的影响及优化对策[J].工业用水与废水,2006,37(2):12-15.
    [140]杜志鹏,刘文君,等.消毒过程中氨氮对氯耗的影响研究[J].中国给水排水,2006,22(13):53-55.
    [141]刘静,陈超.微生物杀灭效果试验中的游离氯转化研究[J].环境科学,2008,29(11):3054-3058.
    [142] James Montgomery Consulting Engineers Inc. Water treatment: Principles and Design. WibeyInterscience [J]. New York,1985.262-283.
    [143] Chii Shang,Ernest R. Blatchley. Chlorination of pure bacterial cultures in aqueous solution [J].Water Research,2001,35(1):244-254.
    [144] R. Virto, D. Sanz I, et al. Modeling the effect of initial concentration of Escherichia colisuspensions on their inactivation by chlorine [J]. Journal of Food Safety,2005,25:120-129.
    [145] R. Virto, D. Sanz I, et al. Relationship between inactivation kinetics of a Listeriamonocytogenes suspension by chlorine and its chlorine demand [J]. Journal of AppliedMicrobiology,2004,97:1281-1288.
    [146] J.G. March, M. Gual, J. Ramonell. A kinetic model for chlorine consumption in grey water [J].Desalination,2005,181:267-273.
    [147] Abdennaceur Hassen. Inactivation of indicator bacteria in wastewater by chlorine-a kineticsstudy [J]. Bioresource Technology,2000,(72):85-93.
    [148] Martin A. Page, Joanna L. Kinetics of adenovirus type2inactivation with free chlorine [J].Water Research,2009,43:2916-2926.
    [149] Kwanrawee Sirikanchana et al. Inactivation kinetics of adenovirus serotype2withmonochloramine [J].2008,42:1467-1474.
    [150]孙傅,陈吉宁,佟庆远,曾思育.给水处理厂预氯化工艺概率机理模型研究[J].环境科学,2006,27(4):665-668.
    [151]孙傅,陈吉宁,等.传统给水处理厂氯消毒模型的开发与应用[J].环境科学,2007,28(1):152-155.
    [152]王云,鲁巍,张晓健.氯及氯胺灭活大肠杆菌的消毒动力学模型[J].环境科学,2005,26(5):100-104.
    [153]曹大勇,彭海华,等.二氧化氯处理南方微污染源水研究[J].山东大学学报(工学版),2006,36(3):112-115.
    [154] T.E. Cloete. Resistance mechanisms of bacteria to antimicrobial compounds [J]. InternationalBiodeterioration&Biodegradation,2003,51(4):277-282.
    [155] N. Abid, S. Maalej and S. Rouis. Morphological and physiological changes of Staphylococcusaureus exposed to hypochlorous acid [J]. Letters in Applied Microbiology,2004,38:245-250.
    [156] Goodchild Mf. Integratng GIS and environmental modeling at global scales [A]. GIS/L IS’91Proeeedings [C],1991:117-127.
    [157]吴秋风.对系统集成的一些认识[J].工业控制计算机,1998(5):14-16.
    [158]郑无疾,张建军,朱山风.分布式对象在软件系统集成中的应用[J].计算机应用,1998,19(8):25-28.
    [159]惠建新,叶桦,孙长银,等.基于B/S的楼宇管理系统集成技术[J].三峡大学学报(自然科学版),2001,23(5):413-416.
    [160]张佐.系统集成的概念、方法与实践[J].测控技术,1999,18(9):326.
    [161]钱宇,李秀喜,程华农,等.化工过程运行系统的集成[J].化工学报,2003,54(4):557-563.
    [162] Chong H G, W alley W J. Rule based versus Probabilistic approaches to the diagnosis offaults in wastewater treatment Proeesses [J]. Artificial Intelligence in Engineering,1996,10(3):265-273.
    [163]曾文,徐世文.地理信息系统中的常规网络分析功能及相关算法[J].地球科学,1998,23(4):355-356.
    [164]江智军,童立君,何小斌.基于专家系统的水厂自动投药系统的研究[J].南昌大学学报(工科版),2004,26(3):51-54.
    [165]韩宏大.安全饮用水保障集成技术研究[D].北京:北京工业大学,2006.
    [166]李玉仙.给水处理工艺的系统集成与优化[D].西安:西安建筑科技大学,2007.
    [167] Kligerman A D, Doerr C L, Tennant A H, et al. Cytogenetic studies of three triazineherbicides. I-in vitro studies [J]. Mutat Res,2000,465(1-2):53-59.
    [168] Danna A, Crosignani P, Robutti F, et al. Triazine herbicides and ovarian epithelial neoplasms[J]. Environmental Health,1989,15(1):47-53.
    [169]邓小陵,王天龙,曾涛.一起农药呋喃丹所致的食物中毒调查报告,职业与健康,2005,21(4):548-549.
    [170]刘江华,雷卓青.急性呋喃丹中毒18例临床分析,蛇志,2009,21(2):113-114.
    [171]戚建华,梁宗锁,邓西平,等.板栗壳吸附Cu2+的平衡与动力学研究及工艺设计[J].环境科学学报,2009,29(10):2141-2147.
    [172] B. Yasemin, A. Halunk. A kinetics and thermo dynamics study of methylene blue adsorptionon wheat shella[J]. Desalination,2006,194:259-267.
    [173]李坤权,郑正,罗兴章. KOH活化微孔活性炭对对硝基苯胺的吸附动力学[J].中国环境科学,2010,30(2):174-179.
    [174] Weber W J Jr, Morris J C. Kinetics of adsorption on carbon from solution [J]. J. Sanitary Eng.Div. Proceed Am. Soc. Civil Eng.,1963,89:31-59.
    [175]许剑海,钱庆荣,陈庆华.桐壳基活性炭对水中苯胺的吸附性能研究[J],环境科学与管理,2009,34(5):80-83.
    [176] I.A.W. Tan, A.L. Ahmad, B.H. Hameed. Adsorption of basic dye using activated carbonprepared from oil palm shell: batch and fixed bed studies [J]. Desalination,2008,224:13-28.
    [177] Le Zeng, Xiaomei Li, Jindun Liu. Adsorptive removal of phosphate from aqueous solutionsusing iron oxide tailings [J], Water Research,2004,38(5):1318-1326.
    [178] Baisali Sarkar, N. Venkateswralu, R. Nageswara Rao, et al, Treatment of pesticidecontaminated surface water for production of potable water by acoagulation-adsorption-nanofiltration approach [J]. desalination,2007,212(1-3):129-140.
    [179] Yoshihiko Matsui, Yoshitaka Fukuda, Takanobu Inoue, et al, Effect of natural organic matteron powdered activated carbon adsorption of trace contaminants: characteristics andmechanism of competitive adsorption [J]. Water Research,2003,37(18):4413-4424.
    [180]王生辉,张晓健,李勇,等.硝基苯污染源水的粉末活性炭处理技术研究[J].中国给水排水,2007,23(1):1-5.
    [181]杨洁,顾海红,赵浩,等.含砷废水处理技术进展[J].工业水处理,2003,23(6):14-18.
    [182]曹会兰.砷对人体的危害与防治[J].化学世界,2003,44(10):559-560.
    [183]姚青松.平衡理论在化学法处理重金属废水中的作用[J].环境保护,1994,12:10-13.
    [184]郭壮.还原沉淀法处理含铬废水的研究及应用[D].哈尔滨工业大学,2007.
    [185] McLauchlin, J., G. Ripabelli, M. M. Brett, and E. J. Threlfall. Amplified fragmentlength polymorphism (AFLP) analysis of Clostridium perfringens for epidemiologicaltyping [J]. Int J Food Microbiol2000,56:21-28.
    [186] Jennifer Orme. Controlling microbes versus disinfection by-products [J]. AWWA,1992,84(2).
    [187] Shang, C.B.E., Blatchley, E.R. Chlorination of pure bacterial cultures in aqueous solution[J].Water Research,2001,35(1):244-254.
    [188] Ryu, J.H., Beuchat, L.R.. Factors affecting production of extracellular carbohydratecomplexes by Escherichia coli O157:H7[J]. Int. J. Food Microbiol,2004.95(2),189-204.
    [189]张金松.饮用水二氧化氯净化技术[M].化学工业出版社,2002..
    [190] Robert M. Clark, Mano Sivaganesan, Eugene W. Rice, et al. Development of a Ct equationfor the inactivation of Cryptosporidium oocysts with chlorine dioxide [J]. Water Research,2003,37(11):2773-2783.
    [191] Le Dantec C, Duguet J-P, Montiel A, Dumoutier N, Dubrou S, Vincent V. Chlorinedisinfection of Atypical Mycobacteria isolated froma water distribution system[J]. ApplEnviron Microbiol,2002,68(3):1025-1032.
    [192] Jolley, R.L. Chelsea, MI: Lewis Publishers. Water chlorination: chemistry, environmentalimpact and health effects. Toxicon,1986,24(10):1023.
    [193]庄云龙,石秀春,张荣亮.重金属在沉积物系统中吸附行为的研究进展[J].四川环境,2002,21(2):13-17.
    [194]佘海燕.河湖沉积物对重金属吸附-解吸的研究概况[J].化学工程师,2005(7):30-33.
    [195]刘思峰,郭天榜,党建国,等.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [196]王浙明,史惠祥,苏雨生,等.灰色关联模型用于工程方案优化[J].中国给水排水,2002,18(1):81-84.
    [197]李凡修,陈武,肖遥.灰色关联分析在城市污水处理厂规划改造决策中的应用[J].环境工程,2000,18(5):52-54.
    [198]于勇勇,刘红,何韵华,等.用灰色关联度方法分析活性炭-膜生物反应器效率的影响因素[J].环境污染与防治,2005,27(9):660-663.
    [199] Qiao Biao, Fang Chuang-lin, Ban Mao-sheng. Investigation of the Interactive, IntimidatingRelation Between Urbanization and the Environment in an Arid Area Based on Grey SystemTheory[J]. Journal China University of Mining and Technology (English Edition),2006,16(4):452-456.
    [200] Matthew A. Larson, Benito J. Marinas. Inactivation of Bacillus subtilis spores with ozone andmonochloramine [J]. Water Research,2003,37(4):833-844.
    [201]李国勇.神经模糊控制理论及应用[M].电子工业出版社,北京,2009.
    [202]飞思科技产品研发中心.神经网络理论与matlab7实现[M].电子工业出版社,北京,2005.
    [203]英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].陕西:西安电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700