肿瘤细胞靶向抗菌肽嵌合体的设计及其抗肿瘤活性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前肿瘤的治疗手段主要包括手术切除、放射线治疗、化学药物治疗、免疫治疗等。其中化学药物治疗在肿瘤治疗中一直发挥着重要作用,但是其治疗效果却受到其剂量依赖性毒性的影响,往往对患者造成二次伤害。因此,为了减少化学药物治疗的毒副作用,提高其治疗效果,将药物、抗体等有效成分靶向定位于肿瘤细胞的靶向治疗策略已经成为当前肿瘤治疗研究和临床实践的热点。抗菌肽(Antimicrobial peptides,AMPs)中的阳离子抗菌肽(Cationic antimicrobialpeptides, CAPs)具有分子量小、多存在内源性靶点、极易穿透肿瘤细胞膜、提高机体免疫应答、抑制肿瘤血管形成、抑制肿瘤生长和转移等特点。CAPs的抗肿瘤活性具有靶向性,肿瘤细胞和正常细胞的细胞膜组成上的基本差异可以解释CAPs对肿瘤细胞的选择性杀伤作用。虽然天然CAPs可以区别肿瘤细胞和正常细胞,但是不同CAPs对肿瘤细胞的特异性识别能力存在显著差异;此外,部分CAPs对正常细胞有一定的毒性和溶血作用。因此,目前急需通过对CAPs分子进行改造来提高其对肿瘤细胞的靶向性并降低其毒性。
     本文通过对抗菌肽数据库(http://aps.unmc.edu/AP/main.php)中抗肿瘤抗菌肽进行生物信息学分析,得出净电荷数、疏水性、疏水力矩、两亲性等参数决定抗肿瘤抗菌肽的靶向性能。因此,本研究以以上参数为筛选原则,从本研究室发现的牛蛙抗菌肽中筛选抗肿瘤抗菌肽。因子分析结果显示,净电荷数对于其他参数相对独立,净电荷数分布区域从+1~+5,这一发现就为以改变电荷来进行抗菌肽设计提供了理论基础。Temporin-La是本研究室通过对牛蛙皮肤cDNA文库的筛选所得到的阳离子两亲抗菌肽。Temporin-La属于Temporins家族,对多种肿瘤细胞均有杀伤活性。经过MEGA软件比对分析得到序列中氨基酸的组成特点,总结得到序列模版:F/L/I+L/F+P+L/I/F+L/I/V+G/A+N/S/K+L/F+L+S/N/G+K/G/S+L+L,是典型的α-螺旋结构。根据以上生物信息学分析,将Temporin-La序列中第10位谷氨酸替换为丝氨酸,得到净电荷数为+4的Temporin-Las。RGD肽是一类含有Arg-Gly-Asp氨基酸残基的小肽,RGD肽可以与整合素αvβ3发生特异性结合,抑制肿瘤新生血管的生成并启动肿瘤细胞凋亡。将RGD基序与Temporin-La进行偶联设计得到Temporin-La的三个类似物,分别是Temporin-Las、RGD-La和RGD-Las,应用Antheprot软件和chembiooffice2008进行二级结构和3D结构模拟,结果显示四种多肽均具有α-螺旋二级结构,RGD基序的加入,并不影响抗菌肽部分的3D空间结构。
     本文采用MTT细胞毒性实验、ZETA电位测定、流式细胞仪检测整合素表达实验、多肽-细胞PULL-DOWN实验、扫描电镜观察和激光共聚焦实时监测实验等体外实验,研究了Temporin-La及其三个类似物对6种肿瘤细胞(人肺腺癌细胞系A549、人结肠癌细胞系SW1116、人胃癌细胞系BGC-823、人宫颈癌细胞系Hela、人肝癌细胞系HepG2和人肝癌细胞系SMMC-7721)的抗肿瘤活性。并重点对比研究了Temporin-La和嵌合体RGD-Las在抗肿瘤活性和机制上的差异。细胞毒性实验结果表明,四种抗菌肽对以上肿瘤细胞均有杀伤作用,呈浓度依赖性,50μg/mL以下对正常细胞无毒性。ZETA电位测定和多肽-细胞PULL-DOWN实验结果表明正电荷是影响抗菌肽和嵌合体与肿瘤细胞膜结合的主要因素,而α-螺旋的两亲性结构则在抗菌肽插入脂质双分子层中起重要作用。因此本文在维持保守氨基酸不变的情况下,在适当位置改变或置换一些氨基酸,对天然抗菌肽进行改造或人工合成具有更高活性的抗肿瘤抗菌肽。嵌合体RGD-La和RGD-Las对整合素过表达的肿瘤细胞具有选择性。扫描电镜观察发现,Temporin-La和嵌合体RGD-Las均具有极强的膜裂解作用,作用时间迅速,但两种抗菌肽作用位置则具有差异。激光共聚焦显微镜实时监测Temporin-La和嵌合体RGD-Las进入肿瘤细胞人肝癌SMMC-7721动态过程,结果显示,两种多肽穿过细胞膜,进入细胞内部的时间和现象无明显差别,随着时间的递增,大量细胞碎片脱落,细胞核明显皱缩。
     本文通过建立裸鼠人肝癌SMMC-7721原位移植瘤模型,采用小动物成像系统观察实验、体内系统穿透实验、体外肿瘤穿透实验(Ex vivo tumor penetrationassay)和肿瘤组织和正常组织中多柔比星(DOX)定量等实验研究了嵌合体RGD-Las的体内靶向性和与DOX联合用药的协同作用。结果显示,RGD-Las具有良好的肿瘤组织靶向性,尾静脉注射药物30min采样,肝部肿瘤部位可见明显绿色荧光,而其他器官组织未见荧光。同样剂量的Temporin-La和RGD-Las作用于荷瘤裸鼠,RGD-Las作用的裸鼠肿瘤组织的伊文斯蓝渗透能力明显强于Temporin-La。两种多肽对心脏、脾脏、肾和脑均无穿透。嵌合体RGD-Las可以增强化疗药物DOX的肿瘤组织穿透深度。HE染色结果显示,嵌合体RGD-Las经尾静脉注射裸鼠作用24h后,可以引起肿瘤组织坏死,使其成为潜在的靶向抗肿瘤药物。
     本研究首次建立筛选抗肿瘤抗菌肽的整体分析法,设计并得到具有自主知识产权的肿瘤细胞靶向抗菌肽嵌合体。通过体外实验证实了Temporin-La、Temporin-Las、RGD-La和RGD-Las具有肿瘤细胞靶向杀伤活性,初步阐明抗菌肽嵌合体对肿瘤细胞膜的作用机制;体内实验研究显示Temporin-La和嵌合体RGD-Las具有体内肿瘤组织靶向性,RGD-Las可以增强化疗药物DOX对实体瘤穿透能力。因此,本研究为抗肿瘤抗菌肽在肿瘤靶向治疗上的应用奠定了的理论与实验基础。
Nowadays, the primary treatment of cancer includes surgery, radiotherapy,chemotherapy, immune therapy, monoclonal antibody therapy or other methods.While many chemotherapeutic agents have been developed, most have deleteriousside effects,because they are cytotoxic to both cancer cells and healthy cells andtissues. How to target cancer cells with high specificity and kill cancer cells with highefficiency remains an urgent demand for anticancer drugs. Antimicrobial peptides(AMPs), especially cationic antimicrobial peptides (CAPs), derived from variousspecies (including insects, amphibians, and humans) are bioactive peptides withpotential applications as anticancer agents. As new candidates for anticancer drugs,AMPs possess the advantages of high positive charges, amphipathic α-helices, shortamino acid sequences, low molecular weights, and weak antigenicity.
     We first used a whole bioinformatic analysis method as a platform to identifynew anticancer antimicrobial peptides (AMPs). Factor analysis was used to determinehow six parameters (net positive charges,%hydrophobic residues, meanhydrophobicity , Grand average of hydropathicity, amphiphilicity <μH>, andsecondary structure) contributed to structure and activity relationship. We found thatthe net charges was the relative independent factor, which could be used for peptidesdesign. We derived a conserved sequence template (F/L/I+L/F+P+L/I/F+L/I/V+G/A+N/S/K+L/F+L+S/N/G+K/G/S+L+L) from temporins peptides. Thehydrophobic residues were at positions1,2,4,5,8,9,12, and13. Polar residues withpositive charges were most common at position3,7, and11, and position10was themost common site for polar residues with no charges or negative charges.Correspondingly, Glu-10was replaced by a Ser residue (temporin-Las) and thisanalog as well as the parent temporin-La were extended N-terminally with RGDwithout spacing to incorporate into the temporin sequence the integrin αvβ3homingdomain (RGD-La and RGD-Las). Based on these results, we designed a temporin-La analogue (temporin-Las) and related constructs containg the RGD tripeptide, theintegrin αvβ3homing domain (RGD-La and RGD-Las).
     MTT assay showed that temporin-La and its synthetic analogs inhibited cancercell proliferation in a dose-dependent manner. We detected a link between the netcharges and integrin αvβ3expression of cancer cell lines and the antitumor activitiesof these peptides. Peptide-cell pull-down experiments revealed that the bindingefficiency of temporin-Las (+4) was higher than that of temporin-La (+3), whileRGD-Las had the strongest affinity. Furthermore, the effect of cell surface charges onpeptide affinity was examined. The zeta potential of the cancer cell lines showed thatall the cell lines carried negative charges. Evidence was provided that the affinitybetween RGD-Las and tumor cell membranes was stronger than other tested peptidesusing a pull-down assay. Morphological changes on the cell membrane induced bytemporin-La and RDG-Las, respectively, were examined by scanning electronmicroscopy (SEM). Additionally, time-dependent morphological changes weredetected by confocal microscopy, where the binding process of RGD-Las to the cellmembrane could be monitored. Since no apoptotic mechanism could be detected ontumor cells treated with RGD-Las, a membrane-disturbing action seems to be themajor mechanism for cell death. At the same time, we observed a lot of pores on thedamaged cell membranes, consistent with the carpet model mechanism. The resultsindicate that the electrostatic interaction between these cationic peptides and theanionic cell membrane is a major determinant of selective cell killing. Thus, the RGDtripeptide is a valuable ligand motif for tumor targeting, which leads to an increasedanticancer efficiency by RGD-Las. These AMPs-derived peptides have clinicalpotential as specifically targeting agents for the treatment of αvβ3positive tumors.Poor penetration of anti-cancer drugs into tumors can be an important factor limitingtheir efficacy.
     Studying mouse SMMC-7721tumor models, we show that chimera RGD-Lasincreased tissue permeability in a tumor-specific manner, allowing co-administereddrugs (DOX) to penetrate into extravascular tumor tissue. Importantly, this effect didnot require the drugs to be chemically conjugated to the peptide. HE results showedthat the RGD-Las may induce necrosis of SMMC-7721xenografts in nude mice. Thus, co-administration of chimera RGD-Las may be a valuable way to enhance theefficacy of anti-cancer drugs while reducing their side effects, a primary goal ofcancer therapy research.
     In this study, we successfully set a whole bioinformatic analysis method as aplatform to identify new anticancer antimicrobial peptides (AMPs). We found that thenet charges was the relative independent factor, which could be used for peptidesdesign. We detected a link between the net charges and integrin αvβ3expression ofcancer cell lines and the antitumor activities of these peptides.The designed peptidesin tumor imaging showed that chimera RGD-Las could target tumor tissue in vivo,and allowing co-administered drugs (DOX) to penetrate into extravascular tumortissue. The results revealed increased anticancer efficiency of these analogssuggesting clinical potential as specifically targeted anticancer agents.
引文
[1]TOYOKUNI S, Role of iron in carcinogenesis: cancer as a ferrotoxic disease[J].Cancer Sci,2009.100(1):9-16.
    [2]SMITH L L, K BROWN, P CARTHEW, et al., Chemoprevention of breast cancerby tamoxifen: risks and opportunities[J]. Crit Rev Toxicol,2000.30(5):571-94.
    [3]DROPCHO E J, The neurologic side effects of chemotherapeutic agents[J].Continuum (Minneap Minn),2011.17(1Neurologic Complications of SystemicDisease):95-112.
    [4]VERRILLS N M and M KAVALLARIS, Drug resistance mechanisms in cancercells: a proteomics perspective[J]. Curr Opin Mol Ther,2003.5(3):258-65.
    [5]MAINO D M, S TRAN, and F MEHTA, Side effects of chemotherapeuticoculo-toxic agents: a review[J]. Clin Eye Vis Care,2000.12(3-4):113-117.
    [6]TAN D S, M GERLINGER, B T TEH, et al., Anti-cancer drug resistance:understanding the mechanisms through the use of integrative genomics andfunctional RNA interference[J]. Eur J Cancer,2010.46(12):2166-77.
    [7]PEREZ-TOMAS R, Multidrug resistance: retrospect and prospects in anti-cancerdrug treatment[J]. Curr Med Chem,2006.13(16):1859-76.
    [8]CALCAGNO A M and S V AMBUDKAR, Molecular mechanisms of drugresistance in single-step and multi-step drug-selected cancer cells[J]. Methods MolBiol,2010.596:77-93.
    [9]SKARNES R C and D W WATSON, Antimicrobial factors of normal tissues andfluids[J]. Bacteriol Rev,1957.21(4):273-94.
    [10]ZEYA H I and J K SPITZNAGEL, Antibacterial and Enzymic Basic Proteinsfrom Leukocyte Lysosomes: Separation and Identification[J]. Science,1963.142:1085-7.
    [11]HULTMARK D, H STEINER, T RASMUSON, et al., Insect immunity.Purification and properties of three inducible bactericidal proteins fromhemolymph of immunized pupae of Hyalophora cecropia[J]. Eur J Biochem,1980.106(1):7-16.
    [12]JENSSEN H, P HAMILL, and R E HANCOCK, Peptide antimicrobial agents[J].Clin Microbiol Rev,2006.19(3):491-511.
    [13]RATHINAKUMAR R, W F WALKENHORST, and W C WIMLEY,Broad-spectrum antimicrobial peptides by rational combinatorial design andhigh-throughput screening: the importance of interfacial activity[J]. J Am ChemSoc,2009.131(22):7609-17.
    [14]STEINER H, D HULTMARK, A ENGSTROM, et al., Sequence and specificity oftwo antibacterial proteins involved in insect immunity[J]. Nature,1981.292(5820):246-8.
    [15]SELSTED M E, D M BROWN, R J DELANGE, et al., Primary structures ofMCP-1and MCP-2, natural peptide antibiotics of rabbit lung macrophages[J]. JBiol Chem,1983.258(23):14485-9.
    [16]COLE A M, P WEIS, and G DIAMOND, Isolation and characterization ofpleurocidin, an antimicrobial peptide in the skin secretions of winter flounder[J].J Biol Chem,1997.272(18):12008-13.
    [17]ZASLOFF M, Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of aprecursor[J]. Proc Natl Acad Sci U S A,1987.84(15):5449-53.
    [18]LEMAITRE B and J HOFFMANN, The host defense of Drosophilamelanogaster[J]. Annu Rev Immunol,2007.25:697-743.
    [19]VAN DIJK A, E J VELDHUIZEN, and H P HAAGSMAN, Avian defensins[J].Vet Immunol Immunopathol,2008.124(1-2):1-18.
    [20]CASTRO M S and W FONTES, Plant defense and antimicrobial peptides[J].Protein Pept Lett,2005.12(1):13-8.
    [21]ZASLOFF M, Antimicrobial peptides of multicellular organisms[J]. Nature,2002.415:389-395.
    [22]HOSKIN D W and A RAMAMOORTHY, Studies on anticancer activities ofantimicrobial peptides[J]. Biochim Biophys Acta,2008.1778(2):357-75.
    [23]KOCZULLA A R and R BALS, Antimicrobial peptides: current status andtherapeutic potential[J]. Drugs,2003.63(4):389-406.
    [24]MELO M N, D DUGOURD, and M A CASTANHO, Omigananpentahydrochloride in the front line of clinical applications of antimicrobialpeptides[J]. Recent Pat Antiinfect Drug Discov,2006.1(2):201-7.
    [25]LEE J Y, A BOMAN, C X SUN, et al., Antibacterial peptides from pig intestine:isolation of a mammalian cecropin[J]. Proc Natl Acad Sci U S A,1989.86(23):9159-62.
    [26]PAZGIER M, D M HOOVER, D YANG, et al., Human beta-defensins[J]. CellMol Life Sci,2006.63(11):1294-313.
    [27]ROLLINS-SMITH L A, The role of amphibian antimicrobial peptides inprotection of amphibians from pathogens linked to global amphibian declines[J].Biochim Biophys Acta,2009.1788(8):1593-9.
    [28]PUKALA T L, J H BOWIE, V M MASELLI, et al., Host-defence peptides fromthe glandular secretions of amphibians: structure and activity[J]. Nat Prod Rep,2006.23(3):368-93.
    [29]LAZAROVICI P, N PRIMOR, and L M LOEW, Purification and pore-formingactivity of two hydrophobic polypeptides from the secretion of the Red SeaMoses sole (Pardachirus marmoratus)[J]. J Biol Chem,1986.261(35):16704-13.
    [30]OREN Z and Y SHAI, A class of highly potent antibacterial peptides derived frompardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirusmarmoratus[J]. Eur J Biochem,1996.237(1):303-10.
    [31]KRUSZEWSKA D, H G SAHL, G BIERBAUM, et al., Mersacidin eradicatesmethicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model[J].J Antimicrob Chemother,2004.54(3):648-53.
    [32]GIULIANI A, G PIRRI, A BOZZI, et al., Antimicrobial peptides: naturaltemplates for synthetic membrane-active compounds[J]. Cell Mol Life Sci,2008.65(16):2450-60.
    [33]SCHWEIZER F, Cationic amphiphilic peptides with cancer-selective toxicity[J].Eur J Pharmacol,2009.625(1-3):190-4.
    [34]HANCOCK R E and H G SAHL, Antimicrobial and host-defense peptides as newanti-infective therapeutic strategies[J]. Nat Biotechnol,2006.24(12):1551-7.
    [35]HAUG B E, W STENSEN, M KALAAJI, et al., Synthetic antimicrobialpeptidomimetics with therapeutic potential[J]. J Med Chem,2008.51(14):4306-14.
    [36]SVENSON J, W STENSEN, B O BRANDSDAL, et al., Antimicrobial peptideswith stability toward tryptic degradation[J]. Biochemistry,2008.47(12):3777-88.
    [37]MAKOVITZKI A, J BARAM, and Y SHAI, Antimicrobial lipopolypeptidescomposed of palmitoyl Di-and tricationic peptides: in vitro and in vivo activities,self-assembly to nanostructures, and a plausible mode of action[J]. Biochemistry,2008.47(40):10630-6.
    [38]SUTTMANN H, M RETZ, F PAULSEN, et al., Antimicrobial peptides of theCecropin-family show potent antitumor activity against bladder cancer cells[J].BMC Urol,2008.8:5.
    [39]DATHE M and T WIEPRECHT, Structural features of helical antimicrobialpeptides: their potential to modulate activity on model membranes and biologicalcells[J]. Biochim Biophys Acta,1999.1462(1-2):71-87.
    [40]BLONDELLE S E and R A HOUGHTEN, Hemolytic and antimicrobial activitiesof the twenty-four individual omission analogues of melittin[J]. Biochemistry,1991.30(19):4671-8.
    [41]CHEN H C, J H BROWN, J L MORELL, et al., Synthetic magainin analogueswith improved antimicrobial activity[J]. FEBS Lett,1988.236(2):462-6.
    [42]THENNARASU S and R NAGARAJ, Specific antimicrobial and hemolyticactivities of18-residue peptides derived from the amino terminal region of thetoxin pardaxin[J]. Protein Eng,1996.9(12):1219-24.
    [43]PEREZ-PAYA E, R A HOUGHTEN, and S E BLONDELLE, The role ofamphipathicity in the folding, self-association and biological activity of multiplesubunit small proteins[J]. J Biol Chem,1995.270(3):1048-56.
    [44]ANDREU D, R B MERRIFIELD, H STEINER, et al., N-terminal analogues ofcecropin A: synthesis, antibacterial activity, and conformational properties[J].Biochemistry,1985.24(7):1683-8.
    [45]GAZIT E, A BOMAN, H G BOMAN, et al., Interaction of the mammalianantibacterial peptide cecropin P1with phospholipid vesicles[J]. Biochemistry,1995.34(36):11479-88.
    [46]POUNY Y, D RAPAPORT, A MOR, et al., Interaction of antimicrobialdermaseptin and its fluorescently labeled analogues with phospholipidmembranes[J]. Biochemistry,1992.31(49):12416-23.
    [47]KRAUSE E, M BEYERMANN, H FABIAN, et al., Conformation of awater-soluble beta-sheet model peptide. A circular dichroism andFourier-transform infrared spectroscopic study of double D-amino acidreplacements[J]. Int J Pept Protein Res,1996.48(6):559-68.
    [48]WIEPRECHT T, M DATHE, M SCHUMANN, et al., Conformational andfunctional study of magainin2in model membrane environments using the newapproach of systematic double-D-amino acid replacement[J]. Biochemistry,1996.35(33):10844-53.
    [49]JUVVADI P, S VUNNAM, E L MERRIFIELD, et al., Hydrophobic effects onantibacterial and channel-forming properties of cecropin A-melittin hybrids[J]. JPept Sci,1996.2(4):223-32.
    [50]MEE R P, T R AUTON, and P J MORGAN, Design of active analogues of a15-residue peptide using D-optimal design, QSAR and a combinatorial searchalgorithm[J]. J Pept Res,1997.49(1):89-102.
    [51]BESSALLE R, A GOREA, I SHALIT, et al., Structure-function studies ofamphiphilic antibacterial peptides[J]. J Med Chem,1993.36(9):1203-9.
    [52]OHMORI N, T NIIDOME, T HATAKEYAMA, et al., Interaction of alpha-helicalpeptides with phospholipid membrane: effects of chain length andhydrophobicity of peptides[J]. J Pept Res,1998.51(2):103-9.
    [53]BLONDELLE S E and R A HOUGHTEN, Design of model amphipathic peptideshaving potent antimicrobial activities[J]. Biochemistry,1992.31(50):12688-94.
    [54]WESTERHOFF H V, M ZASLOFF, J L ROSNER, et al., Functional synergism ofthe magainins PGLa and magainin-2in Escherichia coli, tumor cells andliposomes[J]. Eur J Biochem,1995.228(2):257-64.
    [55]WIEPRECHT T, M DATHE, M BEYERMANN, et al., Peptide hydrophobicitycontrols the activity and selectivity of magainin2amide in interaction withmembranes[J]. Biochemistry,1997.36(20):6124-32.
    [56]EISENBERG D, E SCHWARZ, M KOMAROMY, et al., Analysis of membraneand surface protein sequences with the hydrophobic moment plot[J]. J Mol Biol,1984.179(1):125-42.
    [57]EISENBERG D, R M WEISS, and T C TERWILLIGER, The helical hydrophobicmoment: a measure of the amphiphilicity of a helix[J]. Nature,1982.299(5881):371-4.
    [58]BRASSEUR R, Differentiation of lipid-associating helices by use ofthree-dimensional molecular hydrophobicity potential calculations[J]. J BiolChem,1991.266(24):16120-7.
    [59]BESSALLE R, H HAAS, A GORIA, et al., Augmentation of the antibacterialactivity of magainin by positive-charge chain extension[J]. Antimicrob AgentsChemother,1992.36(2):313-7.
    [60]MATSUZAKI K, K SUGISHITA, M HARADA, et al., Interactions of anantimicrobial peptide, magainin2, with outer and inner membranes ofGram-negative bacteria[J]. Biochim Biophys Acta,1997.1327(1):119-30.
    [61]DATHE M, T WIEPRECHT, H NIKOLENKO, et al., Hydrophobicity,hydrophobic moment and angle subtended by charged residues modulateantibacterial and haemolytic activity of amphipathic helical peptides[J]. FEBSLett,1997.403(2):208-12.
    [62]CHOU H T, T Y KUO, J C CHIANG, et al., Design and synthesis of cationicantimicrobial peptides with improved activity and selectivity against Vibriospp[J]. Int J Antimicrob Agents,2008.32(2):130-8.
    [63]GLUKHOV E, L L BURROWS, and C M DEBER, Membrane interactions ofdesigned cationic antimicrobial peptides: the two thresholds[J]. Biopolymers,2008.89(5):360-71.
    [64]JIANG Z, A I VASIL, J HALE, et al., Effects of net charge and the number ofpositively charged residues on the biological activity of amphipathicalpha-helical cationic antimicrobial peptides[J]. Adv Exp Med Biol,2009.611:561-2.
    [65]YAMAMOTO N and A TAMURA, Designed low amphipathic peptides withalpha-helical propensity exhibiting antimicrobial activity via a lipid domainformation mechanism[J]. Peptides,2010.31(5):794-805.
    [66]WANG P, J K BANG, H J KIM, et al., Antimicrobial specificity and mechanismof action of disulfide-removed linear analogs of the plant-derived Cys-richantimicrobial peptide Ib-AMP1[J]. Peptides,2009.30(12):2144-9.
    [67]SUN X, S CHEN, S LI, et al., Deletion of two C-terminal Gln residues of12-26-residue fragment of melittin improves its antimicrobial activity[J].Peptides,2005.26(3):369-75.
    [68]LESMES L P, M Y BOHORQUEZ, L F CARRENO, et al., A C-terminal cationicfragment derived from an arginine-rich peptide exhibits in vitro antibacterial andanti-plasmodial activities governed by its secondary structure properties[J].Peptides,2009.30(12):2150-60.
    [69]DUVAL E, C ZATYLNY, M LAURENCIN, et al., KKKKPLFGLFFGLF: acationic peptide designed to exert antibacterial activity[J]. Peptides,2009.30(9):1608-12.
    [70]UTSUGI T, A J SCHROIT, J CONNOR, et al., Elevated expression ofphosphatidylserine in the outer membrane leaflet of human tumor cells andrecognition by activated human blood monocytes[J]. Cancer Res,1991.51(11):3062-6.
    [71]YOON W H, H D PARK, K LIM, et al., Effect of O-glycosylated mucin oninvasion and metastasis of HM7human colon cancer cells[J]. Biochem BiophysRes Commun,1996.222(3):694-9.
    [72]LEE H S, C B PARK, J M KIM, et al., Mechanism of anticancer activity ofbuforin IIb, a histone H2A-derived peptide[J]. Cancer Lett,2008.271(1):47-55.
    [73]KLEEFF J, T ISHIWATA, A KUMBASAR, et al., The cell-surface heparansulfate proteoglycan glypican-1regulates growth factor action in pancreaticcarcinoma cells and is overexpressed in human pancreatic cancer[J]. J ClinInvest,1998.102(9):1662-73.
    [74]SIMONS K and E IKONEN, How cells handle cholesterol[J]. Science,2000.290(5497):1721-6.
    [75]SILVESTRO L, K GUPTA, J N WEISER, et al., The concentration-dependentmembrane activity of cecropin A[J]. Biochemistry,1999.38(12):3850.
    [76]LI Y C, M J PARK, S K YE, et al., Elevated levels of cholesterol-rich lipid rafts incancer cells are correlated with apoptosis sensitivity induced bycholesterol-depleting agents[J]. Am J Pathol,2006.168(4):1107-18; quiz1404-5.
    [77]CHAN S C, L HUI, and H M CHEN, Enhancement of the cytolytic effect ofanti-bacterial cecropin by the microvilli of cancer cells[J]. Anticancer Res,1998.18(6A):4467-74.
    [78]CRUCIANI R A, J L BARKER, M ZASLOFF, et al., Antibiotic magainins exertcytolytic activity against transformed cell lines through channel formation[J].Proc Natl Acad Sci U S A,1991.88(9):3792-6.
    [79]BESSALLE R, A KAPITKOVSKY, A GOREA, et al., All-D-magainin: chirality,antimicrobial activity and proteolytic resistance[J]. FEBS Lett,1990.274(1-2):151-5.
    [80]MERRIFIELD R B, P JUVVADI, D ANDREU, et al., Retro and retroenantioanalogs of cecropin-melittin hybrids[J]. Proc Natl Acad Sci U S A,1995.92(8):3449-53.
    [81]OREN Z and Y SHAI, Mode of action of linear amphipathic alpha-helicalantimicrobial peptides[J]. Biopolymers,1998.47(6):451-63.
    [82]SHAI Y, Mechanism of the binding, insertion and destabilization of phospholipidbilayer membranes by alpha-helical antimicrobial and cell non-selectivemembrane-lytic peptides[J]. Biochim Biophys Acta,1999.1462(1-2):55-70.
    [83]MAI J C, Z MI, S H KIM, et al., A proapoptotic peptide for the treatment of solidtumors[J]. Cancer Res,2001.61(21):7709-12.
    [84]SHARMA S V, Melittin resistance: a counterselection for ras transformation[J].Oncogene,1992.7(2):193-201.
    [85]CHERNYSH S, S I KIM, G BEKKER, et al., Antiviral and antitumor peptidesfrom insects[J]. Proc Natl Acad Sci U S A,2002.99(20):12628-32.
    [86]MUHLE S A and J P TAM, Design of Gram-negative selective antimicrobialpeptides[J]. Biochemistry,2001.40(19):5777-85.
    [87]ECKERT R, F QI, D K YARBROUGH, et al., Adding selectivity to antimicrobialpeptides: rational design of a multidomain peptide against Pseudomonas spp[J].Antimicrob Agents Chemother,2006.50(4):1480-8.
    [88]ECKERT R, K M BRADY, E P GREENBERG, et al., Enhancement ofantimicrobial activity against pseudomonas aeruginosa by coadministration ofG10KHc and tobramycin[J]. Antimicrob Agents Chemother,2006.50(11):3833-8.
    [89]HE J, M H ANDERSON, W SHI, et al., Design and activity of a 'dual-targeted'antimicrobial peptide[J]. Int J Antimicrob Agents,2009.33(6):532-7.
    [90]TOSSI A, C TARANTINO, and D ROMEO, Design of synthetic antimicrobialpeptides based on sequence analogy and amphipathicity[J]. Eur J Biochem,1997.250(2):549-58.
    [91]TIOZZO E, G ROCCO, A TOSSI, et al., Wide-spectrum antibiotic activity ofsynthetic, amphipathic peptides[J]. Biochem Biophys Res Commun,1998.249(1):202-6.
    [92]GIANGASPERO A, L SANDRI, and A TOSSI, Amphipathic alpha helicalantimicrobial peptides[J]. Eur J Biochem,2001.268(21):5589-600.
    [93]SAWAI M V, A J WARING, W R KEARNEY, et al., Impact of single-residuemutations on the structure and function of ovispirin/novispirin antimicrobialpeptides[J]. Protein Eng,2002.15(3):225-32.
    [94]UETA E, T TANIDA, and T OSAKI, A novel bovine lactoferrin peptide,FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils[J].J Pept Res,2001.57(3):240-9.
    [95]SHIN S Y, S H LEE, S T YANG, et al., Antibacterial, antitumor and hemolyticactivities of alpha-helical antibiotic peptide, P18and its analogs[J]. J Pept Res,2001.58(6):504-14.
    [96]FERNANDEZ-LOPEZ S, H S KIM, E C CHOI, et al., Antibacterial agents basedon the cyclic D,L-alpha-peptide architecture[J]. NATURE,2001.412(6845):452-5.
    [97]LEE K H, Development of short antimicrobial peptides derived from host defensepeptides or by combinatorial libraries[J]. Curr Pharm Des,2002.8(9):795-813.
    [98]BLONDELLE S E and K LOHNER, Combinatorial libraries: a tool to designantimicrobial and antifungal peptide analogues having lytic specificities forstructure-activity relationship studies[J]. Biopolymers,2000.55(1):74-87.
    [99]DOBRZYNSKA I, B SZACHOWICZ-PETELSKA, S SULKOWSKI, et al.,Changes in electric charge and phospholipids composition in human colorectalcancer cells[J]. Mol Cell Biochem,2005.276(1-2):113-9.
    [100]OHSAKI Y, A F GAZDAR, H C CHEN, et al., Antitumor activity of magaininanalogues against human lung cancer cell lines[J]. Cancer Res,1992.52(13):3534-8.
    [101]SOBALLE P W, W L MALOY, M L MYRGA, et al., Experimental local therapyof human melanoma with lytic magainin peptides[J]. Int J Cancer,1995.60(2):280-4.
    [102]CHEN J, X M XU, C B UNDERHILL, et al., Tachyplesin activates the classiccomplement pathway to kill tumor cells[J]. Cancer Res,2005.65(11):4614-22.
    [103]ADAMIA S, C A MAXWELL, and L M PILARSKI, Hyaluronan and hyaluronansynthases: potential therapeutic targets in cancer[J]. Curr Drug TargetsCardiovasc Haematol Disord,2005.5(1):3-14.
    [104]TOSTESON M T, S J HOLMES, M RAZIN, et al., Melittin lysis of red cells[J].J Membr Biol,1985.87(1):35-44.
    [105]PANDEY B K, A AHMAD, N ASTHANA, et al., Cell-selective lysis by novelanalogues of melittin against human red blood cells and Escherichia coli[J].Biochemistry,2010.49(36):7920-9.
    [106]HOLLE L, W SONG, E HOLLE, et al., A matrix metalloproteinase2cleavablemelittin/avidin conjugate specifically targets tumor cells in vitro and in vivo[J].Int J Oncol,2003.22(1):93-8.
    [107]CORTI A and F CURNIS, Tumor vasculature targeting through NGRpeptide-based drug delivery systems[J]. Curr Pharm Biotechnol,2011.12(8):1128-34.
    [108]MORI T, Cancer-specific ligands identified from screening of peptide-displaylibraries[J]. Curr Pharm Des,2004.10(19):2335-43.
    [109]AINA O H, T C SROKA, M L CHEN, et al., Therapeutic cancer targetingpeptides[J]. Biopolymers,2002.66(3):184-99.
    [110]SHADIDI M and M SIOUD, Selective targeting of cancer cells using syntheticpeptides[J]. Drug Resist Updat,2003.6(6):363-71.
    [111]MEREDITH J E, JR. and M A SCHWARTZ, Integrins, adhesion and apoptosis[J].Trends Cell Biol,1997.7(4):146-50.
    [112]D'SOUZA S E, M H GINSBERG, and E F PLOW, Arginyl-glycyl-aspartic acid(RGD): a cell adhesion motif[J]. Trends Biochem Sci,1991.16(7):246-50.
    [113]SUGAHARA K N, T TEESALU, P P KARMALI, et al., Coadministration of atumor-penetrating peptide enhances the efficacy of cancer drugs[J]. Science,2010.328(5981):1031-5.
    [114]XIONG J P, T STEHLE, R ZHANG, et al., Crystal structure of the extracellularsegment of integrin alpha Vbeta3in complex with an Arg-Gly-Asp ligand[J].Science,2002.296(5565):151-5.
    [115]BUCKLEY C D, D PILLING, N V HENRIQUEZ, et al., RGD peptides induceapoptosis by direct caspase-3activation[J]. NATURE,1999.397(6719):534-9.
    [116]CHEN Y, X XU, S HONG, et al., RGD-Tachyplesin inhibits tumor growth[J].Cancer Res,2001.61(6):2434-8.
    [117]ELLERBY H M, W ARAP, L M ELLERBY, et al., Anti-cancer activity oftargeted pro-apoptotic peptides[J]. Nat Med,1999.5(9):1032-8.
    [118]LAW B, L QUINTI, Y CHOI, et al., A mitochondrial targeted fusion peptideexhibits remarkable cytotoxicity[J]. Mol Cancer Ther,2006.5(8):1944-9.
    [119]ELLERBY H M, D E BREDESEN, S FUJIMURA, et al., Hunter-killer peptide(HKP) for targeted therapy[J]. J Med Chem,2008.51(19):5887-92.
    [120]HAMMAMI R and I FLISS, Current trends in antimicrobial agent research:chemo-and bioinformatics approaches[J]. Drug Discov Today,2010.15(13-14):540-6.
    [121]GALPERIN M Y and G R COCHRANE, Nucleic Acids Research annualDatabase Issue and the NAR online Molecular Biology Database Collection in2009[J]. Nucleic Acids Res,2009.37(Database issue): D1-4.
    [122]WANG G, X LI, and Z WANG, APD2: the updated antimicrobial peptidedatabase and its application in peptide design[J]. Nucleic Acids Res,2009.37(Database issue): D933-7.
    [123]BRAHMACHARY M, S P KRISHNAN, J L KOH, et al., ANTIMIC: a databaseof antimicrobial sequences[J]. Nucleic Acids Res,2004.32(Database issue):D586-9.
    [124]THOMAS S, S KARNIK, R S BARAI, et al., CAMP: a useful resource forresearch on antimicrobial peptides[J]. Nucleic Acids Res,2010.38(Databaseissue): D774-80.
    [125]HAMMAMI R, A ZOUHIR, C LE LAY, et al., BACTIBASE second release: adatabase and tool platform for bacteriocin characterization[J]. BMC Microbiol,2010.10:22.
    [126]HAMMAMI R, J BEN HAMIDA, G VERGOTEN, et al., PhytAMP: a databasededicated to antimicrobial plant peptides[J]. Nucleic Acids Res,2009.37(Database issue): D963-8.
    [127]GUEGUEN Y, J GARNIER, L ROBERT, et al., PenBase, the shrimpantimicrobial peptide penaeidin database: sequence-based classification andrecommended nomenclature[J]. Dev Comp Immunol,2006.30(3):283-8.
    [128]FJELL C D, R E HANCOCK, and A CHERKASOV, AMPer: a database and anautomated discovery tool for antimicrobial peptides[J]. Bioinformatics,2007.23(9):1148-55.
    [129]WADE D and J ENGLUND, Synthetic antibiotic peptides database[J]. ProteinPept Lett,2002.9(1):53-7.
    [130]GELLY J C, J GRACY, Q KAAS, et al., The KNOTTIN website and database: anew information system dedicated to the knottin scaffold[J]. Nucleic Acids Res,2004.32(Database issue): D156-9.
    [131]LARKIN M A, G BLACKSHIELDS, N P BROWN, et al., Clustal W and ClustalX version2.0[J]. Bioinformatics,2007.23(21):2947-8.
    [132]WILKINS M R, E GASTEIGER, A BAIROCH, et al., Protein identification andanalysis tools in the ExPASy server[J]. Methods Mol Biol,1999.112:531-52.
    [133]RICE P, I LONGDEN, and A BLEASBY, EMBOSS: the European MolecularBiology Open Software Suite[J]. Trends Genet,2000.16(6):276-7.
    [134]KNELLER D G, F E COHEN, and R LANGRIDGE, Improvements in proteinsecondary structure prediction by an enhanced neural network[J]. J Mol Biol,1990.214(1):171-82.
    [135]CHENG J, A Z RANDALL, M J SWEREDOSKI, et al., SCRATCH: a proteinstructure and structural feature prediction server[J]. Nucleic Acids Res,2005.33(Web Server issue): W72-6.
    [136]DELEAGE G, C COMBET, C BLANCHET, et al., ANTHEPROT: an integratedprotein sequence analysis software with client/server capabilities[J]. ComputBiol Med,2001.31(4):259-67.
    [137]HAMMAMI R, A ZOUHIR, K NAGHMOUCHI, et al., SciDBMaker: newsoftware for computer-aided design of specialized biological databases[J]. BMCBioinformatics,2008.9:121.
    [138]LATA S, N K MISHRA, and G P RAGHAVA, AntiBP2: improved version ofantibacterial peptide prediction[J]. BMC Bioinformatics,2010.11Suppl1: S19.
    [139]RIGOUTSOS I and A FLORATOS, Combinatorial pattern discovery inbiological sequences: The TEIRESIAS algorithm[J]. Bioinformatics,1998.14(1):55-67.
    [140]KERWIN S M, ChemBioOffice Ultra2010suite[J]. J Am Chem Soc,2010.132(7):2466-7.
    [141]SALEEM M, M NAZIR, M S ALI, et al., Antimicrobial natural products: anupdate on future antibiotic drug candidates[J]. Nat Prod Rep,2010.27(2):238-54.
    [142]WANG Z and G WANG, APD: the Antimicrobial Peptide Database[J]. NucleicAcids Res,2004.32(Database issue): D590-2.
    [143]SCHNEIDER M, M TOGNOLLI, and A BAIROCH, The Swiss-Prot proteinknowledgebase and ExPASy: providing the plant community with high qualityproteomic data and tools[J]. Plant Physiol Biochem,2004.42(12):1013-21.
    [144]GASTEIGER E, A GATTIKER, C HOOGLAND, et al., ExPASy: Theproteomics server for in-depth protein knowledge and analysis[J]. Nucleic AcidsRes,2003.31(13):3784-8.
    [145]ARTIMO P, M JONNALAGEDDA, K ARNOLD, et al., ExPASy: SIBbioinformatics resource portal[J]. Nucleic Acids Res,2012.40(Web Serverissue): W597-603.
    [146]GAUTIER R, D DOUGUET, B ANTONNY, et al., HELIQUEST: a web serverto screen sequences with specific alpha-helical properties[J]. Bioinformatics,2008.24(18):2101-2.
    [147]TAMURA K, J DUDLEY, M NEI, et al., MEGA4: Molecular EvolutionaryGenetics Analysis (MEGA) software version4.0[J]. Mol Biol Evol,2007.24(8):1596-9.
    [148]MANGONI M L, Temporins, anti-infective peptides with expandingproperties[J]. Cell Mol Life Sci,2006.63(9):1060-9.
    [149]MANGONI M L, A C RINALDI, A DI GIULIO, et al., Structure-functionrelationships of temporins, small antimicrobial peptides from amphibian skin[J].Eur J Biochem,2000.267(5):1447-54.
    [150]李趣欢,张文军,两亲α-螺旋抗菌肽的分子设计研究现状与进展[J].中国新药杂志,2005.14(9):7.
    [151]TOSSI A, L SANDRI, and A GIANGASPERO, Amphipathic, α-helicalantimicrobial peptides[J]. Biopolymers.,2000.55(1):4-30.
    [152]MADER J S and D W HOSKIN, Cationic antimicrobial peptides as novelcytotoxic agents for cancer treatment[J]. Expert. Opin. Investig. Drugs.,2006.15(8):933-46.
    [153]DATHE M and T WIEPRECHT, Structural features of helical antimicrobialpeptides: their potential to modulate activity on model membranes andbiological cells[J]. Biochim. Biophys. Acta.,1999.1462(1-2):71-87.
    [154]张丽,张春丽,王荣福,闫平,康磊,郭凤琴,魏海亮,崔永刚,卢霞, RGD多肽类药物设计、活性测定及99Tcm-cRGD二聚体的制备[J].核化学与放射化学,2011.33(2):8.
    [155]SUGAHARA K N, T TEESALU, P P KARMALI, et al., Tissue-penetratingdelivery of compounds and nanoparticles into tumors[J]. Cancer Cell,2009.16(6):510-20.
    [156]SU Z F, G LIU, S GUPTA, et al., In vitro and in vivo evaluation of aTechnetium-99m-labeled cyclic RGD peptide as a specific marker ofalpha(V)beta(3) integrin for tumor imaging[J]. Bioconjug Chem,2002.13(3):561-70.
    [157]PIERSCHBACHER M D and E RUOSLAHTI, Influence of stereochemistry ofthe sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion[J]. J BiolChem,1987.262(36):17294-8.
    [158]JIANG Z, A I VASIL, J HALE, et al., Effects of net charge and the number ofpositively charged residues on the biological activity of amphipathic α-helicalcationic antimicrobial peptides[J]. Adv. Exp. Med. Biol.,2009.611:561-2.
    [159]WANG K R, B Z ZHANG, W ZHANG, et al., Antitumor effects, cell selectivityand structure-activity relationship of a novel antimicrobial peptidepolybia-MPI[J]. Peptides,2008.29(6):963-8.
    [160]YAMAMOTO N and A TAMURA, Designed low amphipathic peptides withα-helical propensity exhibiting antimicrobial activity via a lipid domainformation mechanism[J]. Peptides.,2010.31(5):794-805.
    [161]HOSKIN D W and A RAMAMOORTHY, Studies on anticancer activities ofantimicrobial peptides[J]. Biochim. Biophys. Acta.,2008.1778(2):357-75.
    [162]DOBRZYNSKA I, B SZACHOWICZ-PETELSKA, S SULKOWSKI, et al.,Changes in electric charge and phospholipids composition in human colorectalcancer cells[J]. Mol. Cell. Biochem.,2005.276(1-2):113-9.
    [163]GOLDENBERG N M and B E STEINBERG, Surface charge: a key determinantof protein localization and function[J]. Cancer Res,2010.70(4):1277-80.
    [164]王生,陆茵,钱文慧,赵杨,王颖钰,郑仕中,王爱云,细胞电荷:抗肿瘤研究潜在的重要靶标[J].中国药理学通报,2010.26(12):4.
    [165]BIGNAMI G S, A rapid and sensitive hemolysis neutralization assay forpalytoxin[J]. Toxicon,1993.31(6):817-20.
    [166]ROSENFELD Y, N LEV, and Y SHAI, Effect of the hydrophobicity to netpositive charge ratio on antibacterial and anti-endotoxin activities of structurallysimilar antimicrobial peptides[J]. Biochemistry,2010.49(5):853-61.
    [167]KIRSON E D, V DBALY, F TOVARYS, et al., Alternating electric fields arrestcell proliferation in animal tumor models and human brain tumors[J]. Proc NatlAcad Sci U S A,2007.104(24):10152-7.
    [168]HONG S Y, T G PARK, and K H LEE, The effect of charge increase on thespecificity and activity of a short antimicrobial peptide[J]. Peptides,2001.22(10):1669-74.
    [169]LEUSCHNER C and W HANSEL, Membrane disrupting lytic peptides forcancer treatments[J]. Curr Pharm Des,2004.10(19):2299-310.
    [170]IWASAKI T, Selective cancer cell cytotoxicity of enantiomeric9-mer peptidesderivedfrom beetle defensins depends on negatively charged phosphatidylserineon the cell surface[J]. Peptides,2009.
    [171]BAUER K, C MIERKE, and J BEHRENS, Expression profiling reveals genesassociated with transendothelial migration of tumor cells: a functional role foralphavbeta3integrin[J]. Int J Cancer,2007.121(9):1910-8.
    [172]郑伟,武正炎,甄林林,王汉晋,朱旬,整合素αvβ3在乳腺癌中的表达及与骨髓微转移的关系[J].南京医科大学学报(自然科学版),2006.6
    [173]NIP J, H SHIBATA, D J LOSKUTOFF, et al., Human melanoma cells derivedfrom lymphatic metastases use integrin alpha v beta3to adhere to lymph nodevitronectin[J]. J Clin Invest,1992.90(4):1406-13.
    [174]LIU Z, B JIA, H ZHAO, et al., Specific targeting of human integrin alpha(v)beta(3) with (111)In-labeled Abegrin in nude mouse models[J]. Mol Imaging Biol,2011.13(1):112-20.
    [175]LAI Y and R L GALLO, AMPed up immunity: how antimicrobial peptides havemultiple roles in immune defense[J]. Trends Immunol,2009.30(3):131-41.
    [176]REDDY K V, R D YEDERY, and C ARANHA, Antimicrobial peptides: premisesand promises[J]. Int J Antimicrob Agents,2004.24(6):536-47.
    [177]LINS L, M DECAFFMEYER, A THOMAS, et al., Relationships between theorientation and the structural properties of peptides and their membraneinteractions[J]. Biochim Biophys Acta,2008.1778(7-8):1537-44.
    [178]DENNISON S R, F HARRIS, and D A PHOENIX, Are oblique orientatedalpha-helices used by antimicrobial peptides for membrane invasion?[J]. ProteinPept Lett,2005.12(1):27-9.
    [179]JANSSEN M L, W J OYEN, I DIJKGRAAF, et al., Tumor targeting withradiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model[J].Cancer Res,2002.62(21):6146-51.
    [180]闫真芳徐余,受体介导的靶向药物研究进展[J].药物生物技术,2009.
    [181]MUROHARA T, J R HOROWITZ, M SILVER, et al., Vascular endothelialgrowth factor/vascular permeability factor enhances vascular permeability vianitric oxide and prostacyclin[J]. Circulation,1998.97(1):99-107.
    [182]GOLDENBERG O, S HERRMANN, G MARJORAM, et al., Molecularmonitoring of the intestinal flora by denaturing high performance liquidchromatography[J]. J Microbiol Methods,2007.68(1):94-105.
    [183]LEE B C, H J SUNG, J S KIM, et al., Synthesis of Tc-99m labeledglucosamino-Asp-cyclic(Arg-Gly-Asp-d-Phe-Lys) as a potential angiogenesisimaging agent[J]. Bioorg Med Chem,2007.15(24):7755-64.
    [184]SHAI Y and Z OREN, From "carpet" mechanism to de-novo designeddiastereomeric cell-selective antimicrobial peptides[J]. Peptides,2001.22(10):1629-41.
    [185]ALMANSOUR N M, E PIROGOVA, P J COLOE, et al., Investigation ofcytotoxicity of negative control peptides versus bioactive peptides on skincancer and normal cells: a comparative study[J]. Future Med Chem,2012.4(12):1553-65.
    [186]JAIN R K, Barriers to drug delivery in solid tumors[J]. Sci Am,1994.271(1):58-65.
    [187]MINCHINTON A I and I F TANNOCK, Drug penetration in solid tumours[J].Nat Rev Cancer,2006.6(8):583-92.
    [188]HELDIN C H, K RUBIN, K PIETRAS, et al., High interstitial fluid pressure-anobstacle in cancer therapy[J]. Nat Rev Cancer,2004.4(10):806-13.
    [189]TANNOCK I F, C M LEE, J K TUNGGAL, et al., Limited penetration ofanticancer drugs through tumor tissue: a potential cause of resistance of solidtumors to chemotherapy[J]. Clin Cancer Res,2002.8(3):878-84.
    [190]TREDAN O, C M GALMARINI, K PATEL, et al., Drug resistance and the solidtumor microenvironment[J]. J Natl Cancer Inst,2007.99(19):1441-54.
    [191]TANG N, G DU, N WANG, et al., Improving penetration in tumors withnanoassemblies of phospholipids and doxorubicin[J]. J Natl Cancer Inst,2007.99(13):1004-15.
    [192]JANG S H, M G WIENTJES, D LU, et al., Drug delivery and transport to solidtumors[J]. Pharm Res,2003.20(9):1337-50.
    [193]JARACZ S, J CHEN, L V KUZNETSOVA, et al., Recent advances intumor-targeting anticancer drug conjugates[J]. Bioorg Med Chem,2005.13(17):5043-54.
    [194]PRIMEAU A J, A RENDON, D HEDLEY, et al., The distribution of theanticancer drug Doxorubicin in relation to blood vessels in solid tumors[J]. ClinCancer Res,2005.11(24Pt1):8782-8.
    [195]EIKENBERRY S, A tumor cord model for doxorubicin delivery and doseoptimization in solid tumors[J]. Theor Biol Med Model,2009.6:16.
    [196]JAIN R K, Delivery of molecular and cellular medicine to solid tumors[J]. AdvDrug Deliv Rev,2012.
    [197]JAIN R K, Vascular and interstitial barriers to delivery of therapeutic agents intumors[J]. Cancer Metastasis Rev,1990.9(3):253-66.
    [198]KERBEL R S, J RAK, H KOBAYASHI, et al., Multicellular resistance: a newparadigm to explain aspects of acquired drug resistance of solid tumors[J]. ColdSpring Harb Symp Quant Biol,1994.59:661-72.
    [199]TUNGGAL J K, D S COWAN, H SHAIKH, et al., Penetration of anticancerdrugs through solid tissue: a factor that limits the effectiveness of chemotherapyfor solid tumors[J]. Clin Cancer Res,1999.5(6):1583-6.
    [200]HICKS K O, S J OHMS, P L VAN ZIJL, et al., An experimental andmathematical model for the extravascular transport of a DNA intercalator intumours[J]. Br J Cancer,1997.76(7):894-903.
    [201]WILSON W R and K O HICKS, Measurement of extravascular drug diffusion inmulticellular layers[J]. Br J Cancer,1999.79(9-10):1623-6.
    [202]VAUPEL P, F KALLINOWSKI, and P OKUNIEFF, Blood flow, oxygen andnutrient supply, and metabolic microenvironment of human tumors: a review[J].Cancer Res,1989.49(23):6449-65.
    [203]HELMLINGER G, F YUAN, M DELLIAN, et al., Interstitial pH and pO2gradients in solid tumors in vivo: high-resolution measurements reveal a lack ofcorrelation[J]. Nat Med,1997.3(2):177-82.
    [204]RUOSLAHTI E, Specialization of tumour vasculature[J]. Nat Rev Cancer,2002.2(2):83-90.
    [205]RUOSLAHTI E and D RAJOTTE, An address system in the vasculature ofnormal tissues and tumors[J]. Annu Rev Immunol,2000.18:813-27.
    [206]ELICEIRI B P and D A CHERESH, Adhesion events in angiogenesis[J]. CurrOpin Cell Biol,2001.13(5):563-8.
    [207]DIJKGRAAF I and O C BOERMAN, Radionuclide imaging of tumorangiogenesis[J]. Cancer Biother Radiopharm,2009.24(6):637-47.
    [208]CURNIS F, A GASPARRI, A SACCHI, et al., Coupling tumor necrosisfactor-alpha with alphaV integrin ligands improves its antineoplastic activity[J].Cancer Res,2004.64(2):565-71.
    [209]CHEN W, P A JARZYNA, G A VAN TILBORG, et al., RGD peptidefunctionalized and reconstituted high-density lipoprotein nanoparticles as aversatile and multimodal tumor targeting molecular imaging probe[J]. FASEB J.
    [210]DIMASTROMATTEO J, L M RIOU, M AHMADI, et al., In vivo molecularimaging of myocardial angiogenesis using the alpha(v)beta (3) integrin-targetedtracer (99m)Tc-RAFT-RGD[J]. J Nucl Cardiol.
    [211]DIJKGRAAF I, A J BEER, and H J WESTER, Application of RGD-containingpeptides as imaging probes for αvβ3expression[J]. Front. Biosci.,2009.14:887-99.
    [212]GEWIRTZ D A, A critical evaluation of the mechanisms of action proposed forthe antitumor effects of the anthracycline antibiotics adriamycin anddaunorubicin[J]. Biochem Pharmacol,1999.57(7):727-41.
    [213]MAINO D M, S TRAN, and F MEHTA, Side effects of chemotherapeuticoculo-toxic agents: a review[J]. Clin. Eye Vis. Care.,2000.12(3-4):113-117.
    [214]ZHAN C, B GU, C XIE, et al., Cyclic RGD conjugated poly(ethyleneglycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastomaeffect[J]. J Control Release.
    [215]MAGZOUB M and A GRASLUND, Cell-penetrating peptides:[corrected] frominception to application[J]. Q Rev Biophys,2004.37(2):147-95.
    [216]HENRIQUES S T, M N MELO, and M A CASTANHO, Cell-penetratingpeptides and antimicrobial peptides: how different are they?[J]. Biochem J,2006.399(1):1-7.
    [217]ZASLOFF M, Antimicrobial peptides of multicellular organisms[J]. NATURE.,2002415:389-395.
    [218]RICHARD M J, P GUIRAUD, C DIDIER, et al., Human immunodeficiencyvirus type1Tat protein impairs selenoglutathione peroxidase expression andactivity by a mechanism independent of cellular selenium uptake: consequenceson cellular resistance to UV-A radiation[J]. Arch Biochem Biophys,2001.386(2):213-20.
    [219]FRANKEL A D and C O PABO, Cellular uptake of the tat protein from humanimmunodeficiency virus[J]. Cell,1988.55(6):1189-93.
    [220]JOLIOT A, C PERNELLE, H DEAGOSTINI-BAZIN, et al., Antennapediahomeobox peptide regulates neural morphogenesis[J]. Proc Natl Acad Sci U S A,1991.88(5):1864-8.
    [221]TAKESHIMA K, A CHIKUSHI, K K LEE, et al., Translocation of analogues ofthe antimicrobial peptides magainin and buforin across human cellmembranes[J]. J Biol Chem,2003.278(2):1310-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700