基于光整流的太赫兹源与新型太赫兹导波结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波介于微波与红外线之间,是电磁频谱中唯一尚未完全开发利用的频段,也是当前科学研究热点之一。太赫兹技术在通信、雷达、安检成像、生物医学、频谱分析等多个领域都具有重要的学科价值和广阔的应用前景,被誉为改变未来世界的十大技术之一。太赫兹辐射产生技术与太赫兹导波技术是太赫兹技术中最关键的核心技术,太赫兹源和导波器件也是太赫兹系统中最关键的组成部分。因此,为了加快太赫兹技术发展,推进太赫兹频谱开发利用,急需对高效率高可靠性的太赫兹辐射源与低损耗低色散的太赫兹导波结构进行深入研究。本文对基于光整流方法的高功率宽带太赫兹源与中心频率可调的窄带太赫兹源,介质平板波导、金属平行板介质波导和石墨烯表面等离子激元波导的太赫兹导波结构展开深入研究,具体研究内容包括:
     1.基于光整流的高功率宽带(准单周期)太赫兹源的研究。分析了光整流产生宽带太赫兹波的机理与相位匹配条件,针对LiNbO_3晶体在光整流过程中无法实现共线相位匹配问题,研究了基于泵浦脉冲斜波前的非共线相位匹技术;搭建了基于Echelon——离散型倾斜波前技术的宽带太赫兹波产生平台,当泵浦脉冲能量为0.15mJ时,实测光整流产生准单周期太兹波脉冲能量为0.012μJ,激光到太赫兹波的能量转换效率约为8×10-5;搭建了基于光栅——连续型倾斜波前技术的宽带太赫兹波产生平台,当泵浦脉冲能量为7mJ时,实测光整流产生准单周期太赫兹波的峰值电场强度为150kV/cm(离轴抛物面镜焦点处),对应频谱的峰值频率为0.5THz,带宽为1.6THz,太兹波脉冲能量为7μJ,能量转换效率高达1×10~(-3),与采用正常波前技术的光整流产生太赫兹波方法相比,能量效率提高了3个数量级。
     2.基于光整流的中心频率可调的窄带(准多周期)太赫兹源研究。分析了基于Chirp-Delay方法的窄带太赫兹波产生机理,针对光整流方法产生窄带太赫兹波容易出现中心频率不稳定的问题,根据两束光传播不同光程将产生特定相对时延的原理,设计了一个具有高相位稳定性的时延产生器Etalon,保障了窄带太赫兹源的频率稳定性;针对窄带太赫兹源光路调节较为困难的问题,通过在平移台上引入一镜对,使移动光栅对产生的光程增量恰好与镜对产生的光程增量相互抵消,设计了一个具有自适应光程补偿功能的平行光栅对Compressor,极大方便了光整流产生窄带太赫兹波的光路调节与实验测试;采用LiNbO_3波导作为光整流晶体,搭建了Compressor位于Pump支路与Compressor位于Probe支路两种Chirp-Delay方案的准多周期窄带太赫兹波产生平台。实验表明,这两种方案均能够有效产生中心频率可调的窄带太赫兹波,且中心频率可调范围是0.25~1.2THz,带宽约为100GHz。
     3.基于介质平板波导的太赫兹导波结构研究。采用模式匹配法分析三层平板波导在太赫兹波段的传输特性,得到导波场分布、色散方程,功率限制因子以及损耗系数的一般表达式,利用偏振门成像系统,对太赫兹波在LiNbO_3和LiTaO_3平板波导中的传输特性进行实验研究,测试结果与理论计算结果吻合;研究了同一片电光晶体薄片中实现太赫兹波的产生、导波、探测与操控等功能,针对单纯渐变结构极易破碎的问题,提出基于带空气隙的LiTaO_3晶体的锥形狭缝阵渐变平板波导结构,研究表明,这种结构不仅可以有效提高样品的机械性能,还能显著提升在锥形尖端空气隙中太赫兹波电场增强(5.5倍)与能量聚集能力。
     4.基于金属平行板介质波导的太赫兹导波结构研究。针对金属平行板波导的横向场分布不集中的问题,结合介质平板波导横向场分布集中特点,提出一种新型太赫兹导波结构——金属平行板介质波导(PPDW),研究表明,PPDW有宽频带、低损耗、低色散及场分布集中及易于加工应用等优点;研究广义金属平行板介质波导在太赫兹波段的传输特性,得到TE模的场分布,色散方程,功率比例因子、损耗系数以及特性阻抗的一般表达式;设计出太赫兹波段的同轴—PPDW过渡器(仿真研究表明,在0.45~0.75THz频段内,实现S11<-20dB,S21>-0.7dB,单个过渡器插损为0.18dB)、桥形PPDW3dB定向耦合器(仿真研究表明,该桥形耦合器隔离度27dB,耦合损耗为0.9dB,中心频率为1THz,带宽为12.5%,与常规PPDW耦合器相比,带宽拓宽至4.2倍,尺寸缩小了61%)、PPDW滤波器等多种无源器件,在太赫兹电路与系统中具有一定的应用潜力。
     5.基于石墨烯表面等离子激元波导的太赫兹导波结构研究。获取准确的石墨烯电磁特性参数是研究石墨烯电磁传输特性的基础,本文由Kubo公式出发,对太赫兹频段石墨烯的电导率、等效介电常数以及电可调性等参数进行表征,并通过仿真验证了石墨烯波导的太赫兹表面等离子激元传输理论正确性,提出基于石墨烯单原子层的太赫兹功分器、反射器、锥形聚焦器等若干无源器件构想,从而为石墨烯在太赫兹导波器件中的应用提供理论依据。
Terahertz range refers to electromagnetic waves with frequencies betweenmicrowave and infrared. This range is the only spectrum in electromagnetic spectrum,which is not fully developed. The development of terahertz spectrum is one of the hotspot subject in current scientific and technological research. Terahertz technology,known as one of the10emerging technologies that will change the world, which hasfound applications with very important academic value in many different fields, such ascommunication, radar, security monitoring, imaging, bio-medical, and spectral analysis.Both terahertz radiation generation technique and terahertz guidied wave technique arethe most important terahertz technology; terahertz sources and terahertz guidied wavedevices are key components of terahertz systems. Therefore, in order to speed up thepace of the emerging terahertz technology and promote the development and utilizationof the terahertz spectrum, it is urgent needed for systematic and in-depth study on highefficiency and high reliability terahertz radiation sources as well as low loss and lowdispersion terahertz guidied wave structures. The area of focus in this dissertation willbe high power broadband terahertz sources and center frequency tunable narrowbandterahertz sources based on optical rectification methods, dielectric slab waveguides,parallel plate dielectric waveguides (PPDW) and graphene surface plasmon polaritons(SPP) waveguides. The main contents of this dissertation are concluded as follows:
     1. High power broadband (quasi-single-cycle) terahertz sources based on opticalrectification. First of all, the principles and the phase matching conditions of broadbandterahertz wave generation via optical rectification have been studied. Since the collinearphase matching condition in LiNbO_3during optical rectification process is not fulfilled,a tilted optical pulse front technique is used to achieve noncollinear phase matching.Then, a broadband terahertz wave generation setup based on discrete tilted pulse fronttechnique via Echelon is built. By using0.15mJ pump pulse, the generated terahertzpulse energy is0.012μJ and the optical-to-terahertz energy conversion efficiency isabout8×10-5. In order to enhance the conversion efficiency, another broadband terahertzwave generation setup based on continuous tilted pulse front technique via grating is built. With7mJ pump pulse, a quasi-single-cycle terahertz pulse is generated with pulsepeak field up to150kV/cm (at the focus point of off-axis parabolic mirror pair), whichcorresponding spectrum with peak frequency of0.5THz, bandwidth of1.6THz. Thegenerated terahertz pulse energy is as high as7μJ and the energy conversion efficiencyis up to1×10~(-3). Comparing to optical rectification terahertz generation based on normalpulsed front technique method, this continuous tilted pulse font technique has more than1000times lager in energy conversion efficiency.
     2. Center frequency tunable narrowband (quasi-multi-cycle) terahertz sourcesbased on optical rectification. The mechanism of narrowband terahertz wave generationby using Chirp-Delay method has been studied. Due to narrowband terahertz wavesgeneration setup usually suffers from instability in center frequency and difficulty inalignment, according to different optical path length will produce a particular relativedelay, an delay generator, called Etalon, with high phase stability is designed toguarantee frequency stability of the narrowband terahertz sources; by introducing amirror pair on translation stage, the amount of optical path length change of the gratingpair will be cancelled by the amount of path length change of the mirror pair, then anadaptive optical path length compensation parallel grating compressor is built, which isof great convenience for optical rectification narrowband terahertz wave generationsetup adjustment and experimental data collection. In this case, a LiNbO_3slabwaveguide is selected as an optical rectification crystal, and two Chirp-Delay schemes’setups with compressor in pump arm and compressor in probe arm are built. Theexperimental results show that both setups are able to generate terahertz wave efficiently,and the tunable center frequencies are range from0.25THz to1.2THz with bandwidthof100GHz.
     3. Terahertz guided wave structures based on dielectric slab waveguides. Thetransmission characteristics of three-layer dielectric slab waveguides have been studiedby using mode matching methods. The general expressions for guided modes’ fielddistributions, dispersion relation, power confinement factor and attenuation coefficientsare obtained. By using polarization gating imaging system, terahertz waves transmissioncharacteristics in LiNbO_3and LiTaO_3slab waveguides are tested. The experimentalresults are consistent with the theoretical results. Meanwhile, terahertz generation,transmission, detection and control on single electro-optic crystal chip have been investigated. Furthermore, a tapered slit array LiTaO_3slab waveguide structure with anair gap on the tip is proposed to reduce the fragility of the tapered structure sample andincrease the field enhancement. The experimental results show that this structure is notonly able to improve the mechanical stability, but also able to significantly enhance theelectric fields (about5.5times) and improve the power confinement of the terahertzwave in the air gap in the tip.
     4. Terahertz guided wave structures based on parallel plate dielectric waveguides(PPDWs). In order to eliminate the poor cross-sectional electromagnetic fielddistribution of parallel plate waveguide, by taking advantage of the good fielddistribution of slab waveguides, a PPDW is proposed as an promising terahertz guidedwave structure. The investigation results show that this PPDW can be used to guideterahertz waves efficiently with broardband, low attenuation,low dispersion and highfield concentration, which can be fabricated and utilized easily. Afterwards, terahertzwave transmission characteristics of generalized parallel plate dielectric waveguide arestudied, and the general expressions for guided modes’ field distributions, dispersionrelation, power confinement factor, attenuation coefficients and characteristicimpedance are also obtained. Moreover, a terahertz coax-PPDW transition (during0.45~0.75THz, S11<-20dB,S21>-0.7dB,insertion loss as low as0.18dB), a3dBdirectional coupler based on bridged PPDW (with isolation better than27dB, couplerloss of0.9dB, center frequency of1THz, bandwidth of12.5%, compared toconventional PPDW coupler, this bridged PPDW coupler’s bandwidth is about4.2timesbroader, the coupling length is about61%shorter) and a broadband PPDW filter aredesigned, which may have potential applications for the terahertz integrated circuits andsystems.
     5. Terahertz guided wave structures based on graphene surface plasmon polaritons(SPP) waveguides. As we know, accurate electromagnetic characteristic parameters ofgraphene are the foundation of studying electromagnetic transmission characteristics ofgraphene waveguides. By using Kubo formula, the surface conductivity, equivalentcomplex permittivity and electrical tenability of graphene at terahertz frequencies areobtained. Meanwhile, a numerical simulation is used to verify the transmissioncharacteristics of graphene SPP with a good agreement. Then, several terahertz passivedevices such as splitters, reflectors, tapered structures based on single-atomic-layer graphene are proposed and simulated, which will lay solid theoretical foundation forgraphene based terahertz devices and systems.
引文
[1] P. H. Siegel. Terahertz technology[J]. IEEE Trans. Microwave Theory Tech.,2002,50(3):910-928
    [2] B. Ferguson,张希成.太赫兹科学与技术研究回顾[J].物理,2003,32(5):286-293
    [3]曹俊诚.太赫兹辐射源与探测器研究进展[J].功能材料与器件学报,2003,9(2):111-117
    [4]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,8(1):7-12
    [5] Q. Hu, B. S. Willianms, S.Kumar, et al. Resonant-phonon-assisted THz quantum-cascadelasers with metal-metal waveguides[J]. Semicond. Sci. Technol.,2005,20(7):228-236
    [6] G. N. Kulipanov, Experiments on400-W average power Novosibirsk terahertz free electronlaser[C]. IRMMW-THz,2006,12-12
    [7] K. L. Yeh, J. Hebling, M. C. Hoffmann, et al. Generation of high average power1kHz shapedTHz pulses via optical rectication[J]. Opt.Commun.,2008,281(13):3567-3570
    [8] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent0.18-5.27-THz sourcebased on GaSe crystal[J]. Opt. Lett.,2002,27(16):1454-1456
    [9] P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection of terahertz pulses frombiased semiconductor antennas[J]. J. Opt. Soc. of Am. B,1996,13(11):2424-2436
    [10] K. Imai, K. Kawase, J. Shikata, Injection-seeded terahertz-wave parametric oscillator[J], Appl.Phys. Lett.,2001,78(8):1026-1028
    [11] M. Theuer, G. Torosyan, C. Rau, et al. Efficient generation of Cherenkov-type terahertzradiation from a lithium niobate crystal with a silicon prism output coupler[J]. Appl. Phys.Lett.,2006,88(7):071122-071125
    [12] E. Budiarto, J. Margolies, S. Jeong, et al. High-Intensity Terahertz Pulses at1-kHz RepetitionRate[J]. IEEE J. Quantum Electron.,1996,32(10):1839-1846
    [13] M. Mikulics, E. A. Michael, M. Marso et al. Traveling-wave photomixers fabricated on highenergy nitrogen-ion-implanted GaAs[J]. Appl. Phys. Lett.,2006,89(7):071103-1-3
    [14] D. Creeden, J. C. McCarthy, P. A. Ketteridge et al. Compact, high average power,fiber-pumped terahertz source for active real-time imaging of concealed objects[J]. Opt.Express,2007,15(10):6478-6483
    [15] J. E. Schaar, K. L. Vodopyanov, M. M. Fejer. Intracavity terahertz-wave generation in asynchronously pumped optical parametric oscillator using quasi-phase-matched GaAs[J]. Opt.Lett.,2007,32(10):1284-1286
    [16] D. H. Li,X. D.Qi,S. G. Liu. A theoretical analysis of optical-to-THz conversion efficiencyvia optical rectification[J]. Sci China Ser E-Tech Sci,2008,51(12):2080-2088
    [17] M. Bass, P. A. Franken, J. F. Ward, et al. Optical rectification[J]. Phys Rew Lett.,1962,9(11):446-448
    [18]王月宾.基于螺旋面反射镜延迟线的实时显示THz-TDS系统[D].天津:天津大学,2009,1-50
    [19] K. H. Yang, P. L. Richards, Y. R. Shen. Generation of far-infrared radiation by picosecondlight pulses in LiNbO3[J]. Appl. Phys. Lett.1971,19(9):320-3222
    [20] Y. R. Shen. Far-infrared generation by optical mixing[J]. Prog Quantum Electron,1976,4:207-232
    [21] R. L. Fork, B. I. Greene, C. V. Shank. Generation of Optical Pulses Shorter Than0.1Picoseconds by Colliding Pulse Modelocking[J]. Appl. Phys. Lett.,1981,38(9):671-672
    [22] X. C. Zhang, X. F. Ma, Y. Jin, et al. Terahertz optical rectification from a nonlinear organiccrystal[J]. Appl Phys Lett.,1992,61(26):3080-3082
    [23] X. C. Zhang, Y. Jin, K. Ware, et al. Difference-frenquency generation and sum-frequencygeneration near the band gap of zincblende crystals[J]. Appl Phys Lett.,1994,64(5):622-624
    [24] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, et al. Optical rectification at semiconductorsurface[J]. Phys Rev Lett.,1992,68(1):102-105
    [25]马新发,张希成.亚皮秒光整流效应[J].物理,1994,23(7):390-393
    [26] X. Zhang, J. Xu. Introduction to THz wave photonics[M]. New York: Springer,2010,36-38
    [27]邵立.光整流太赫兹源及其研究进展[J].激光与红外,2008,38(9):8732-8735
    [28] F. Blanchard, L. Razzari, H. Bandulet, et al. Generation of1.5μJ single-cycle terahertz pulsesby optical rectification from a large aperture ZnTe crystal[J]. Opt. Express,2007,15(20):13212-13220
    [29] S. Xu, J. Liu, G. Zheng, et al. Broadband terahertz generation through intracavity nonlinearoptical rectification[J]. Opt. Express,2010,18(22):22625-22630
    [30] K. L. Vodopyanov. Optical generation of narrow-band terahertz packets inperiodically-inverted electro-optic crystals: Conversion efficiency and optimal laser pulseformat[J]. Opt Express,2006,14(6):2263-2276
    [31] Y. Lee, T. Meade, V. Perlin, et al. Generation of narrow-band terahertz radiation via opticalrectification of femtosecond pulses in periodically poled lithium niobate[J]. Appl. Phys. Lett.,2000,76(18):2505-2507
    [32] Y. Lee, W. C. Hurlbut, K. L. Vodopyanov, et al. Generation of multicycle terahertz pulses viaoptical rectification in periodically inverted GaAs structures[J]. Appl. Phys. Lett.,2006,89(18):181104-1-3
    [33] G. H. Ma, S. H. Tang, G. Kh. Kitaeva, et al. Terahertz generation in Czochralski-grownperiodically poled Mg:Y:LiNbO3by optical rectification[J]. J. Opt.Soc. Am. B,2006,23(1):81-89
    [34] M. Theuer, G. Torosyan, C. Rau, et al. Efficient generation of Cherenkov-type terahertzradiation from a lithium niobate crystal with a silicon prism output coupler[J]. Appl. Phys.Lett.,2006,88(7):071122-1-3
    [35] K. Suizu, T.Shibuya, T. Akiba, et al. Cherenkov phase-matched monochromatic THz wavegeneration using difference frequency generation with a lithium niobate crystal[J]. Opt.Express,2008,16(10):7493-7498
    [36] K. Suizu, T. Tsutsui, T. Shibuya, et al. Cherenkov phase matched THz-wave generation withsurfing configuration for bulk Lithium Nobate crystal[J]. Opt. Express,2009,17(9):7102-7109
    [37] K. Suizu, K. Koketsu, T. Shibuya, et al. Extremely frequency-widened terahertz wavegeneration using Cherenkov-type radiation[J]. Opt. Express,2009,17(8):6676-6681
    [38] J. Hebling, G. Almási, I. Z. Kozma. Velocity matching by pulse front tilting for large-areaTHz-pulse generation[J]. Opt. Express,2002,10(21):1161-1166
    [39] A. G. Stepanov, J. Kuhl, I. Z. Kozma, et al. Scaling up the energy of THz pulses created byoptical rectification[J]. Opt. Express,2005,13(15):5762-5768
    [40] K. Yeh, M. C. Hoffmann, J. Hebling, et al. Generation of10μJ ultrashort terahertz pulses byoptical rectification[J], Appl. Phys. Lett.,2007,90:171121
    [41] Z. Chen, X. B. Zhou, C. A. Werley, et al. Generation of high power tunable multicycleterahertz pulses[J]. Appl. Phys. Lett.,2011,99(7):071102-1-3
    [42] H. Hirori, A. Doi, F. Blanchard, et al. Single-cycle terahertz pulses with amplitudes exceeding1MV/cm generated by optical rectification in LiNbO3[J]. Appl.Phys. Lett.,2011,98(9):091106-1-3
    [43]李德华.光整流法产生THz辐射转化率的研究[D].青岛:山东科技大学,2010,1-80
    [44]李德华.戚晓东.刘盛纲.光整流法产生THz辐射转化率的理论分析[J].中国科学(E辑:技术科学),2009,39(4):745-750
    [45]刘丰.高平均功率小型化超快THz辐射源[D].天津:天津大学,2011,19-35
    [46]王俊龙. GaAs波导结构光整流THz波能量转换模型数值模拟[D].天津:天津大学,2011,1-30
    [47]邹豪.相位匹配光整流THz辐射波导的研究[D].天津:天津大学,2009,1-40
    [48]邵立.太赫兹辐射源及太赫兹波导的理论研究[D].郑州:郑州大学,2009,1-50
    [49] S. Coleman, D. Grischkowsky. A THz transverse electromagnetic mode two-dimensionalinterconnect layer incorporating quasi-optics[J]. Appl. Phys. Lett.,2003,83(18):3656-1-3
    [50] M. W chter, M. Nagel, H. Kurz. Metallic slit waveguide for dispersion-free low-loss terahertzsignal transmission[J]. Appl. Phys. Lett.,2007,90(6):061111-1-3
    [51] M. W chter,M. Nagel, H. Kurz. Low-loss terahertz transmission through curved metallic slitwaveguides fabricated by spark erosion[J]. Appl. Phys. Lett.,2008,92(16):161102-1-3.
    [52] K. Iwaszczuk, A. Andryieuski, A. Lavrinenko et al. Terahertz field enhancement to theMV/cm regime in a tapered parallel plate waveguide[J]. Opt. Express,2012,20(8):8344-8355
    [53] L. F. Ye, R. M. Xu, Z. H. Wang, et al. A novel broadband coaxial probe to parallel platedielectric waveguide transition at THz frequency[J]. Opt. Express,2010,18(21):21725-21731
    [54] L. F. Ye, Y. Zhang, R. M. Xu, et al. A terahertz broadband3dB directional coupler based onbridged PPDW[J]. Opt. Express,2011,19(20):18910-18916
    [55] L. F. Ye, Y. Zhang, R. M. Xu, et al. Transmission characteristics of generalized parallel platedielectric waveguide at THz frequencies[J]. Chn. Phys. Lett.,2011,28(12):124102-1-4
    [56] K. Wang, M. Mittleman. Metal wires for terahertz wave guiding[J]. Nature,2004,432:376-379
    [57] Daniel M. Mittleman et al. Method for Coupling Terahertz Pulses into a CoaxialWaveguide[P]. US2008/0309577A1,Filing date: Jul13,2005
    [58] X. K. Wang, W. Xiong, W. F. Sun, Y. Zhang. Coaxial waveguide mode reconstruction andanalysis with THz digital holography[J]. Opt. Express,2012,20(7):7706-7715
    [59] T. Jeon, J. Zhang, D. Grischkowsky. THz Sommerfeld wave propagation on a single metalwire[J]. Appl. Phys. Lett.,2005,86(16):1619041-1-3
    [60] M. W chter, M. Nagel, H. Kurz. Frequency-dependent characterization of THz Sommerfeldwave propagation on single-wires[J]. Opt. Express,2005,13(26):10815-10822
    [61] N.C.Chen,T.H. Chang, C.Y. Yang. Broadband conversion of TE01mode for the coaxialgyrotron at low terahertz[J]. Physics of Plasmas,2012,19,032117
    [62] Y. Xu, R. G. Bosisio. Application of Goubau lines for millimetre and submillimetre wave gassensors[J]. IEE Proc. Microw. Antennas Propag,2005,152(5):400-405
    [63] Y. Xu, R. G. Bosisio. Study of goubau lines for submillimeter wave and terahertz frequencyapplications[J]. IEE Proc. Microw. Antennas Propag,2005,151(5):460-464
    [64] Y. B. Ji, E. S. Lee, J. S. Jang, et al. Enhancement of the detection of THz Sommerfeld waveusing a conical wire waveguide[J]. Opt. Express,2008,16(1):271-278
    [65] R. W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultra wideband short pulses ofterahertz radiation through submillimeter-diameter circular waveguides[J]. Opt. Lett.,1999,24(20):1431-1433.
    [66] D. Grischkowsky, G. Gallot, S. PandR.W. Ultrafast Applications of THz WaveguidesinUltrafast Phenomena[M]. USA: Optical Society of America,2000,43
    [67] G. Gallot, S. Jamison, R. W. McGowan, et al. THz waveguides[J]. J. Opt. Soc. Am. B,2000,17(5):851-863
    [68] D. Grischkowsky. Optoelectronic Characterization of Transmission Lines and Waveguides byTerahertz Time Domain Spectroscopy[J]. IEEE J. SeI, Top.Quantum Electron,2000,6(6):1122-1135
    [69] J. Harrington, R. George, P. Pedersen, et al. Hollow polycarbonate waveguides with inner Cucoatings for delivery of terahertz radiation[J]. Opt. Express,2004,12(21):5263-5268
    [70] http://vadiodes.com/VDI/pdf/waveguidechart200908.pdf
    [71] B. Bowden, J. A. Harrington, O. Mitrofanov. Low-loss modes in hollow metallic terahertzwaveguides with dielectric coatings[J]. Appl. Phys. Lett.,2008,93(18):181104-1-3
    [72] B. Bowden, J. A. Harrington, O. Mitrofanov. Silver/polystyrene-coated hollow glasswaveguides for the transmission of terahertz radiation[J]. Opt. Lett.,2007,32(20):2945-2947
    [73] T. Ito, Y. J. Matsuura, Flexible teraherta fiber optics with low bend-induced losses[J]. J. Opt.Soc. Am. B.,2007,24(5):1230-1235
    [74] B. Bowden, J. A. Harrington, O. Mitrofanov. Fabrication of terahertz hollow-glass metallicwaveguides with inner dielectric coatings[J]. Appl. Phys. Lett.,2008,104(9):093110-1-5
    [75] Y. Matsuura, E. Takeda. Hollow optical fibers loaded with an inner dielectric film forterahertz broadband spectroscopy[J]. J. Opt. Soc. Am. B,2008,25(12):1949-1954
    [76]刘頔威,祝大军,刘盛纲.介质镀膜空芯光纤在THz频段的传输特性[J].强激光与粒子束,2006,18(4):345-346
    [77]汤晓黎,石艺尉.介质/金属结构太赫兹空芯光纤的传输特性[J].光学学报,2008,11(28):2057-2061
    [78]张鑫.新型太赫兹波导研究[D].北京:北京交通大学,2009,1-50
    [79] V. R. Almeida, Q. Xu, C. A. Barrios, et al. Guiding and confining light in voidnanostructure[J]. Opt. Lett.,2004,29(11):1209-1211
    [80] M. Nagel, A. Marchewka, H. Kurz. Low-index discontinuity terahertz waveguides[J]. Opt.Express,2006,14(21):9944-9954
    [81] H. Han, H. Park, M. Cho, et al. Terahertz pulse propagation in a plastic photonic crystalfiber[J]. Appl. Phys. Lett.,2002,80(15):2634-1-3
    [82] Y. F. Geng, X. L. Tan, P. Wang, et al. Design of terahertz photonic crystal fiber by finitedifference frequency domain method[J]. J. Opt. A: Pure Appl. Opt.,2007,9(11):1019-1023
    [83] A. Hassani, A. Dupuis, M. Skorobogatiy. Porous polymer fibers for low-loss Terahertzguiding[J]. Opt. Express,2008,16(9):6340-6351
    [84] S. Atakaramians, S. Afshar V, B. M. Fischer, et al.Porous fibers: a novel approach to low lossTHz waveguides[J]. Opt. Express,2008,16(12):8845-8854
    [85]宋淑鹏.1.55μm光脉冲激励THz辐射波导器件的研究[D].天津:天津大学,2008,1-50
    [86] A. K. Geim, K. S. Novoselov. The rise of graphene[J]. Nature material,2007,6(3):183-191
    [87] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thincarbon films[J]. Science,2004,306(5696):666-669
    [88] G.W. Hanson. Dyadic Green's Functions for an Anisotropic, Non-Local Model of BiasedGraphene[J]. IEEE Transactions on Antennas and Propagation,2008,56(3):747-757
    [89] G. W. Hanson. Quasi-transverse electromagnetic modes supported by a grapheneparallel-plate waveguide[J]. J. Appl.Phys.,2008,104(8):084314-1-5
    [90] A. Vakil and N. Engheta. Transformation Optics Using Graphene[J]. Science,2011,332(6035):1291-1294
    [91] B. I. Wu. Asymptotic Expressions for Guided TM and TE Waves in a Graphene Parallel-PlateWaveguide[C].2011International Conference Electromagnetics in Advanced Applications(ICEAA),2011.460-463
    [92] M.Dragoman, D.Neculoiu, A.Cismaru, et al. Coplanar waveguide on graphene in the range40MHz-110GHz[J]. Appl. Phys. Lett.,2011,99(3):033112-1-3
    [93] G. Lovat. Equivalent Circuit for Electromagnetic Interaction and Transmission ThroughGraphene Sheets[J]. IEEE Trans. on Electromagnetic Compatibility,2012,54(1):101-109
    [94]李德华,戚晓东,刘盛纲,光整流法产生THz辐射转化率的理论分析[J].中国科学技术科学,2009,39(4):745-750.
    [95] K. L. Yeh. The generation of high field terahertz radiation and its application in terahertznonlinear Spectroscopy [D]. Massachusetts Institute of Technology, Dept. of Chemistry,2009,1-80
    [96] R. W. Boyd. Nonlinear Optics (Second Edition)[M]. USA: Academic Press,2003,1-200
    [97] Y. R. Shen. The Principle of Nonlinear Optics [M]. USA:Wiley-Interscience,1990,1-200
    [98]李德华.光整流产生THz辐射及其转化效率研究[D].青岛,山东科技大学,2010,1-50
    [99] R. L. Sutherland. Handbook of Nonlinear Optics [M]. Marcel Dekker,1996,87-88
    [100] J. Helling, A. G. StePanov, G. Almasi,et al. Tunable THz Pulse generation by opticalrectification of ultrashort laser pulses with tilted pulse fronts [J]. Appl.phys. B,2004,78:593-599.
    [101] Q. Wu, X. C. Zhang. Ultrafast electro-optic field sensors[J]. Appl. Phys. Lett.,1996,68(12):1601-1606
    [102] M. Schall., M. Walther. P. Jepsen. Fundamental and second-order phonon processes in CdTeand ZnTe[J]. Phys. Rev. B,2001,64(9):094301-1-8
    [103] D. T. F. Marple. Refractive Index of ZnSe, ZnTe, and CdTe[J]. J. Appl. Phys.,1964,35(3):539–542
    [104] E. D. Palik. Handbook of Optical Constants of Solids [M]. Orlando: Academic,1985,429–444
    [105] D. Grischkowsky, S. Keiding, M. Exter, et al. Far-infrared time-domain spectroscopy withterahertz beams of dielectrics and semiconductors[J]. J. Opt. Soc. Am.B,1990,7(10):2006–2015
    [106] D. F. Nelson and E. H. Turner. Electro-optic and piezoelectric coefficients and refractiveindex of gallium phosphide[J]. J. Appl. Phys.,1968,39(7):3337-3343
    [107] E. D. Palik. Handbook of Optical Constants of Solids [M]. Orlando: Academic,1985,445-464
    [108] K. Wynne and J. J. Carey. An integrated description of terahertz generation through opticalrectification charge transfer, and current surge[J]. Opt. Commun.,2005,256(4):400-413
    [109] V. I. Sokolov and V. K. Subashiev. Linear electroptical effect in gallium selenide[J]. Sov. Phys.Solid State,1972,14(1):178-183
    [110] K. L. Vodopyanov, L. A. Kulevskii. New dispersion relationships for GaSe in the0.6518μmspectral region[J]. Opt. Commun.,1995,118(3):375-378
    [111] N. Piccioli, R. Le Toullec, M. Mejatty, et al. Refractive index of GaSe between0.45micrometer and330micrometers[J]. Appl. Opt.,1977,16:1236-1238
    [112] M. Nakamura, S. Higuchi, S. Takekawa, et al. Optical damage resistance and refractiveindices in near-stoichiometric MgO-doped LiNbO3[J]. Jpn. J. Appl. Phys.,2002,41: L49-L51
    [113] L. Pálfalvi, J. Hebling, J. Kuhl, et al. Temperature dependence of the absorption and refractionof Mg-doped congruent and stoichiometric LiNbO3in the THz range[J]. J.Appl. Phys.,2005,97:123505-1-6
    [114] M. Schall, H. Helm, S. R. Keiding. Far infrared properties of electro-optic crystals measuredby THz timedomain spectroscopy[J]. Int. J. Infrared Millim. Waves,1999,20(4):595-604
    [115] A. Schneider, M. Neis, M. Stillhart, et al. Generation of terahertz pulses through opticalrectification in organic DAST crystals: theory and experiment[J]. J. Opt. Soc. Am. B,2006,23(9):1822-1835
    [116] F. Pan, G. Kn pfle, C. Bosshard, et al. Electro-optic properties of the organic salt4-N,N-dimethylamino-4’–N’–methyl-stilbazolium tosylate[J]. Appl. Phys. Lett.,1996,69(1):13-15
    [117] M. Walther, K. Jensby, S. R. Keiding, et al. Far-infrared properties of DAST[J], Opt. Lett.,2000,25(12):911-913
    [118] A. Schneider, M. Stillhart, P. Günter. High efficiency generation and detection of terahertzpulses using laser pulses at telecommunication wavelengths[J]. Opt. Express,2006,14(2):5376-5384
    [119] T. L ffler, T. Hahn, M. Thomson, F. Jacob, et al. Large-area electro-optic ZnTe terahertzemitters[J]. Opt. Express,2005,13(14):5353-5362
    [120] F. Blanchard, L. Razzari, H. C. Bandulet, et al. Generation of1.5μJ single-cycle terahertzpulses by optical rectification from a large aperture ZnTe crystal[J]. Opt. Express,2007,15(20):13212-13220
    [121] M. C. Hoffmann, K.-L. Yeh, J. Hebling. Et al. Efficient terahertz generation by opticalrectification at1035nm[J]. Opt. Express,2007,15(18):11706-11713
    [122] A. G. Stepanov, J. Kuhl, I. Z. Kozma, et al. Scaling up the energy of THz pulses created byoptical rectification[J]. Opt. Express,2005,13(15):5762–5768
    [123]孔勇发,许京军,张光寅,等.多功能光电材料一铌酸锂晶体[M].北京:科学出版社,2005,5-300
    [124]金蝉,李铭华.掺镁铌酸锂晶体抗光损伤机理的研究[J].光子学报,1994,23(6):530-533
    [125] L. Pálfalvi, J. Hebling, J. Kuhl, et al. Temperature dependence of the absorption and refractionof Mg-doped congruent and stoichiometric LiNbO3in the THz range[J]. J. Appl. Phys.,2005,97(12):123505-1-6
    [126] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruentlygrown lithium niobate and5mol.%magnesium oxide-doped lithium niobate[J]. J. Opt. Soc.Am. B,1997,14(12):3319-3322
    [127] H. C. Guo, W. M. Liu, S. H. Tang. Terahertz time-domain studies of far-infrared dielectricresponse in5mol%MgO:LiNbO3ferroelectric single crystal[J]. J. Appl. Phys.,2007,102:033105
    [128] Balkanski M., in Optical Properties of Solids. North Holland: Amsterdam1972, Chap.8
    [129]李栋.太赫兹(THz)波的产生和相干控制研究[D].上海:上海大学,2011,1-60
    [130] J. Hebling, K. L. Yeh, M. Hoffmann. Terahertz Polaritonics: High Power THz SignalGeneration in Ferroelectric Crystals[J]. Integrated Ferroelectrics,2007,92:87-94
    [131] D. Li, G. Ma, J. Ge, S. Hu, et al. Terahertz pulse shaping via birefringence in lithium niobatecrystal[J]. App. Phys. B,2009,94(4):623-628
    [132] T. Feurer, N. S. Stoyanov, D. Ward, et al. Terahertz Polaritonics[J], Annu. Rev. Mater. Res.2007.37:317-50
    [133] P. A. Tipler. Physics for Scientists and Engineers[J].W. H.Freeman,1999,1-300
    [134] A.S. Weling, D. H. Auston. Novel sources and detectors for coherent tunable narrow-bandterahertz radiation in free space[J]. J. Opt. Soc. Am. B,1996,13(12):2783-2791
    [135] A. E. Siegman. Lasers [M]. CA, USA: University Science Books, Mill Valley,1986, Ch.9
    [136] K. L. Vodopyanov. Optical generation of narrow-band terahertz packets in periodicallyinverted electro-optic crystals: conversion efficiency and optimal laser pulse format[J]. Opt.Express,2006,14(6):2263-2276
    [137]杨建军,孙艳玲,阮双琛,等.啁啾脉冲放大系统中光栅展宽器的性能与实验研究[J].光学学报,1998,18(4):457-461
    [138] Ultrafast Theory, www.cvimellesgriot.com
    [139] http://www.newport.com/Chirped-Mirrors-for-Ultrashort-Pulses/504028/1033/info.aspx#tab_Overview
    [140] S. Backus, C. G. Durfee, M. M. Murnane, et al. High power ultrafast lasers[J]. Rev. Sci.Instrum.,1998,69(3):1207-1223
    [141] http://refractiveindex.info/?group=GLASSES&material=BK7
    [142] http://refractiveindex.info/?group=GLASSES&material=SF11
    [143] E. B.Treacy. Optical pulse compression with dirffraction gratings[J]. IEEE J.Quant.Elecrton.,1969, QE-5(9):454-458
    [144]胡婉约.基于超快激光放大系统的啁啾效应控制[D].上海:华东师范大学,2006,1-70
    [145] R. E. Collin. Field Theory of Guided Waves. Wiley-IEEE press,1990,1-864
    [146] D. Grischkowsky, S. Keiding, M. Exter, et al. Far-infrared time-domain spectroscopy withterahertz beams of dielectrics and semiconductors[J]. J. Opt. Soc. Am. B,1990,7(10):2006-2015
    [147] J. M. Dai, J. Q. Zhang, W. L. Zhang D. Grischkowsky. Terahertz time-domain spectroscopycharacterization of the far-infrared absorption and index of refraction of high-resistivity,float-zone silicon[J]. J. Opt. Soc. Am. B,2004,21(7):1379-1386
    [148] C. Yeh, F. Shimabukuro, P. H. Siegel. Low-loss terahertz ribbon waveguides[J]. AppliedOptics,2005,44(28):5937-5946
    [149] Y. Wan, Z. Y. Cai, Q. Li, et al. Simulation and fabrication of THz waveguides with siliconwafer by using eye-shaped pillars as building blocks[J]. Appl. Phys. A,2011,102:373-377
    [150] S. P. Jamison, R. W. McGowan, D. Grischkowsky.Single-mode waveguide propagation andreshaping of sub-ps terahertz pulses in sapphire fibers[J]. Appl. Phys. Lett.,2000,76(15):1987-1-3
    [151] N. Jukam, M.S. Sherwin. Two-dimensional terahertz photonic crystals fabricated by deepreactive ion etching in Si[J]. Appl. Phys. Lett.,2003,83(1),21-1-3
    [152] Y. Z. Liu, S. Feng, J. Tian, et al. Multichannel filters with shape designing in two-dimensionalphotonic crystal slabs[J]. J. Appl. Phys.,2007,102,043102-1-6
    [153] C. Rau, G. Torosyan, R. Beigang, et al. Prism coupled terahertz waveguide sensor[J]. Appl.Phys. Lett.,2005,86(21),211119-1-3
    [154] S.H. Kim, E.S. Lee, Y.B. Ji, et al. Improvement of THz coupling using a tapered parallel-platewaveguide[J]. Opt. Express,2010,18(2),1289-1295
    [155] C. Yeh, F. Shimabukuro. The Essence of Dielectric Waveguides[J]. Berlin: Springer,2008,1-200
    [156] Q. Wu, C. A. Werley, K. H. Lin, et al. Quantitative Phase Contrast Imaging of THz ElectricFields in a Dielectric Waveguide [J]. Opt. Express,2009,17(11):9219-9225
    [157] C. A. Werley, Q. Wu, K. H. Lin, et al. A Comparison of Phase Sensitive Imaging Techniquesfor Studying THz Waves in Structured LiNbO3[J]. J. Opt. Soc. Am. B,2010,27(11):2350-2359
    [158] C. L. Yang, Q. Wu, J. J. Xu, K. A. Nelson, et al. Experimental and theoretical analysis ofTHz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropicslab waveguide[J]. Opt. Express,2010,18(25):26351-26364
    [159] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging-modern techniquesand applications[J]. Laser Photon. Rev.,2011,5:124-166
    [160] J. B. Baxter, G. W. Guglietta. Terahertz spectroscopy[J]. Anal. Chem.,2011,83:4342-4368
    [161] CST Corp., CST MWS Tutorials. http://www.cstchina.cn/
    [162] R. W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultrawideband short pulses ofterahertz radiation through submillimeter-diameter circular waveguides[J]. Opt. Lett.,1999,24(20):1431-1433
    [163] G. Gallot, S. P. Jamison, R. W. McGowan, et al. Terahertz waveguides[J]. J. Opt. Soc. Am. B,2000,17(5):851-863
    [164] R.Mendis, D. Grischkowsky. Undistorted guided-wave propagation of subpicosecondterahertz pulses[J]. Opt. Lett.,2001,26(11):846-848
    [165] R. Mendis. Guided-wave THz time-domain spectroscopy of highly doped silicon usingparallel-plate waveguides[J]. Electron. Lett.,2006,42(1):19-21
    [166] S. P. Jamison, R. W. McGowan, D. Grischkowsky. Single mode waveguide propagation andreshaping of sub-ps terahertz pulses in sapphire fibers[J]. Appl. Phys. Lett.,2000,76:1987-1989
    [167] R. Mendis, D. Grischkowsky. Plastic ribbon THz waveguides[J]. J. Appl. Phys.,88(7):4449-1-3
    [168] H. Han, H. Park, M. Cho, et al. Terahertz pulse propagation in a plastic photonic crystalfiber[J]. Appl. Phys. Lett.,2002,80:2634-2636
    [169] T. I. Jeon, J. Zhang, D. Grischkowsky. THz Sommerfeld wave propagation on a single metalwire[J]. Appl. Phys. Lett.,2005,86(16):161904-1-3
    [170] D. R. Chen, H. B. Chen. A novel low-loss Terahertz waveguide: Polymertube[J]. Opt. Express,2010,18(4):3762-3767
    [171] Ansoft Corp., Ansoft HFSS User’s Reference. http://www.ansoft.com.cn/
    [172] T. Yoneyama, N. Tozawa, S. Nishida. Coupling Characteristics of Nonradiative DielectricWaveguide[J]. IEEE Trans. Microwave Theory Tech.,1983, MTT-31(8):648-654
    [173] M. Pu, N. Yao, C. Hu, et al. Directional coupler and nonlinear Mach-Zehnder interferometerbased on metal-insulator-metal plasmonic waveguide[J]. Opt. Express,2010,18(20):21030-21037
    [174] K. Solbach, L. Wolff. The electromagnetic fields and the phase constants of dielectric imagelines[J]. IEEE Trans. Microwave Theory Tech.,1978, MTT-26:266-274
    [175] K. Solbach. The Calculation and the Measurement of the Coupling Properties of DielectricImage Lines of Rectangular Cross Sections[J]. IEEE Trans. MTT,1979,27:54-58
    [176] M. Dressel, G. Grüner. Electrodynamics of Solids [M]. London: Cambridge University Press,2002,1-200
    [177] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Magneto-optical conductivity in graphene[J]. J.Phys. Condens. Matter,2007,19(2):026222-1-25
    [178] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivitymodel of graphene[J]. J. Appl. Phys.2008,103(6):064302-1-8
    [179] V. Ryzhii, A. Satou, T. Otsuji. Plasma waves in two-dimensional electron-hole system in gatedgraphene heterostructures[J]. J. Appl.Phys.,2007,101(2):024509-1-5
    [180] L. A. Falkovsky. Unusual field and temperature dependence of the Hall effect in graphene[J].Phys. Rev. B, vol.75, p.033409(1-4),2007.
    [181] J. C. Charlier, P. C. Eklund, J. Zhu, et al. Electron and Phonon Properties of Graphene: TheirRelationship with Carbon Nanotubes. Carbon Nanotubes: Advanced Topics in the Synthesis,Structure, Properties and Applications Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus.Berlin/Heidelberg: Springer-Verlag,2008,673-709
    [182] J. H. Chen, C. Jang, S. Adam, et al. Charged Impurity Scattering in Graphene[J]. NaturePhysics,2008,4:377-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700