非均匀复杂地层随钻电磁波测井响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油工业的不断发展以及开发油藏地质情况的日益复杂,新的测井方法不断涌现,其中发展最迅猛的是随钻测井技术。新的测井环境和测井方法为测井研究者带来了新的挑战,如新式随钻电磁波测井仪器的性能评价,大斜度井、水平井中随钻电磁波仪器的响应特征,常规普通感应与随钻电磁波仪器探测性能的区别等。通过数值模拟可以为这些问题的解决提供一种有效的途径。本论文的目的就是通过对一维、二维以及全三维地层模型数值模拟方法的研究,为实际问题的解决提供可行的方法平台。
     本论文第二章,第三章介绍径向分层模型以及层状介质地层模型电磁场分布的公式推导以及高效计算方法,将感应测井仪器发射源简化为一系列的磁偶极子,其在层状地层中产生的电磁场分解成彼此独立的横电波(TE)和横磁波(TM),得到层状地层电磁场含有Bessel函数的解析解。在充分分析被积函数特点的前提下,采用改进的高斯方法直接计算Bessel函数的无穷域积分代替传统的傅立叶—汉克尔变换方法。该数值模拟方法对于快速分析层厚、井斜等地层因素对电磁波测井响应的影响具有很好的效果。
     第四章介绍目前应用最广泛的二维问题计算方法,主要介绍了逐次逼近法和模式匹配方法,其中逐次逼近方法的思想对感应测井的反演有重要意义。模式匹配法采用张庚骥先生构造的幅度基函数和斜度基函数,这保证了电磁场本身及其一阶导数连续,因此只需少量基函数就能得到较高的精度。数值模拟表明,只要选择适当的网格划分方法以及适量的基函数,模式匹配法对中低频的普通感应以及高频的随钻电磁波测井响应模拟都有很好的效果,而且是目前常用的数值模拟方法中计算效率最高的一种方法。
     第五章介绍随钻电磁波三维频率域数值模拟方法。本章从Maxwell电磁响应方程出发,针对大斜度井井眼和侵入剖面的几何特点,采用新的网格划分方法,并应用基于交错网格的有限差分得到了三维频率域电磁响应差分计算格式,利用电场的镜像对称性,使计算规模减小一半。采用改进的ICCG(不完全乔尔斯基共轭梯度)方法,对一维变带宽存储的大型复稀疏矩阵进行了求解,得到了随钻电磁波测井响应。通过与解析解的对比表明:该方法能较好的解决电磁场的三维计算问题,但对于各向异性地层模型背景电导率的取值原则仍需进一步研究。
     第六章在前面数值模拟方法的研究基础上,以EWR—Phase4仪器为例,着重研究随钻电磁波测井响应的各种影响因素,包括随钻电磁波仪器工作频率的选择、仪器的探测性能、围岩与层厚、井眼、泥浆侵入、井斜、介电常数以及地层各向异性的影响等,对仪器的研发制造以及测井资料的解释评价提供很好的理论依据。
     第七章提出了一种新的随钻补偿仪器研发思路。由于随钻电磁波仪器自身的特点,井眼垮塌对仪器响应影响很大,尤其是在盐水泥浆条件下,因此对测井资料进行补偿非常必要,传统的补偿方法使仪器长度增大了近一倍。本章在基于电磁场互换原理的基础上,提出了一种新的仪器补偿方法,可以减小同样探测性能仪器的长度。
With the rapid progress of the oil industry and the increasingly complicated geologic status of reservoir, many new logging methods come forth continuously. Logging while drilling method is one of the most rapidly developing method. New logging environments and methods bring new challenges to the logging researchers, such as new electromagnetic LWD instruments capability, the response of electromagnetic LWD instruments in highly deviated or horizontal wells, the different detection ability between the traditional induction logging tools and electromagnetic LWD instruments. Numerical simulation can serve as an efficient tool to solve these problems. The objective of this dissertation is to attempt to provide a feasible methodological platform by the study of numerical simulation in 1D, 2D and 3D formation models.
     In chapter 2 and 3, the electromagnetic distribution formulate of radially layered and stratified formation is introduced with high efficient algorithm. The transmitting coils of induction logging instruments are simplified as series of magnetic dipoles, electromagnetic wave is resolved as TE and TM wave in horizontal layers, and the analysis results which include integration of Bessel function are obtained in the dissertation. Improved Gauss numerical integral method is used to calculate the infinite integration of Bessel function instead of traditional Fourier-Henkel transform method. The numerical simulation method is effective to analysis the effect of the shoulder and the borehole deviation on the response of LWD electrical instruments.
     The widely used 2D algorithm is introduced in chapter 4. Successive method and numerical model matching method are addressed. The successive method is meaningful to the inversion of induction logging data. Amplitude basis function and slope basis function built by Mr. Zhang Geng-ji are used in the method of NMM. New basis function guarantee the continuity of the field itself and its first-order derivation, so only a small quantity of basis function are needed to get a high accuracy. The simulation results show that NMM is the most effective algorithm to simulate the response of low frequency induction logging and high frequency electromagnetic LWD instruments by choosing proper mesh and proper amount of basis functions.
     In chapter 5 a 3D algorithm for electromagnetic LWD simulation in frequency domain is introduced. The difference equations to calculate the electromagnetic response are deserved from Maxwell’s equations by using staged-grid finite difference method. A new mesh generation method is adopted according to the geometric characteristics of deviated well models with borehole and invasion. The mirror symmetry of the electric field is involved to largely reduce the computation scale. The large scale complex equations are stored by one-dimensional variant-banded and are solved by the method of improved incomplete Choleskey conjugate gradient and the response of electromagnetic LWD tool is deserved. The simulation results show that the algorithm can solve the 3D problem effectively by contrast with analytical results, but the adoption principle of background conductivity should be further studied.
     Taking EWR-Phase4 as an example, various influence factors are studied on the basis of several numerical simulation methods in chapter 6. The research contents include that the choosing of work frequency, the investigation ability, the influence of shoulder and thickness, borehole, mud-filtrate invasion, deviation of borehole, dielectric constant and anisotropy. The study can provide theoretical basis for the instrument manufacture and logging data interpretation.
     A new research idea of compensated tools is proposed in chapter 7. Borehole slump has great influence on the response of electromagnetic tools because of the characteristics of the tools, especially when the mud is salty. It is necessary to compensate the logging data. Traditional compensation method makes the tool one time longer. A new compensation method is proposed which can reduce the length of tools greatly on the basis of reciprocity principle of electromagnetic.
引文
[1]刘之的.随钻测井响应反演方法及应用研究[D].成都:西南石油大学,2006
    [2]张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势[J].测井技术,2006,30(1):10-15
    [3]党瑞荣,王洪淼,谢雁.三分量感应测井仪及其对各向异性地层的识别[J].地球物理学进展,2006,21(4):1238-1243
    [4]张伯英.我国水平钻井技术发展简况[J].钻采工艺,1994,17(1):55-57
    [5]苏义脑,孙宁.我国水平井钻井技术的现状[J].石油钻采工艺,1996,18(6):14-20
    [6] Pridmore D F, Hohmann G W, Ward S H, et al. An investigation of finite-element method[J]. Geophysics, 1981, 46(1):1009-1024
    [7] Chang,S.K.,Anderson,B.Simulation of induction logging by the finite element method[J].Geophysics,1984,49(2):1943-1958
    [8]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社, 1998
    [9] Shen,L.C., Zhang,G.J. Electromagnetic field due to a magnetic dipole in a medium containing both planar and cylindrical boundaries[J]. IEEE Trans. Geosci. Remote Sensing, 1985,23(6):827-833
    [10] Zhang, G. J., Zhang, Z. Q. Application of successive approximation method to the computation of the green’s function in axisymmetrical inhomogeneous media[J]. IEEE Trans. Geosci. Remote Sensing, 1998,36(3):732-737
    [11] Chew,W.C.,Barons,S., Anderson,B. Diffraction of axisymmetric waves in borehole by boundary discontinuities [J]. Geophysics, 1984,49(10):1586-1596
    [12] Pudensi,M.,Ferreira,L. Method to calculate the reflection and transmission of guided waves[J]. Opt.Soc.Am., 1982,72(1):126-130
    [13]聂在平, Chew, W. C., Lie, Q. H.电磁波对轴对称二维层状媒质的散射[J].地球物理学报, 1992, 35(4):479-488
    [14]张庚骥,金勇.快速求解复杂地层中电磁波测井响应的方法[C].第一届测井年会论文选集,北京,石油工业出版社,1988,124-131
    [15]张庚骥,汪涵明,汪功礼.成层介质中的交流电测井响应[J].地球物理学报,1995,38(6):840-849
    [16] Zhang,G.J., Wang,G.L., Wang,H.M. Application of novel basis function in a hybrid method simulation of the response of induction logging in axisymmetrical stratified media[J].Radio science,1999,34(1):19-26
    [17] Tamarchenko, T., Druskin V. Fast modeling of induction and resistivity logging in the model with mixed boundaries[C]. Trans.Soc.Prof. Well Log Analyst,34th annual logging symposium,1993,paper GG
    [18] Tamarchenko, T., Tabarovsky,L. Fast frequency domain electromagnetic modeling in axially symmetric layered media[J]. Radio science,1994,29(4):979-992
    [19] Chew, W.C., Anderson, B. Diffraction of axisymmetric waves in borehole by boundary discontinuities[J]. Geophysics, 1985,59(10):1476-1486
    [20] R. H. Hardman, L. C. Shen. Theory of induction sonde in dipping beds [J]. Geophysics,1986,51(3):800-809
    [21] W. David Kennedy, Stephen M. Curry, Stephen P. Gill, H. Frank Morrrison. Induction log response in deviated boreholes[C]. SPWLA. 27th Annual Logging Symposium,1986,paper GG
    [22]肖加奇,张庚骥.水平井和大斜度井的感应测井响应计算[J].地球物理学报,1995,38(3):396-404
    [23]肖加奇,张庚骥.用快速富里叶-汉克耳变换算法计算层状介质中偶极天线电磁场[J].石油大学学报(自然科学版), 1995,19(5):25-29.
    [24]其木苏荣,额尔敦仓,秦杰明.倾斜井眼中感应测井的正演模拟与响应特征[J].内蒙古民族大学学报(自然科学版). 2002,17(6):486-490
    [25]高杰,陈木银,陈雅薇,等.定向井各向异性地层交流电测井响应模拟[J].勘探地球物理进展,2003, 26(4):301-304.
    [26] A.G.Brooks, H.E.Hall Jr. Calculation of MWD electromagnetic resistivity tool response by a finite-element method[J].SPE19623,1989:537-546
    [27] Hagiwara T. Responseo of 2 MHz resistivity devices in thinly laminated formations(anisotropic resistivity and EM Log interpretation)[C]. 69th Annual SPE Technical Conference, 1994:667-676
    [28] Ed Tollefsen,Amanda Weber,Aron Kramer,et al. Logging while drilling measurement: from correction to evaluation[J].SPE108534,2007
    [29]史晓锋,李铮,王宝发,等.倾斜分层非均匀介质中磁偶极子场的数值分析[J].北京航空航天大学学报,2003,29(2):136-139
    [30]陈爱新.随钻电磁波测井环境影响分析[J].石油地球物理勘探,2006,41(5):601-605
    [31] Madden T. R.,Mackie R. L. Three-dimensional magnetotelluric modeling and inversion[J]. Proc. Inst.Electron.Eng.,1989,77(2):319-333
    [32] Mackie R L., Smith J T, Madden T R. Three-dimensional electromagnetic modeling using finite difference equations: the magnetotelluric example[J]. Radio Science, 1994, 29(4):923-935
    [33] Smith J T. Conservative modeling of 3-D electromagnetic fields, Part II:Biconjugate gradient solution and an accelerator[J].Geophysics, 1996, 61(5):1319-1324
    [34] Druskin V, Knizhnerman L. Spectral approach to sovling three-dimensional Maxwell’s diffusion equation in the time and frequency domain[J]. Radio Science, 1994,29(4):937-953
    [35] Graciet,S., Shen,L.C. Finite difference forward modeling of induction tool in 3D geometry[J].Petrophysics,2000,41(2):503-511
    [36] Chin,.W.C. General three-dimensional electromagnetic model for nondipolar transmitters in layered anisotropic media with dip[J].测井技术,2000,24(4):262-278
    [37] Tsili Wang, Gerald W. Hohmann.A finite-difference, time-domain solution for three-dimension electromagnetic modeling[J]. Geophysics,1993,58(6):797-809
    [38] Wang T, Sheng F.3-D electromagnetic anisotropy modeling using finite differences. Geophysics[J]. 2001, 66(5):1386-1398
    [39] Chester J.Weiss,Gregory A. Newman Electricmagnetic induction in a fully 3-D anisotropic earth[J]. Geophysics,2002,67(4):1104-1114
    [40] Chester J.Weiss,Gregory A. Newman Electricmagnetic induction in a generalized 3-D anisotropic earth[J]. Geophysics,2003,68(3):922-930
    [41] Gregory A.Newman,David L.Alumbaugh.Three-dimensional induction logging problems,Part2:A finite-difference solution[J]. Geophysics,2002,67(2):484-491
    [42] Yik-Kiong Hue, Fernando L.Teixeira, Luis San Martin,et al. Three-Dimensional simulation of eccentric LWD tool response in boreholes through dipping formations[J].Geoscience and remote sensing,2005,43(2):257-268
    [43]汪功礼,张庚骥.三维感应测井响应计算的交错网格有限差分法[J].地球物理学报, 2003, 46(4):561-567
    [44]王昌学,周灿灿,储昭坦等.电性各向异性地层频率域电磁响应模拟[J].地球物理学报,2006,49(6):1873-1883
    [45]沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报, 2003,46(12):281-286
    [46]孙向阳,聂在平,赵延文,等.用矢量有限元法模拟随钻测井仪在侵斜各向异性地层中的电磁响应[J].地球物理学报,2008,51(5):1600-1607
    [47] Wannamaker,P.E., Hohmann,G.W., San Filipo,W.A. Electromagnetic modeling of three-dimensional bodies in layered earths using integral equation[J].Geophysics, 1984,49(1):60-74
    [48] Wannamaker,P.E., Hohmann,G.W.,Ward S.H. Magnetotelluric response of three-dimensional bodies in layered earths[J].Geophysics,1984,15(3):1517-1533
    [49] Wannamaker,P.E. Advances in three-dimensional magnetotelluric modeling using integral equations[J].Geophysics,1991,56(11):1716-1728
    [50] Xiong,Z. Electromagnetic modeling of three-dimensional structures by the method of system iteration using integral equations[J]. Geophysics, 1992,57(12):1556-1561
    [51] Xiong,Z.,Tripp,A.C. Scattering matrix evaluation using spatial symmetry in electromagnetic modeling[J]. Geophys.J.Internet.,1993,114(3):459-464
    [52] Xiong,Z.,Tripp,A.C. Electromagnetic scattering of large structures in layered earth using integral equations[J].Radio Science,1995,30(2):921-929
    [53] Xiong,Z.,Tripp,A.C. 3D electromagnetic modeling for near-surface targets using integral equations[J].Geophysics,1997,62(4):1097-1106
    [54]王长青.现代计算电磁学基础[M].北京:北京大学出版社,2005,4-5
    [55] Weishan Han.3D finite element simulation method of induction and MWD tools[D]. Houston:University of Houston,2004
    [56]关继腾,房文静.电磁场理论[M].山东:石油大学出版社,2001
    [57] Anderson,B. The analysis of some unsolved induction interpretation problems using computer modeling[J]. The Log Analyst.1986,27(5):60-73
    [58] Anderson,B., Safinya,K.A., Habashy,T. Effect of dipping beds on the response of induction tools[J]. SPE15488, 1988
    [59] Gianzero,S.C.,Su,S.M. The response of an induction dipmeter and standard induction tools to dipping beds[J].Geophysics,55(9):1128-1140
    [60] Durgapal,P. An analytical program for electromagnetic wireline tools[J]. SPE1410,1985
    [61] Barbara Anderson, Stephen Bonner, Martin G.Luling, et al. Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formation[C].The Log Analyst,1992:461-475
    [62] Q.Zhou, D.J.Hilliker, D.Norwood. Geometric factor and adaptive deconvolution of MWD-PWR tools[C]. The Log Analyst,1992:390-398
    [63]其木苏荣,刘凤敏,井孝功,等.水平层状介质中任意方向磁偶极子的电磁场分布[J].大学物理,2006,25(10):31-36
    [64] Anderson W L. Numerical integration of related hankel transforms of orders 0 and 1 by adaptive digital filtering[J]. Geophys,1979,44:1287-1305
    [65] Johansen H.K. Fast hankel transform[J].Geophys.Prosp, 1979, 27:877-901
    [66] Anderson W L. Computation of Green’s tensor integrals for three-dimensional electromagnetic problem using fast hankel transforms[J].Geophysics,1984,49(10):1754-1759
    [67] Chave A D.Numerical integration of related Hankel transforms by quadrature andcontinued fraction expansion[J].Geophysics,1983,48 (12) :1671-1686
    [68]张辉,李桐林,董瑞霞,等.利用高斯求积和连分式展开计算电磁张量格林函数积分[J].地球物理学进展, 2005,20(3):667-670
    [69]洪有密.测井原理与综合解释[M].山东:石油大学出版社,2002
    [70] Shen L, Hardman R. Effect of formation dip or hole deviation on induction logs[C]. SPWLA,27th Annual Sympasium,1986,paper I
    [71] Hue Y.K., Teixeira F.L., San L.E, et al, Three-dimensional simulation of eccentric LWD tool response in boreholes through dipping formations[J]. IEEE trans, Geosci. Remote Sens, 2005, 43(2):257-268
    [72] Sperry-Sun. Training Department. Electromagnetic wave resistivity sensor manual. Sperry-Sun, a Halliburton Company,Jan, 2000
    [73]张庚骥.电法测井(下册)[M].北京:石油工业出版社,1986:101-156
    [74] Shanjun Li. Analysis of complex formation using computer techniques[D]. Houston:University of Houston,2004
    [75]张庚骥.电法测井(上册)[M].北京:石油工业出版社, 1986:54-88
    [76]覃世银,王昌学,杨韦华,等.各向异性地层中电磁散射响应的计算及应用[J].测井技术,2004,28(3):191-195
    [77]梁灿彬,秦光戎,梁竹健.电磁学[M].北京:高等教育出版社,1985:126-147
    [78] Yee,K.S., Numerical solution of initial boundary problem involving Maxwell’s equation in isotropic media[J].IEEE Tran. Antennas Propagat. 1966,14:302-309
    [79]汪功礼.非均匀地层低频电磁波传播研究[D].山东:石油大学(华东),2001
    [80]邓少贵.大斜度井非均匀地层电测井响应研究[D].山东:中国石油大学(华东),2006
    [81] Dmitry B.Avdeev, Alexei V.Kuvshinov, Oleg V.Pankratov et al. Three-dimensional induction logging problems,Part I : An integral equation solution and model comparisons[J].Geophysics,2002,67(2):413-426
    [82] Smith,J.T. Consertive modeling of 3D electromagnetic fields Part I:Properities and error analysis[J].Geophysics,1996,61(2):1308-1318
    [83] Alumbaugh D L, Newman G W, Prevost L, et al. Three-dimensional wideband electromagnetic modeling on massively parallel computers[J]. Radio Science, 1996,31(1):1-23
    [84] Wang,T., Hohmann,G..W. A finite-difference time-domain solution for three-dimensional electromagnetic modeling[J].Geophysics,1993,58:797-809
    [85]李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社, 1980: 72-129
    [86] Saad,Y. Iteration method for sparse linear systems[M].Boston:PWS Publishing Company,1996:104-126
    [87]周树荃,梁维泰,邓绍忠.有限元结构分析并行计算[M].北京:科学出版社,1999:200-246
    [88]盛剑霓.电磁场数值分析[M].北京:科学出版社, 1984:163-200
    [89]张永杰,孙秦,李江海.大型稀疏线性方程组的改进ICCG方法[J].计算物理, 2007, 24(5):581-584
    [90]史晓锋.水平井中随钻电阻率测量仪定位和预测地层界面的方法[J].测井技术,2006,30(2):119-121
    [91] Moran J H, Gianzero S. Effects of formation anisotropy on resistivity logging measurements[J]. Geophysics, 1979, 44 (7):1266-1286
    [92] Howard A Q Jr, Chew W C. Electromagnetic borehole fields in a layered dipping-bed environment with invasion[J]. Geophysics, 1992,57(3):451-465
    [93]史晓锋.随钻电磁波测井的电阻率测量方法研究[D].北京:北京航天航空大学,2001
    [94] W.C.Barnett, W.H.Meyer. Radial response of a 2-MHz MWD propagation resistivity sensor[J]. SPE22706, 1987
    [95]史晓锋,李铮,蔡志权.随钻电磁波传播电阻率测量工具探测深度研究[J].测井技术,2002,26(2):113-116
    [96] Brian Clark, Martin G, Luling Jacques Jundt, et al. A dual depth resistivity measurement for FEWD[C].SPWLA,29th Annual Logging Symposium,1988,paperA
    [97]张辛耘,郭彦军,王敬农.随钻测井的昨天、今天和明天[J].测井技术,2006,30(6):487-491
    [98]肖加奇,张庚骥.水平井和大斜度井双侧向测井响应的正演[J].石油大学学报(自然科学版), 1996,20(1):24-28
    [99] S.M.Haugland. Frequency dispersion effects on LWD propagation resistivity measurement[J].SPE96596,2005
    [100] Rasmus J, Tabanou J, Li Q, et al. Resistivity dispersion-fact or fiction?[C].SPWLA 44th Annual Logging Symposium,2003,paper RR
    [101] Anderson B, Barber T, Luling M,et al. Observation of large dielectric effect on LWD propagation-resistivity logs[C]. SPWLA 48th Annual Symposium, 2007, paper BB
    [102] Raphael Altman, Barbara Anderson, John Rasmus, et al. Dielectric effects and resistivity dispersion on induction and propagation–resistivity logs in complex volcanic lithologies: a case study[C]. SPWLA 49th Annual Symposium, 2008, paper JJJJ
    [103] Wu P, Lovell J, Clark B, et al. Dielectric-independent 2-MHz propagation resistivity[J]. SPE56448, 1999
    [104] Hagiwara T. Macroscopic anisotropy approach to analysis of thinly laminated sand/shale sequences: Sensitivity analysis of sand resistivity estimate and environmental correction[C] . SPE Annual Technical Conference and Exhibition San Antonio, TX. , U.S.A,1997:275-286
    [105] Anderson B I, Barber T D, Gianzero S C. The effect of crossbedding anisotropy on induction tool response[C]. SPWLA 39th Symposium,1998, paper B
    [106] Rodney, P. F, Wisler,M.M, Electromagnetic wave resistivity MWD tool[J]. Drilling Engineering 1986,1(5):337-346
    [107] S.D. Bonner, J.R. Tabanou, P.T. Wu, et al. New 2-MHz multiarray borehole compensated resistivity tool developed for MWD in slim holes[J]. SPE30547,1995
    [108] D.T. Macune, W.D. Flanagan, E.Chol, et al. A compact compensated resistivity tool for logging while drilling[J]. SPE98106 ,2006
    [109] Zhou, Q. Update survey of MWD resistivity tools[J]. SPE94556,2004
    [110] Kraus. Electromagnetics[M].Newyork:McGraw Hill Book Co,1953:513-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700