两种小GTP酶Rab4b,Rab32及蛋白激酶C delta(PKC δ)在棉铃虫变态过程中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     昆虫是地球上种类最多,数量最大的生物种群,与人类有着密不可分的关系。昆虫的发育是由激素调控的复杂的生命过程,包括昆虫的蜕皮与变态。在全变态昆虫中,蜕皮过程包括幼虫之间的蜕皮,幼虫到蛹的蜕皮以及蛹到成虫的蜕皮。幼虫向蛹的转变被称为变态。昆虫的变态是受蜕皮激素(20E)和保幼激素(JH)共同调控的。在幼虫期,20E引发蜕皮,JH负责维持个体的幼虫状态;而在幼虫的末龄期,JH滴度逐渐降低甚至消失,20E则起始变态过程。目前对于20E及JH协调调控变态的机制已经有了比较深入的研究。但最近的研究表明,除了20E与JH两种激素外,胰岛素(insulin)在昆虫的变态中起着不可忽视的作用。研究发现,insulin与20E存在着相互作用,二者共同的调控昆虫的生长及变态决定。但二者相互作用的分子机制尚不清楚,有哪些分子参与了两个通路的相互作用,还有待进一步研究。
     昆虫的变态过程中伴随着组织的重建,例如,中肠和脂肪体。在变态时期,幼虫的组织要发生解体,成虫的组织重新形成,这一过程也是由20E与JH共同调控的。20E诱导程序性细胞死亡使幼虫组织降解,而JH则拮抗20E的功能。然而,组织的重建过程是一个复杂的生理过程,除了激素的调控外,还依赖于其他的活性分子。但目前对于参与组织重建效应分子的研究还不深入。小GTP酶Rab蛋白在哺乳动物中广泛参与了各种生理活动,包括膜泡运输,细胞骨架活性及信号转导等生理过程,但在昆虫发育过程中对于该类蛋白的研究还很有限。此外,蛋白激酶C作为一种丝氨酸/苏氨酸蛋白激酶可以通过促进底物蛋白磷酸化调节多种生理过程,如细胞生长与增殖,细胞凋亡等。有研究发现蛋白激酶C参与昆虫20E信号转导过程,但哪种蛋白激酶C参与20E的信号转导还有待研究。
     存在的科学问题
     本实验室通过对棉铃虫变态期转录组进行测序,鉴定到两种小GTP酶Rab4b,Rab32及一种蛋白激酶C delta (PKCδ)基因。拟解决的科学问题为:Rab4b, Rab32是否参与由激素调控的变态过程?在功能上有何差异?PKCδ是否参与20E调节的变态及其伴随的组织重建过程?
     研究意义
     本研究通过鉴定三种参与变态过程的关键分子,阐明了不同分子的具体功能,从分子水平上揭示激素调控变态的分子机制,为进一步研究昆虫发育提供依据。此外,本研究通过鉴定参与组织重建的效应分子,丰富了我们对于组织重建机制的认识和理解,为农业害虫的防治提供了理论指导。
     研究方案及取得的成果
     本文以鳞翅目昆虫,棉铃虫,为实验材料,通过体内,体外的干扰实验及激素调控实验来探索两种Rab蛋白Rab4b,Rab32及蛋白激酶C delta (PKCδ)在昆虫变态及组织重建中的功能。所得实验结果如下:
     1.Rab4b参与insulin与20E信号通路的基因转录进而调控糖原水平及变态发生
     本研究在棉铃虫鉴定到一个小GTP酶Rab4b参与了20E与胰岛素调控的基因转录。该基因在表皮、中肠、脂肪体及血淋巴中均有表达。虫体RNA干扰导致幼虫在化蛹前死亡,异常化蛹及小蛹的形成。生化分析结果显示,干扰Rab4b后,糖原的储存水平下降;体内及体外干扰实验表明,20E通路中的Br和HR3以及糖原合成酶GS的转录水平受到抑制,而FOXO的转录水平上调。免疫细胞化学及免疫印迹的结果表明,insulin通过Rab4b抑制FOXO的核定位,过表达Rab4b进行亚细胞定位检测,发现insulin没有影响Rab4b定位,而20E刺激后Rab4b向细胞膜迁移。但在mRNA水平上,20E不影响Rab4b的表达,而胰岛素则诱导Rab4b的上调。暗示20E与胰岛素信号通路通过不同的方式来调控Rab4b,最终调控变态的发生。
     2.Rab32参与棉铃虫变态期中肠的重建
     我们从棉铃虫中肠中鉴定到Rab32基因。半定量RT-PCR分析Rab32表达模式发现该基因在预蛹期的中肠mRNA水平最高。20E诱导Rab32上调,而JH类似物(JHA)不影响其转录。在表皮细胞系中干扰20E核受体EcR-B1后,20E对Rab32的上调作用消除。免疫细胞化学结果显示,该蛋白主要位于细胞质中,而20E使Rab32在细胞系中聚集颗粒状结构并增加Rab32在细胞质中的蛋白表达。免疫组织化学结果显示,在变态期的中肠中,Rab32定位与成虫中肠上皮细胞的内部边缘位置,暗示其可能参与中肠形成中营养的吸收及信号转导的作用。在虫体内干扰Rab32后,幼虫的生长及变态没有受到影响,但成虫中肠的形态发生异常。这些结果说明Rab32参与了棉铃虫变态期的中肠重建,Rab32可能在20E信号途径的调控下参与成虫中肠的形成。
     3.蛋白激酶C delta(PKCδ)参与棉铃虫变态期组织的解体
     本研究在棉铃虫中发现了一个新型的蛋白激酶C,PKCδ,参与了变态期中肠和脂肪体的凋亡。PKCδ在棉铃虫的表皮、中肠、脂肪体中均有表达,且在变态期转录水平较高。体内注射激素实验结果显示,20E和JHⅢ都可以上调PKCδ的转录,。在细胞系上干扰EcR-B1后,20E不能上调PKCδ,而干扰JH的候选受体Met后,JHⅢ对PKCδ的诱导作用没有变化,说明20E通过EcR0B1调控PKCδ,而JHⅢ可能通过其他的方式,而不是Met来调控PKCδ转录。在虫体中干扰PKCδ,中肠和脂肪体无法进行解体和重建;凋亡相关基因Caspase8的表达被抑制,而凋亡抑制因子Survivin转录上调。在表皮细胞中过表达PKCδ的功能域,可以诱导细胞凋亡,并增强了FOXO的核定位,说明PKCδ可能通过调节FOXO的转录活性诱导凋亡。在表皮细胞中干扰PKCδ,抑制了20E及JHⅢ对USPl,Calponin等关键基因的上调作用,说明PKCδ可能参与了20E与JH的信号转导途径的相互作用。
     所取得成果的创新点与意义
     本文主要通过体内及体外的RNA干扰技术,鉴定到一个小GTP酶Rab4b通过调控20E与胰岛素通路基因转录及糖原合成进而参与变态。深入揭示了20E通路与胰岛素通路相互作用的机制。同时,我们鉴定到另一种小GTP酶Rab32参与了中肠重建中成虫中肠的形成,丰富了小GTP酶Rab蛋白在昆虫中的功能研究。此外,发现蛋白激酶C delta(PKCδ)参与了20E诱导的组织凋亡及20E与JH对下游基因的调控,本研究为深入揭示昆虫变态的激素调控及组织重建的分子机制提供了依据。
Background
     Insects are the largest biological species with a maximum population on earth, which have a close relationship with humans. Insect development is a complicated physiological process regulated by hormones, including molting and metamorphosis. In holometabolous insects, insect molting contains molt from larvae-larvae, larvae-pupa and pupa-adult. The larva to pupae transition is called metamorphosis. This process is controlled by two kinds of hormones:20E and JH. At larval stage,20E initiate molting, and JH maintains larval growth. At the final larval stage,20E provokes metamorphosis when JH level decreases. Previous studies have uncovered the mechanism of20E and JH regulated metamorphic transition. Whereas, recent finding indicates that insulin play a crucial role in larvae-pupae transform. Insulin could cooperate with20E signal and regulating insect development. However, the molecular mechanism that insulin interacts with20E during insect metamorphosis is not fully understood.
     During insect metamorphosis, tissues undergo remodeling under the control of20E and JH. In this process, the larval tissues, such as midgut and fat body undergo degradation by20E induced programmed cell death (PCD), and then the new tissues form by imaginal cell proliferation, whereas, JH antagonizes20E effects. The foregoing investigations have revealed the hormone regulations on tissue remodeling. Nevertheless, molecules involved in this process need to be further identified. In mammalian, the Small GTPases are widely found to take part in multiple physiological processes, such as visecle trafficking, cytoskeleton activity and signal transduction. Howerve, the function of Rab proteins are not well studied in insect. The protein kinase C is also reported to play important roles in cell growth, proliferation and apoptosis. Recently studies indicate the protein particiapates in20E signaling.
     Pending Problems
     What are the functions of Rab4b and Rab32in hormones regulated metamorphosis? And how is the difference between Rab4b and Rab32? Whether PKCδ in invovoled in20E pathway and tissue remodeling during larval-pupal transition.
     Significance of the Research
     The rapid development of molecular technologies brings us a convenient platform for further study the insect development. Insect undergoes molting and metamorphosis during its life. The larval-pupal transition is very crucial process for insect mature and reproduction, which is mainly regulated by20E and JH. However, more and more researches find that insulin signaling play vital role in metamorphosis by interacting with20E pathway. Thus, questions remained. The mechanism of the crosstalk between20E and insulin pathway is not well understood. Therefore, it is very meaningful to have a better conmand of the interaction of the two pathways. Moreover, tissue remodeling is an important physiological process during metamorphosis. Charactiaziton of the effetors involved in the process is with great importance and providing new thought for pest-cpntrol
     Methods and Acquired Results
     In the current study, we characterized a small GTPase Rab4b, participates in metamorphosis by regulating20E and insulin signals. It provided a target molecule for further understand the crosstalk between20E and insulin pathway. Moreover, we found another Rab protein, Rab32, is involved in imaginal midgut formation. Besides, our study demonstrated PKC delta (PKCδ) takes part in20E induced tissue degradation through cell death. Our investigations provide a theoretical basis for further reveal the molecular mechanism of metamorphosis and tissue reconstruction.
     1. Rab4b participates in metamorphosis by regulating glycogen level and gene transcription insulin and20E signaling.
     In the present study, we found that a small GTPase Rab4b from a lepidopteran insect participates in signal transduction in the two pathways. RT-PCR results showed that Rab4b was present consistently in various tissues during larval development. Knocked down of Rab4b caused53%larvae to die before pupation,24%failed to pass the metamorphic transition and became malformed pupae, and part of thelarvae transformed to smaller pupae with lower body weight. These results indicate that Rab4b is critical to larval survival and metamorphosis. Glycogen levels declined in the larval body after Rab4b silencing. Knockdown of Rab4b suppressed the gene transcription in the20E (Br and HR3) and insulin pathways (GS), whereas, FOXO increased after Rab4b interference, RNAi in HaEpi cells confirmed the results in vivo. Immunocytochemistry and western bolt showed that insulin kept FOXO located in the cytoplasm after1h treatment, whereas FOXO could not be arrested in the cytoplasm after insulin induction after knockdown of Rab4b. Overexpression experiment revealed that insulin could not alter the cytoplasm location of Rab4b. However, the20E induced Rab4b moving toward the cell membrane. Hormone regulation results indicate that20E did not effect the transcription of Rab4b, but insulin enhanced the transcription of Rab4b in3to12h after injection. Besides, the Rab4b transcription depended on the glucose level.
     2. Rab32and the remodeling of the imaginal midgut in Helicoverpa armigera
     We got the cDNA sequence of Rab32, RT-PCR results show that Rab32is up-regulated in epidermis and midgut during metamorphosis. Its expression could be up-regulated by20E, but not by JHA. RNAi in HaEpi cells demonstrated Rab32could be regulated by20E signal transduction pathway through EcRB1as a receptor of20E. Immunocytochemistry showed that Rab32mostly existed in the cytoplasm in normal condition,20E induced Rab32accumulation in the cytosolic granular astructures. Western blot showed20E enhanced Rab32in cytoplasm. Immunohistochemistry results revealed that the Rab32signal was detected in the cytoplasm of midgut cells in both the5th feeding larvae and metamorphic committed larvae. In the5th feeding larval midgut, the intensive signal was detected around the basement of the midgut and the apical region of the epithelium. In the metamorphic committed midgut at the6th120h larval stage, the most intensive signal was detected at the apical region of the epithelium cells of the imaginal midgut, suggesting Rab32may relate to imaginal midgut formation by nutrient absorption or signal transduction. Knockdown of Rab32 expression disrupts the imaginal midgut morphogenesis during metamorphosis. These data suggest that Rab32takes part in imaginal midgut formation.
     3. Protein Kinase C delta participates in tissue degradation during metamorphosis in Helicoverpa armigera
     Here we find a novel type Protein Kinase C δ (PKCδ) takes part in the apoptosis in midgut and the fat body in a lepidopteran insect Helicoverpa armigera. PKCδ was highly expressed in several tissues during metamorphic stage, and could be stimulated by20E and Juvenile hormone (JHⅢ). Knockdown of EcR-B1in HaEpi cells blocked20E induced PKCδ transcription, but interference of JH candidate receptor, Met, did not effect the JHIII induced PKCδ transcription, suggesting20E regulates PKCδ through EcR-B1, whereas JH effects PKCδ via other way except Met. Immunohistochemistry and HE staining indicated that the fat body and the midgut did not experience degradation in the PKCδ knockdown larvae. RT-PCR analysis demonstrated the apoptosis related gene Caspase8transcription was blocked after PKCδ knockdown, whereas, the inhibitor of apoptosis, Survivin, was enhanced in the RNAi larvae. The data suggest PKCδ participate in the hydrolyzing of the midgut and the fat body during metamorphosis. Overexpress functional domain of PKCδ in HaEpi cells induced apoptosis, and the indicator of apoptosis Caspase8was upregulated, meanwhile the IAP, Survivin was inhibited, which further evidenced the active role of PKCδ in HaEpi cells apoptosis. In PKCδ overexpression cells, FOXO displayed much stronger signal in the nuclei comparing with that in the normal cells. RFP was also used as control to confirm the effect of PKCδ on subcellular location of FOXO. The data suggest the overexpressed PKCδ functional domain enhance the nuclear location of FOXO. RNAi of PKCδ in HaEpi cells surpressed the20E and JHIII induced expression of USP1and Calponin, Which suggest that PKCδ involved in the20E and JH signal transduction.
引文
Akman, HO., Raghavan, A., Craigen, W.J.,2011. Animal models of glycogen storage disorders. Prog Mol Biol Transl Sci 100,369-388.
    Alone, D.P., Tiwan, A.K., Mandal, L., Li, M., Mechler, B.M., Roy, J.K.,2005. Rabll is required during Drosophila eye development. Int J Dev Biol 49,873-879.
    Ashok, M., Turner. C., Wilson, T.G.,1998. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc Natl Acad Sci U S A 95, 2761-2766.
    Atten, M.J., Godoy-Romero, E., Attar, B.M., Milson, T., Zopel, M., Holian, O.,2005. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs 23,111-119.
    Awad, T.A., Truman, J.W.,1997. Postembryonic development of the midline glia in the CNS of Drosophila:proliferation, programmed cell death, and endocrine regulation. Dev Biol 187,283-297.
    Bainbridge, S.P., Bownes, M.,1981. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol 66,57-80.
    Barthel, A., Schmoll, D., Unterman, T.G.,2005. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16,183-189.
    Bayer, C., Zhou, X., Zhou, B., Riddiford, L.M., von Kalm, L.,2003. Evolution of the Drosophila broad locus:the Manduca sexta broad Z4 isoform has biological activity in Drosophila. Dev Genes Evol 213,471-476.
    Bender, M., Imam, F.B., Talbot, W.S., Ganetzky, B., Hogness, D.S.,1997. Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. Cell 91. 777-788.
    Bhattacharya, M., Babwah, A.V., Ferguson, S.S.,2004. Small GTP-binding protein-coupled receptors. Biochem Soc Trans 32,1040-1044.
    Bhuin, T., Roy, J.K.,2009a. Rabll is required for embryonic nervous system development in Drosophila. Cell Tissue Res 335,349-356.
    Bhuin, T., Roy, J.K.,2009b. Rab11 is required for myoblast fusion in Drosophila. Cell Tissue Res 336,489-499.
    Billas, I.M., Moulinier, L., Rochel, N., Moras, D.,2001. Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 276,7465-7474.
    Billig, H., Fumta, I., Hsueh, A.J.,1993. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 133,2204-2212.
    Binoux, M.,1995. The IGF system in metabolism regulation. Diabete Metab 21,330-337.
    Blundell, T.L., Cutfield, J.F., Cutfield, S.M., Dodson, E.J., Dodson, GG, Hodgkin, D.C., Mercola, D.A., Vijayan, M.,1971. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature 231,506-511.
    Bogoyevitch, M.A., Parker, P.J., Sugden, P.H.,1993. Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-epsilon is a major isotype present, and it is activated by phorbol esters, epmephrinc, and endothelin. Circ Res 72,757-767.
    Bohni, R., Riesgo-Escovar, J., Oldham. S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., Hafen, E.,1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97,865-875.
    Bond, N.D., Nelliot, A., Bernardo, M.K., Ayerh, M.A., Gorski, K.A., Hoshizaki, D.K., Woodard, C.T.,2011. ssFTZ-F1 and Matrix metalloproteinase 2 are required for fat-body remodeling in Drosophila. Dev Biol 360,286-296.
    Brogiolo, W, Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., Hafen, E.,2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11,213-221.
    Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., Partridge, L.,2005. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102,3105-3110.
    Burtis, K.C., Thummel, C.S., Jones, C.W., Karim, F.D., Hogness, D.S.,1990. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 61,85-99.
    Cakouros, D., Daish, T.J., Kumar, S.,2004. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J Cell Biol 165, 631-640.
    Casartelli, M., Corti, P., Cermenati, G., Grimaldi, A., Fiandra, L., Santo, N., Pennacchio, F., Giordana, B.,2007. Absorption of horseradish peroxidase in Bombyx mori larval midgut. J Insect Physiol 53,517-525.
    Casartelli, M., Corti, P., Giovanna Leonardi, M., Fiandra, L., Burlini, N., Pennacchio, F., Giordana, B.,2005. Absorption of albumin by the midgut of a lepidopteran larva. J Insect Physiol 51,933-940.
    Chavez, V.M., Marques, G., Delbecque, J.P., Kobayashi, K., Hollingsworth, M., Burr, J., Natzle, J.E., O'Connor, M.B.,2000. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 127,4115-4126.
    Chcrbas, L., Hu, X., Zhimulev, I., Belyaeva, E., Cherbas, P.,2003. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271-284.
    Christiaens, O., Iga, M.. Velarde, R.A., Rouge, P., Smagghe, G,2010. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid. Insect Mol Biol 19 Suppl 2,187-200.
    Clayton, G.M., Peak-Chew, S.Y., Evans, R.M., Schwabe, J.W.,2001. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A98,1549-1554.
    Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., Hemmings, B.A.,1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
    Crnz, J., Martin, D., Belles, X.,2007. Redundant ccdysis regulatory functions of three nuclear receptor HR3 isoforms in the direct-developing insect Blattella germanica. Mech Dev 124,180-189.
    Dai, J.D., Gilbert, L.I.,1998. Juvenile hormone prevents the onset of programmed cell death in the prothoracic glands of Manduca sexta. Gen Comp Endocrinol 109,155-165.
    Daish, T.J., Mills, K., Kumar, S.,2004. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 7,909-915.
    Davis, R.J., Bennicelli, J.L., Macina, R.A., Nycum, L.M., Biegel, J.A., Barr, F.G,1995. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma. Hum Mol Genet 4,2355-2362.
    Dcnley, A., Brierley, G.V., Carroll, J.M., Lindenberg, A., Booker, G.W., Cosgrove, L.J., Wallace, J.C., Forbes, BE., Roberts, C.T., Jr.,2006. Differential activation of insulin receptor isoforms by insulin-like growth factors is determined by the C domain. Endocrinology 147,1029-1036.
    Deveraux, Q.L., Reed, J.C.,1999. IAP family proteins--suppressors of apoptosis. Genes Dev 13, 239-252.
    DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W., Guild, G.M.,1991. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129,385-397.
    Dubrovsky, E.B., Dubrovskaya, V.A., Berger, E.M.,2004. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol 268,258-270.
    Dunne, J.C., Kondylis, V., Rabouille, C.,2002. Ecdysone triggers the expression of Golgi genes in Drosophila imaginal discs via broad-complex. Dev Biol 245,172-186.
    Eystathioy, T., Swevers, L., Iatrou, K.,2001. The orphan nuclear receptor BmHR3A of Bombyx mori:hormonal control, ovarian expression and functional properties. Mech Dev 103, 107-115.
    Fang, F., Xu, Y., Jones, D., Jones, G.,2005. Interactions of ultraspiracle with ecdysone receptor in the transduction of ecdysone- and juvenile hormone-signaling. FEBS J 272,1577-1589.
    Flatt, T., Min, K.J., D'Alterio, C., Villa-Cuesta, E., Cumbers, J., Lehmann, R., Jones, D.L., Tatar, M.,2008. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105,6368-6373.
    Fredericks, W.J., Galili, N., Mukhopadhyay. S., Rovera, G, Bennicelli, J., Barr, F.G., Rauscher, F.J.,3rd,1995. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15,1522-1535.
    Fruman, D.A., Cantley, L.C., Carpenter, C.L.,1996. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 37, 113-121.
    Gal, T.Z., Solomon, A., Glazer, I., Koltai, H.,2001. Alterations in the levels of glycogen and glycogen synthase transcripts during desiccation in the insect-killing nematode Steinernema feltiae IS-6. J Parasitol 87,725-732.
    Gilbert, L.I..2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215,1-10.
    Gilbert, L.I., Granger, N.A., Roe, R.M.,2000. The juvenile hormones:historical facts and speculations on future research directions. Insect Biochem Mol Biol 30,617-644.
    Gilbert, L.I., Song, Q., Rybczynski, R.,1997. Control of ecdysteroidogenesis:activation and inhibition of prothoracic gland activity. Invert Neurosci 3,205-216.
    Goldstein, J.L., Brown, M.S.,1990. Regulation of the mevalonate pathway. Nature 343,425-430.
    Greene, M.W., Runoff, M.S., Burrington, C.M., Garofalo, R.S., Orena, S.J.,2010. TNFalpha activation of PKCdelta, mediated by NFkappaB and ER stress, cross-talks with the insulin signaling cascade. Cell Signal 22,274-284.
    Gu, S.H., Lin, J.L., Lin, P.L., Chen, C.H.,2009. Insulin stimulates ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. Insect Biochem Mol Biol 39, 171-179.
    Hackl, H., Burkard, T.R., Stum, A., Rubio, R., Schleiffer, A., Tian, S., Quackenbush, J., Eisenhaber, F., Trajanoski, Z.,2005. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 6, R108.
    Hakim, R.S., Baldwin, K., Smagghe, G,2009. Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55,593-608.
    Harper, M.S., Hopkins, T.L.,1997. Peritrophic membrane structure and secretion in European com borer larvae (Ostrinia nubilalis). Tissue Cell 29,463-475.
    He, H.J., Hou, L., Wang, J.X., Zhao, X.F.,2010. The apoptosis inhibitor survivin prevents insect midgut from cell death during postembryonic development. Mol Biol Rep.
    Hiragaki, S., Uno, T, Takeda, M.,2009. Putative regulatory mechanism of prothoracicotropic hormone (PTTH) secretion in the American cockroach, Periplaneta americana as inferred from co-localization of Rab8, PTTH, and protein kinase C in neurosecretory cells. Cell Tissue Res 335,607-615.
    Hirota, Y., Tanaka, Y.,2009. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 66,2913-2932.
    Hiruma, K., Carter. M.S., Riddiford, L.M.,1995. Characterization of the dopa decarboxylase gene of Manduca sexta and its suppression by 20-hydroxyecdysone. Dev Biol 169,195-209.
    Hiruma, K., Riddiford, L.M.,2001. Regulation of transcription factors MHR4 and betaFTZ-Fl by 20-hydroxyecdysone during a larval molt in the tobacco hornworm, Manduca sexta. Dev Biol 232,265-274.
    Hou, L., Wang, J.X., Zhao, X.F.,2010. Rab32 and the remodeling of the imaginal midgut in Helicoverpa annigera. Amino Acids 40,953-961.
    Hutagalung, A.H., Novick, P.J., Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91,119-149.
    Iga, M., Iwami, M., Sakurai, S.,2007. Nongenomic action of an insect steroid hormone in steroid-induced programmed cell death. Mol Cell Endocrinol 263,18-28.
    Iga, M., Manaboon, M., Matsui, H., Sakurai, S.,2010. Ca2+-PKC-caspase 3-like protease pathway mediates DNA and nuclear fragmentation in ecdysteroid-induced programmed cell death. Mol Cell Endocrinol 321,146-151.
    Iga, M., Smagghe, G, Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis. Peptides 31,456-467.
    Imamura, T., Huang, J., Usui, I., Satoh, H., Bever, J., Olefsky, J.M.,2003. Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 23,4892-4900.
    Jindra, M., Huang, J.Y., Malone, F., Asahina, M., Riddiford, L.M.,1997. Identification and mRNA developmental profiles of two ultraspiraclc isoforms in the epidermis and wings of Manduca sexta. Insect Mol Biol 6,41-53.
    Jindra, M., Malone, F., Hiruma, K., Riddiford, L.M.,1996. Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol 180,258-272.
    Johnson, D.E., Brookhart, G.L., Kramer, K.J., Barnett, B.D., McGaughey, W.H.,1990. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella:comparison of midgut proteinases from susceptible and resistant larvae. J Invertebr Pathol 55,235-244.
    Jordens, I., Marsman, M., Kuijl, C., Neefjes, J.,2005. Rab proteins, connecting transport and vesicle fusion. Traffic 6,1070-1077.
    Kaddai, V, Gonzalez, T., Keslair, F., Gremeaux, T., Bonnafous, S., Gugenheim, J., Tran, A., Gual, P., Le Marchand-Brustel, Y., Cormont, M.,2009. Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One 4, e5257.
    Kageyama, Y., Masuda, S., Hirose, S., Ueda, H.,1997. Temporal regulation of the mid-prepupal gene FTZ-F1:DHR3 early late gene product is one of the plural positive regulators. Genes Cells 2,559-569.
    Kamimura, M.. Tomita, S., Kiuchi, M., Fujiwara, H.,1997. Tissue-specific and stage-specific expression of two silkworm ecdysone receptor isoforms--ecdysteroid-dependent transcription in cultured anterior silk glands. Eur J Biochem 248,786-793.
    Kapitskaya, M.Z., Li, C., Miura, K., Segraves, W., Raikhel, A.S.,2000. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Mol Cell Endocrinol 160,25-37.
    Kappeler, L., De Magalhaes Filho, C., Dupont, J., Leneuve, P., Cervera, P., Perin, L., Loudes, C., Blaise, A., Klein, R., Epelbauni, J., Le Bouc, Y, Holzenberger, M.,2008. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendoerine mechanism. PLoS Biol 6. e254.
    Karim, F.D., Guild, G.M., Thummel, C.S.,1993. The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development 118,977.
    Karlson, P.,1996. On the hormonal control of insect metamorphosis. A historical review. Int J Dev Biol 40,93-96.
    Kataoka, H., Nagasawa, H., Isogai, A., Ishizaki, H., Suzuki, A.,1991. Prothoracicotropic hormone of the silkworm, Bombyx mori:amino acid sequence and dimeric structure. Agric Biol Chem 55,73-86.
    Kawakami, A., Kataoka, H., Oka, T., Mizoguchi, A., Kimura-Kawakami, M., Adachi, T., Iwami, M., Nagasawa, H., Suzuki, A., Ishizaki, H.,1990. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science 247,1333-1335.
    Knight, J.B., Cao, K.T., Gibson, G.V., Olson, A.L.,2000. Expression of a prenylation-deficient Rab4 interferes with propagation of insulin signaling through insulin receptor substrate-1. Endocrinology 141,208-218.
    Koelle, M.R., Segraves, W.A., Hogness, D.S.,1992. DHR3:a Drosophila steroid receptor homolog. Proc Natl Acad Sci U S A 89,6167-6171.
    Koelle, M.R., Talbot. W.S., Segraves, W.A.. Bender, M.T., Cherbas, P., Hogness, D.S.,1991. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67,59-77.
    Komeili, A., O'Shea, E.K.,2001. New perspectives on nuclear transport. Annu Rev Genet 35, 341-364.
    Kondo, H., Ino, M., Suzuki, A., Ishizaki, H., Iwami, M.,1996. Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori:structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. J Mol Biol 259,926-937.
    Kousteni, S.,2011. FoxOl, the transcriptional chief of staff of energy metabolism. Bone.
    Koval, A., Purvanov, V., Egger-Adam, D., Katanaev, V.L.,2005. Yellow submarine of the Wnt/Frizzled signaling:submerging from the G protein harbor to the targets. Biochem Pharmacol 82,1311-1319.
    Koyama, T., Syropyatova, M.O., Riddiford, L.M.,2008. Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Dev Biol 324,258-265.
    Lawlor, M.A., Alessi, D.R.,2001. PKB/Akt:a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114,2903-2910.
    Lee, C.Y., Cooksey, B.A., Baehrecke, E.H.,2002. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 250,101-111.
    Lee, J.O., Lee, S.K., Jung, J.H., Kim, J.H., You, G.Y., Kim, S.J., Park, S.H., Uhm, K.O., Kim, H.S., 2010. Metformin induces Rab4 through AMPK and modulates GLUT4 translocation in skeletal muscle cells. J Cell Physiol 226,974-981.
    Li, Y., Zhang, Z., Robinson, G.E., Palli, S.R.,2007. Identification and characterization of a juvenile hormone response element and its binding proteins. J Biol Chem 282. 37605-37617.
    Marchal, E., Vandersmissen, H.P., Badisco, L., Van de Velde, S., Verlinden, H., Iga, M., Van Wielendaele, P., Huybrechts, R., Simonet, G., Smagghe, G., Vandcn Broeck, J.,2010. Control of ecdysteroidogenesis in prothoracic glands of insects:a review. Peptides 31, 506-519.
    Minakuchi, C., Namiki, T., Shinoda, T.,2009. Kruppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 325, 341-350.
    Minakuchi, C., Zhou, X., Riddiford, L.M.,2008. Kruppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev 125, 91-105.
    Mirth, C., Truman, J.W., Riddiford, L.M.,2005. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 15,1796-1807.
    Mirth, C.K., Riddiford, L.M.,2007. Size assessment and growth control:how adult size is determined in insects. Bioessays 29,344-355.
    Nagasawa, H., Kataoka. H., Hori, Y., Isogai, A., Tamura, S., Suzuki, A., Guo, F., Zhong, X.C., Mizoguchi, A., Fujishita, M., et al.,1984. Isolation and some characterization of the prothoracicotropic hormone from Bombyx mori. Gen Comp Endocrinol 53,143-152.
    Nclliot, A, Bond. N., Hoshizaki, D.K.,2006. Fat-body remodeling in Drosophila melanogaster. Genesis 44,396-400.
    Nijhout, H.F.,2003. The control of body size in insects. Dev Biol 261,1-9.
    Nishimura, N., Sasaki, T.,2008. Regulation of epithelial cell adhesion and repulsion:role of endocytic recycling. J Med Invest 55,9-16.
    Nishimura, N.. Sasaki, T.,2009. Rab family small G proteins in regulation of epithelial apical junctions. Front Biosci 14,2115-2129.
    Nishita, Y, Takiya, S.,2004. Structure and expression of the gene encoding a Broad-Complex homolog in the silkworm, Bombyx mori. Gene 339,161-172.
    Nishiura, J.T., Ho, P., Ray, K.,2003. Methoprene interferes with mosquito midgut remodeling during metamorphosis. J Med Entomol 40,498-507.
    Nishiura, J.T., Ray, K., Murray, J.,2005. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. Insect Biochem Mol Biol 35,561-573.
    Nishizuka, Y,1984. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308,693-698.
    Nishizuka, Y,1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258,607-614.
    Nishizuka, Y.,1995. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9, 484-496.
    Palli, S.R., Hiruma, K., Riddiford, L.M.,1992. An ecdysteroid-inducible Manduca gene similar to the Drosophila DHR3 gene, a member of the steroid hormone receptor superfamily. Dev Biol 150,306-318.
    Parthasarathy, R., Palli, S.R.,2007. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 124,23-34.
    Parthasarathy, R., Palli, S.R.,2008. Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneum. Dev Dyn 237,893-908.
    Pereira-Leal, J.B., Seabra, M.C.,2001. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313,889-901.
    Puig, O., Marr, M.T., Ruhf, M.L., Tjian, R.,2003. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17, 2006-2020.
    Puig, O., Mattila, J.,2010. Understanding Forkhead box class O function:lessons from Drosophila melanogaster. Antioxid Redox Signal 14,635-647.
    Puig, O., Tjian, R.,2005. Transcriptional feedback control of insulin receptor by dFOXO/FOXOl. Genes Dev 19,2435-2446.
    Puig, O., Tjian, R.,2006. Nutrient availability and growth:regulation of insulin signaling by dFOXO/FOXOl. Cell Cycle 5,503-505.
    Pursley, S., Ashok, M., Wilson, T.G.,2000. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster. Insect Biochem Mol Biol 30,839-845.
    Qin, S., Chock, P.B.,2003. Implication of phosphatidylinositol 3-kinase membrane recruitment in hydrogen peroxide-induced activation of PI3K and Akt. Biochemistry 42,2995-3003.
    Rabossi,A., Stoka, V., Puizdar, V., Turk, V., Quesada-Allue, L.A.,2004. Novel aspartyl proteinase associated to fat body histolysis during Ceratitis capitata early metamorphosis. Arch Insect Biochem Physiol 57.51-67.
    Retnakaran, A., Gelbic, I., Sundaram, M., Tomkins, W., Ladd, T., Primavera, M., Feng, Q., Arif, B., Palli, R., Krell, P.,2001. Mode of action of the ecdysone agonist tebufenozide (RH-5992), and an exclusion mechanism to explain resistance to it. Pest Manag Sci 57, 951-957.
    Rewitz, K.F., Yamanaka, N., Gilbert, L.I., O'Connor, M.B.,2009. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326, 1403-1405.
    Ribon, V, Saltiel, A.R.,1997. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J 324 (Pt 3),839-845.
    Riddiford, L.M.,1993. Hormone receptors and the regulation of insect metamorphosis. Receptor 3, 203-209.
    Riddiford, L.M.,1994. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Advances in Insect Physiology 24,213-274.
    Riddiford, L.M., Hewes, R.S., Truman, J.W.,1994. Dynamics and metamorphosis of an identifiable peptidergic neuron in an insect. J Neurobiol 25,819-830.
    Rodriguez-Fernandez, I.A., Dell'Angelica, E.C.,2009. A data-mining approach to rank candidate protein-binding partners-The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Inherit Metab Dis 32,190-203.
    Rosenfeld, J.L., Knoll, B.J., Moore, R.H.,2002. Regulation of G-protein-coupled receptor activity by rab GTPases. Receptors Channels 8,87-97.
    Roy, S.G., Hansen, I.A., Raikhel, A.S.,2007. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37, 1317-1326.
    Rybczynski, R., Gilbert, L.I.,2006. Protein kinase C modulates ecdysteroidogenesis in the prothoracic gland of the tobacco hornworm, Manduca sexta. Mol Cell Endocrinol 251, 78-87.
    Ryerse, J.S., Purcell, J.P., Sammons. R.D.,1994. Structure and formation of the peritrophic membrane in the larva of the southern corn rootworm, Diabrotica undecimpunctata. Tissue Cell 26,431-437.
    Saltiel, A.R., Kahn, C.R.,2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414,799-806.
    Sauman, I., Reppert, S.M.,1996. Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth Antheraea pernyi:developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev Biol 178,418-429.
    Segraves, W.A., Hogness, D.S.,1990. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev 4,204-219.
    Sehnal, F., Hansen, I., Scheller, K.,2002. The cDNA-structure of the prothoracicotropic hormone (PTTH) of the silkmoth Hyalophora cecropia. Insect Biochem Mol Biol 32,233-237.
    Shao, H.L., Zheng, W.W., Liu, P.C., Wang, Q., Wang, J.X., Zhao, X.F.,2008. Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS One 3, e3127.
    Shemshedini, L., Wilson, T.G.,1990. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein. Proc Natl Acad Sci U S A 87,2072-2076.
    Shionoya, M., Matsubayashi, H., Asahina, M., Kuniyoshi, H., Nagata, S., Riddiford, L.M., Kataoka, H.,2003. Molecular cloning of the prothoracicotropic hormone from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 33,795-801.
    Skaletz-Rorowski, A., Eschert, H., Leng, J., Stallmeyer, B., Sindermann, J.R., Pulawski, E., Breithardt, G,2005. PKC delta-induced activation of MAPK pathway is required for bFGF-stimulated proliferation of coronary smooth muscle cells. Cardiovasc Res 67, 142-150.
    Slaidina, M., Delanoue, R., Gronke, S., Partridge, L., Leopold, P.,2009. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17,874-884.
    Stenmark, H., Olkkonen, V.M.,2001. The Rab GTPase family. Genome Biol 2, REVIEWS3007.
    Stern, D.,2003. Body-size control:how an insect knows it has grown enough. Curr Biol 13, R267-269.
    Subramani, D., Alahari, S.K.,2010. Integrin-mediated function of Rab GTPases in cancer progression. Mol Cancer 9,312.
    Sui, Y.P., Liu, X.B., Chai, L.Q., Wang, J.X., Zhao, X.F.,2009. Characterization and influences of classical insect hormones on the expression profiles of a molting carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). Insect Mol Biol 18,353-363.
    Sun, X., Song, Q.,2006. PKC-mediated USP phosphorylation is required for 20E-induced gene expression in the salivary glands of Drosophila melanogaster. Arch Insect Biochem Phvsiol 62,116-127.
    Swevers, L., Cherbas, L., Cherbas, P., Iatrou, K.,1996. Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochem Mol Biol 26, 217-221.
    Takai, Y. Sasaki, T., Matozaki, T.,2001. Small GTP-binding proteins. Physiol Rev 81,153-208.
    Talbot, W.S., Swyryd, E.A., Hogness, D.S.,1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323-1337.
    Tan, A., Palli, S.R.,2008. Ecdysone [corrected] receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol 291,42-49.
    Teal, P.E., Proveaux, A.T.,2006. Identification of methyl farnesoate from in vitro culture of the retrocerebral complex of adult females of the moth, Heliothis viresccns (Lepidoptera: Noctuidae) and its conversion to juvenile hormone Ⅲ. Arch Insect Biochem Physiol 61, 98-105.
    Terashima, J., Yasuhara, N., Iwami, M., Sakurai, S.,2000. Programmed cell death triggered by insect steroid hormone,20-hydroxyecdysone, in the anterior silk gland of the silkworm, Bombyx mori. Dev Genes Evol 210,545-558.
    Tettamanti, G., Grimaldi, A., Casartelli, M., Ambrosetti, E., Ponti, B., Congiu, T., Ferrarese, R., Rivas-Pena, M.L., Pennacchio, F., Eguileor, M.,2007a. Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 330,345-359.
    Tettamanti, G, Grimaldi, A., Pennacchio, F., de Eguileor. M.,2007b. Lepidopteran larval midgut during prepupal instar:digestion or self-digestion? Autophagy 3,630-631.
    Truman. J.W.,2005. Hormonal control of insect ecdysis:endocrine cascades for coordinating behavior with physiology. Vitam Horm 73,1-30.
    Truman, J.W.,2006. Steroid hormone secretion in insects comes of age. Proc Natl Acad Sci U S A 103,8909-8910.
    Uhlirova, M., Foy, B.D., Beaty, B.J., Olson, K.E., Riddiford, L.M., Jindra, M.,2003. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci U S A 100,15607-15612.
    Uno, T., Nakao, A., Katsurauma, C.,2004. Phosphorylation of Rab proteins from the brain of Bombyx mori. Arch Insect Biochem Physiol 57,68-77.
    Uwo, M.F., Ui-Tei, K., Park, P., Takeda, M.,2002. Replacement of midgut epithelium in the greater wax moth, Galleria mellonela, during larval-pupal moult. Cell Tissue Res 308, 319-331.
    Van Der Heide, L.P., Hoekman, M.F., Smidt, M.P.,2004. The ins and outs of FoxO shuttling. mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380, 297-309.
    Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., Waterfield, M.D.,2001. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70,535-602.
    von Kalm, L., Crossgrove, K., Von Seggeni, D., Guild, G.M., Beckendorf, S.K.,1994. The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J 13,3505-3516.
    Walkiewicz, M.A., Stem, M.,2009. Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in Drosophila. PLoS One 4. e5072.
    Wang, J.L., Jiang, X.J., Wang, Q., Hou, L.J., Xu, D.W., Wang, J.X., Zhao, X.F.,2007. Identification and expression profile of a putative basement membrane protein gene in the midgut of Helicoverpa armigera. BMC Dev Biol 7,76.
    Wang, S.F., Li, C., Zhu, J., Miura, K., Miksicek, R.J., Raikhel, A.S.,2000. Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. Dev Biol 218, 99-113.
    Wang, S.L., Hawkins, C.J., Yoo, S.J., Muller, H.A., Hay, B.A.,1999. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453-463.
    Warren, J.T., Petryk, A., Marques, G,. Parvy, J.P., Shinoda, T., Itoyama, K., Kobayashi, J., Jarcho, M., Li, Y, O'Connor, M.B., Dauphin-Villemant, C., Gilbert, L.I.,2004. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori:a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem Mol Biol 34,991-1010.
    Wei, Z.J., Zhang, Q.R., Kang, L., Xu, W.H., Denlinger, D.L.,2005. Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. J Insect Physiol 51,691-700.
    Wilson, T.G., Ashok, M.,1998. Insecticide resistance resulting from an absence of target-site gene product. Proc Natl Acad Sci U S A 95,14040-14044.
    Wu, Y., Parthasarathy, R., Bai, H., Palli, S.R.,2006. Mechanisms of midgut remodeling:juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 123,530-547.
    Wymann, M.P., Pirola, L.,1998. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436,127-150.
    Xu, W.H., Denlinger, D.L.,2003. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biol 12,509-516.
    Xu, W.H., Rinehart, J.P., Denlinger, D.L.,2003. Structural characterization and expression analysis of prothoracicotropic hormone in the com earworm, Helicoverpa zea. Peptides 24,1319-1325.
    Yamamoto-Honda, R., Tobe, K., Kaburagi, Y., Ueki, K., Asai, S., Yachi, M., Shirouzu, M., Yodoi, J., Akanuma, Y, Yokoyama, S., et al.,1995. Upstream mechanisms of glycogen synthase activation by insulin and insulin-like growth factor-I. Glycogen synthase activation is antagonized by wortmannin or LY294002 but not by rapamycin or by inhibiting p21ras. J Biol Chem 270,2729-2734.
    Yao, T.P., Segraves, W.A., Oro, A.E., McKeown, M., Evans, R.M.,1992. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71,63-72.
    Yin, V.P., Thummel, C.S.,2005. Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 16,237-243.
    Yoo, S.J., Huh, J.R., Muro, I., Yu, H., Wang, L., Wang, S.L., Feldman, R.M., Clem, R.J., Muller, H.A., Hay, B.A.,2002. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4,416-424.
    Zhao, X.F., Wang, J.X., Wang, Y.X.,1998. Purification and characterization of a cysteine proteinase from eggs of the cotton boll worm, Helicoverpa armigera. Insect Biochem Mol Biol 28,259-264.
    Zhao, X.F., Wang, J.X., Xu, X.L., Li, Z.M., Kang, C.J.,2004. Molecular cloning and expression patterns of the molt-regulating transcription factor HHR3 from Helicoverpa armigera. Insect Mol Biol 13,407-412.
    Zheng, W.W., Yang, D.T., Wang, J.X., Song, Q.S., Gilbert, L.I., Zhao, X.F.,2009. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa annigera. Mol Cell Endocrinol 315,282-291.
    Zhou, B., Riddiford, L.M.,2001. Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco homwonn, Manduca sexta. Dev Biol 231, 125-137.
    Zhou, X., Riddiford, L.M.,2002. Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129,2259-2269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700