基于生物质谱和凝集素液相芯片的目标糖蛋白N-糖基化解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究内容涉及化学学科的分析化学、化学生物学,并且还应用到了生物化学相关技术,是属于交叉学科的研究。研究主要通过生物质谱技术、分子生物学相关技术、凝集素芯片技术的应用和创新,高效地、有针对性地揭示了具有重要生物学以及临床诊断意义的目标糖蛋白的糖基化,包括糖基化位点、糖链结构以及正常与疾病状态下的糖基化差异比较。
     蛋白质糖基化是最常见的翻译后修饰之一,而糖蛋白则在分化、发育、肿瘤发生与转移、精卵识别、免疫、传染及再生中发挥重要的作用。许多重要的糖蛋白的糖基化变化为肿瘤的早期诊断,进程监测,预后评估提供了重要的信息。因此,我们有必要研究重要目标糖蛋白以揭示其糖基化特征。然而,许多具有重要生理、病理意义的糖蛋白在细胞中的表达量较低,阻碍了糖基化的研究。为了克服这一问题,人们采用重组表达的方式获得足量的糖蛋白。再结合N-糖基化位点突变、凝集素印迹、糖链衍生化等方法,借助生物质谱全面地解析糖蛋白的糖基化位点以及糖链结构。但是仅仅研究目标糖蛋白的糖基化结构对于揭示其如何在疾病中发挥作用是远远不够的。为了研究糖基化的重要生物诊断分子在不同疾病状态下的糖基化变化,人们还发展了一系列芯片技术,如抗体芯片、凝集素芯片以及糖芯片等。这些高通量、高灵敏地检测糖基化的方法为疾病的诊断提供了有效的手段。然而,以凝集素芯片为例,虽然人们做出了很多努力提高它的检测灵敏度、通量以及重现性,但为了满足不断增加的临床应用的需求,我们还需要对其进一步改进,甚至将新涌现的芯片技术用于其中。最后,在糖链结构解析的领域,仍然需要我们在分离方法,质谱串级碎片离子的解析中提供更好的方案以全面地解析糖链结构。
     本论文主要是结合生物质谱、分子生物学相关技术,发展新型凝集素芯片技术,致力于揭示具有重要生物学或诊断意义的目标糖蛋白的糖基化特征,对疾病的诊断分子进行糖基化的定性和相对定量研究并且为糖链结构解析提供新的方法。本论文工作的主要贡献是:
     (1)首次揭示了人重组膜糖蛋白CD82(KAI1)的N-糖基化特征。通过重组表达以及免疫沉淀,获得了人重组膜蛋白CD82。利用生物质谱和位点突变方法,全面解析了CD82的3个潜在N-糖基化位点。其中一个N-糖基化位点是首次报道。利用液相色质联用技术和凝集素印迹研究了CD82的N-糖链结构。总共获得了27条N-糖链结构信息。同时,还发现一些具有重要功能的糖基化结构,为CD82糖基化功能研究提供了坚实的基础。
     (2)首次建立了基于液相悬浮芯片检测系统的新型凝集素液相芯片。将液相悬浮芯片应用于凝集素芯片中,使得凝集素与糖链能够在三维的环境中反应。因而大大地提高了凝集素与糖链的结合亲和力,从而获得了很灵敏的凝集素芯片。通过分析还发现,这一方法具有良好的线性和重现性。这一方法能够反映不同糖蛋白的糖基化特点,体现了该技术的可靠性。将其用于分析正常人和患肝癌人血清免疫球蛋白G(Ig G)的糖基化,发现这一技术能够有效地揭示Ig G的糖基化特征同时能够对正常人和患肝癌人的Ig G糖基化进行相对定量。这一方法为快速、高灵敏、高通量分析临床样品提供了有力的手段。
     (3)首次将肽N-糖酰胺酶催化硌O标记N-糖链还原末端与质谱二级碎裂结合,解析N-糖链的碎片离子。在质谱解析糖链时,通常存在碎片较多难以分辨的问题。这些碎片离子可能含有相同的分子量但却由糖链的不同区域碎裂而成。为了避免这个问题,我们将还原末端标记有18O的N-糖链碎裂。碎片离子由于在还原末端含有18O因而可增加2Da,将这一质量增加作为标志,有利于N-糖链结构的解析。这种方法标记容易且非常方便,因而对于辅助碎片解析很有利。其次,我们尝试将HILIC亲水色谱柱与质谱联用分析糖蛋白中的N-糖链。结合正离子和负离子检测模式,我们分析了人血清中Ig G的N-糖链。为以后分离分析N-糖链提供了重要的信息并打下了坚实的基础。
     论文一共分为以下四章进行阐述:
     第一章绪论:阐述了糖蛋白的重要性,并介绍了目标糖蛋白研究相关领域的发展现状。
     蛋白质糖基化是最常见的翻译后修饰之一,目前已知真核蛋白中有超过半数的蛋白存在糖基化修饰。蛋白质的糖基化可以分成N-连接、O-连接、GPI锚定和C-连接四个类型,其中以N-连接、O-连接研究最多。蛋白质的糖基化不仅影响蛋白的可溶性,折叠,定位等性质,而且在分化、发育、肿瘤发生与转移、精卵识别、免疫、传染及再生中发挥重要的作用。一些重要糖蛋白与疾病的发生、发展有很大的相关性。为此,我们有必要研究重要的目标蛋白的糖基化。在这一章中,我们重点介绍了糖蛋白N-糖基化研究的前沿进展,包括了糖蛋白/糖肽的分离与富集、糖基化位点的解析、糖链结构的解析、糖蛋白质组学和糖组学的相对定量技术等。着重在利用质谱以及芯片技术对N-糖基化进行研究。通过揭示N-糖基化研究难点,我们发现不仅要借助质谱技术对N-糖基化的位点和糖链进行研究还需要借助高通量、高灵敏的芯片技术快速检测目标糖蛋白的N-糖基化。而且在利用质谱对N-糖链的结构解析中还存在着很多的困难,比如糖链的碎片离子难以分辨、糖链的分离与检测还需要进一步建立有效的手段等。这些困难都需要我们进一步发展新的方法以及优化现有方法来克服。总地来说,蛋白糖基化修饰的研究还处于发展阶段,充满机遇和挑战。
     第二章基于生物质谱的人重组膜蛋白CD82糖基化研究:分为两节:(1)人重组膜蛋白CD82的N-糖基化位点研究;(2)人重组膜蛋白CD82的N-糖链结构解析。
     (1)CD82是一个高度糖基化的膜蛋白,其属于跨四膜超家族(tetraspanin)。在多种癌症中,如前列腺,胰腺,肺,胃,肠,肝癌中都发现CD82发挥着肿瘤转移抑制的作用。已有实验证明CD82的N-糖基化在细胞粘附与运动中担任重要的角色。虽然N-糖基化对于CD82发挥其功能至关重要但目前还没有关于其N-糖基化结构解析的报道。我们希望利用生物质谱和分子生物学相关技术全面解析CD82的N-糖基化位点。为了保证CD82有足够的表达量用于后续研究,我们首先建立了膜蛋白CD82的体外表达及免疫沉淀的方法。其次,利用蛋白质组学领域的数据处理软件APEX对免疫沉淀产物进行了相对定量,一方面确定了前期富集CD82方法的有效性,另一方也证明虽然有其他的糖蛋白被鉴定到,但是由于它们量很低而不会干扰后期实验。再次,结合Nano-LC-ESI-MS/MS和位点突变、胶迁移的方法,鉴定到了CD82三个N-糖基化位点。其中Asn157位点是首次报道。而且我们还利用多种Endo糖苷内切酶初步揭示了Asn129和Asn198位点上的特定糖型。
     (2)由于糖蛋白的糖链具有重要的作用,所以我们希望解析CD82的N-糖链结构。然而,糖链不直接由基因编码,并且含有一些同分异构体和较多的连接位点和分支,造成了糖链结构解析的困难。我们的研究采用凝集素印迹、全甲基化衍生糖链以及反相色谱质谱联用的方法来解析CD82的N-糖链。凝集素印迹能够揭示CD82的N-糖链的结构特征。全甲基化衍生能够增加糖链的离子化效率在串级碎裂中产生更多的碎片并且更加适合于反相色谱分离。我们采用以上方法首次揭示了CD82的N-糖链结构。通过研究,我们发现了CD82总共有27种不同的N-糖链并且可分为三种的不同类型,分别为高甘露糖型,复杂型和杂合型。而其中一些与细胞粘附、癌症转移相关的重要单糖,如唾液酸、核心岩藻糖、平分型N-乙酰葡糖胺的发现为我们后续研究CD82糖基化的重要功能提供了基础。
     第三章基于凝集素液相芯片的目标糖蛋白多重检测:分为两节:(1)凝集素液相芯片的建立;(2)凝集素液相芯片的应用。
     (1)糖组学(Glycomics)是一门在结构上阐明并描绘自然界中的各种糖结构并且揭示与各项生命过程相关的糖结构时空变换的学科。目前糖组学的发展已进入了第二个黄金期,那就是将临床应用作为糖组学的研究重点。凝集素芯片因其高灵敏、高通量、快速的特性而成为糖组学临床研究的重要手段。许多糖蛋白被认为可以作为疾病相关的生物诊断靶标。为了满足不断增长的临床应用的需要,我们将液相悬浮芯片和凝集素检测相结合,发展了一种新型的液相悬浮凝集素芯片检测系统。我们利用这一方法检测了不同的标准糖蛋白,发现这种方法大大提高了凝集素芯片的灵敏度。同时,这一方法还表现出了良好的重现性和很宽的线性范围。为这一方法应用到临床样品的检测奠定了坚实的基础。
     (2)糖基化结构的变化是癌症中一种广泛的标志。一些重要的人血清糖蛋白,如α-甲胎蛋白L3(a-fetoprotein-L3)、α1-酸性糖蛋白(α1-acid glycoprotein)、触珠蛋白(haptoglobin)、免疫球蛋白G (immunoglobulin G)已被广泛用于疾病特异性诊断。特别是免疫球蛋白G(Ig G)在人的免疫系统中扮演重要的角色。同时Ig G上的糖基化也被认为参与调控它的功能。我们从正常人以及患肝癌人血清中获得Ig G,利用我们建立的凝集素液相芯片技术揭示了它的糖基化特点并且比较了正常人及患肝癌人的糖基化差异。我们发现了非常有意义的差异,从而证明了凝集素液相芯片技术的实用性。另外我们还检测了3种糖蛋白,确证了这一方法的可靠性。此外,我们还将多重检测方法应用于凝集素液相芯片中,大大提高了它的检测通量。
     第四章基于生物质谱及亲水色谱质谱联用的N-糖链结构解析:分为两节:(1)肽N-糖酰胺酶(PNGase)酶18O标记与串联质谱结合解析N-糖链;(2)采用HILIC色谱柱与质谱联用分析糖蛋白中的N-糖链。
     (1)N-糖链结构解析一直是糖基化研究中的一个重要部分。串联质谱解析N-糖链结构是一项有效的手段,目前利用这种方法研究N-糖链结构的实验室也越来越多。然而,糖链碎裂产生的碎片离子有的含有相同的质荷比却是不同的碎片结构。为了帮助分辨碎片离子,我们利用肽N-糖酰胺酶(PNGase)催化的’8O标记N-糖链的还原末端,因此含有还原末端的碎片具有2Da的质量增加。结合串联质谱与这一质量增加标志能够更好地解析N-糖链结构。
     (2)N-糖链的分离检测方法是N-糖链结构解析的重要步骤。我们采用HILIC色谱柱与质谱联用分析糖蛋白中的N-糖链。采用HILIC色谱柱可以大大地提高糖链的分离效率,同时结合质谱检测的方法能够高效地对N-糖链结构进行解析。我们分析了标准糖蛋白鸡卵清蛋白以及健康人血清Ig G未衍生糖链的结构。并且通过负离子检测模式发现了Ig G上带唾液酸的糖链。
This thesis presents an interdisciplinary research involved in analytical chemistry, chemical biology and biological chemistry. The application of mass spectrometry (MS), molecular biology technology and the innovation of lectin microarray have been achieved to efficiently reveal the glycosylation of target glycoprotein, including glycosylation sites, glycan structure and the analysis of glycosylation alteration.
     Glycosylation is one of the most important and universal protein post-translational modifications (PTMs) and plays an important role in differentiation, development, the metastasis of tumor, fertilization, immunity, infection and regeneration. The alteration of target glycoproteins provides crucial information for tumor early diagnosis, process monitoring and prognostic evaluation. Therefore, the glycosylation of target protein should be analyzed to reveal its important function. However, studies of the glycosylation of target glycoproteins have often been hampered by low abundance. Several glycoproteins have been expressed with a tag in human cell lines to obtain sufficient abundance for further assay. Several complementary approaches such as mass spectrometry, site-directed mutagenesis, permethylation and lectin blots were used on both glycosylation site and glycan structure analyses to provide a complete understanding of target protein glycosylation. However, it does not supply enough information to focus on the glycan structure. Various kinds of microarray such as antibody microarray, lectin microarray and glycan microarray have been developed for clinical diagnosis of glyco-biomarkers. For example, lectin microarray has been crucial for the disease diagnosis because of its high-throughput and high-sensitivity. However, the sensitivity, reproducibility, and throughput of lectin microarray should still be constantly improved to meet the increasing demand of clinical applications. The application of novel array system is still needed. The last but not the least, the separation, detection and annotation of oligosaccharides should be improved for the comprehensive analysis of glycan structure.
     The major contributions of this work are as follows:
     (1) The N-glycosylation pattern of recombinant human CD82(KAI1) was revealed for the first time. CD82was expressed in HEK-293T cells with a flag tag to obtain sufficient abundance. CD82was purified from HEK-293T cells. An integrative proteomic and glycomic approach, which combined glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots, were performed. As a result, we found three N-glycosylation sites and especially Asn157was reported for the first time. Combined lectin blots and LC-MS/MS,27N-glycans structures have been shown for the first time. The presence of some important carbohydrate epitopes provides useful information for understanding and the further investigation of the glycobiological function of CD82.
     (2) We applied high-sensitive bead-based suspension array system in lectin microarray for the first time. In this system, lectins were conjugated to different populations of microbeads and incubated with biotin-labeled glycoproteins under a liquid condition. Thus, the lectins bound with the specific glycans of glycoproteins under a three-dimensional condition. Our results showed that the bead-based lectin array had the lowest detection of limit among reported lectin microarrays. Furthermore, it provided good linearity with high reproducibility at two to three orders of magnitude in dynamic range. The specific signal patterns for three biotin-labeled glycoproteins were derived with different immobilized lectins, which proved the reliability. Moreover, the quantitative glycosylation alteration of Ig G enriched from sera of healthy individuals and HCC patients was determined. This study demonstrated that the bead-based lectin array can be carried out in a rapid, sensitive, and high-throughput manner and potentially fulfill qualitative and quantitative analyses of clinical samples.
     (3) The combination of PNGase F mediated incorporation of18O into glycans and tandem MS was applied in the N-glycan structure analysis for the first time. The fragments produced by mass spectrometry contain ambiguous information because fragment ions of the same mass and composition can arise from different regions of the molecule. The glycans labeled with18O at the reducing end were collided by tandem MS. The fragment containing the reducing end, which had an increase of2Da, could be distinguished from the other molecular ions. The increase of2Da using as a reliable marker assisted in the analysis of glycan structure. This approach is simple, convenient for the discrimination of the glycan fragments. On the other hand, HILIC-ESI-MS was used to separate and detect the oliogosaccharides of ovalbumin and human serum Ig G. The positive and negative ion mode was operated. This approach supplied the abundant information for the determination of glycan structure.
     This thesis consists of four parts which are summarized as follows:
     Part1. Introduction:a brief and comprehensive introduction of protein glycosylation and glycoproteomics-related fields.
     Glycosylation is a common and highly diverse co-and post-translational protein modification. It has been reported that more than50%of human proteins are likely conjugated with glycans. There are four major types of protein glycosylation; the two mostly studied are N-linked and O-linked glycosylation. The glycosylation of proteins does not only affect the protein solubility, folding and location but also play an important role in differentiation, development, the metastasis of tumor, fertilization, immunity, infection and regeneration. Therefore, the glycosylation of target glycoprotein should be studied. The part one is emphasis on the study of N-glycosylation including the separation and enrichment of glycoproteins and glycopeptides, the analysis of glycosylation sites, the determination of glycan structure and relative quantification of glycoproteomics and glycomics. We found that mass spectrometry and microarray were complementary technologies for the research of N-glycosylation. Antibody, lectin and glycan microarray are high-throughput, sensitive for the detection of glycosylation. Mass spectrometry exhibits difficulty in discriminating structural isomers and annotating data. Thus, we need new technologies to distinguish the fragment and separate isomers. Generally, glycosylation study now is still full of chances and challenges.
     Part2. The Study of N-glycosylation Pattern of Recombinant Human CD82(KAI1) by Biological Mass Spectrometry:two sections included (1) determination of CD82N-glycosylation sites;(2) characterization of CD82glycans.
     (1) CD82is a highly glycosylated membrane protein belonging to the tetraspanins. It has attracted much attention in various human cancers, such as prostate, pancreatic, lung, gastric, hepatic, and colorectal cancers. Although CD82N-glycosylation profoundly affects cell motility and adhesion, its N-glycosylation pattern has not been described so far. Firstly, CD82was expressed in HEK-293T cells with a flag tag to obtain sufficient and purified using anti-FLAG antibody. Secondly, high-performance MS identification and absolute protein expression measurement were conducted to analyze the immnunoprecipited protein. This result confirms that CD82is obtained with very few glycoprotein impurities and with enough quantity as a glycoprotein for the subsequent assay. Thirdly, the presence of the three N-glycosylation sites at the Asn129, Asn157, and Asn198residues was demonstrated using LC-ESI-MS/MS and site-directed mutagenesis. Furthermore, the site-specific oligosaccharides of the two N-glycosylation sites (Asn129, Asnl98) were shown by the digestion of Endo-β-N-acetylglucosaminidase.
     (2) The characterization of CD82glycan was revealed for the first time. Despite the significant role of carbohydrates, studies on glycosylation have been hindered by its structural heterogeneity and diversity caused by its non-template-driven biosynthesis. In our study, a detailed characterization of recombinant human CD82N-linked glycosylation pattern was conducted by employing an integrative approach, including glycan permethylation, MS analyses and lectin-blot. Lectin-blot is a key approach in glycosylation analysis, due to its ability to recognize specific linkages and distinguish isomeric sugars presented in glycans. Permethylation increases ionization efficiency, produces more structural details in tandem MS and are more suitable for the separation of reversed-phase chromatography. Finally, we found27N-glycans structures of recombinant CD82. The discovered N-glycans could be further classified into three types:high-mannose, hybrid and complex-type. The presence of some important carbohydrate epitopes, such as bisecting GlcNAc, NeuAc, and core fucose, were also detected. The interesting epitopes provide useful information for understanding and the further investigation of the glycobiological function of CD82.
     Part3. Multiplex Profiling of Glycoproteins Using a Novel Bead-based Lectin Array:two sections included (1) the establishment of bead-based Lectin Array;(2) the application of bead-based Lectin Array.
     (1) Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. The development of glycomics has been focused on clinical applications, which are viewed as the second golden age of glycomics. Lectin microarray is an attractive platform for structural profile and screening glycosylation differences on large-scale and high-throughput studies. Some glycoproteins have been widely used as disease-specific biomarkers. We applied high-sensitive bead-based suspension array system in lectin microarray to meet the increasing demand of clinical applications. The analytical performance of this approach was evaluated using model glycoproteins, and the results showed that the sensitivity and throughput were improved significantly. Moreover, a good linear response with high reproducibility was obtained. This approach can be further used in the detection of clinical samples.
     (2) The alteration of glycan structures is a universal hallmark of tumors. Some human serum glycoproteins, such as a-fetoprotein-L3, α1-acid glycoprotein, haptoglobin (Hp), and immunoglobulin G (Ig G), have been widely used as disease-specific biomarkers. Ig G plays an important role in the human immune system, and the attached glycans in Ig G have been implicated in modulating its function. The quantitative glycosylation alteration of Ig G enriched from sera of healthy individuals and HCC patients was determined. Three kinds of glycoproteins were selected as representative glycoproteins to test the reliability of bead-based lectin array. The multiplexed assay provided a high-throughput, sample-and reagent-saving method, allowing for simultaneous detection of multiple carbohydrate epitopes in a single reaction vessel.
     Part4. The Analysis of N-glycan Chains Using Mass Spectrometry and Hydrophilic Interaction Liquid Chromatography:two sections included (1) the combination of PNGase-mediated incorporation of18O into glycans and tandem MS to analyze the N-glycan structures;(2) the analysis of N-glycan structures using HILIC-ESI-MS.
     (1) The analysis of N-glycan structure is an important part of glycosylation research. The fragment collided by mass spectrometry are used to deduce the structure of oligosaccharide. However, the fragments produced by mass spectrometry contain ambiguous information because fragment ions of the same mass and composition can arise from different regions of the molecule. Therefore, we combined PNGase-mediated incorporation of18O into glycans and tandem MS to analyze the N-glycan structures. The glycans labeled with18O at the reducing end were collided by MS2. The increase of2Da using as a reliable marker assisted in the analysis of glycan structure.
     (2) The separation and detection of glycan chains is important step for the analysis of glycan structures. We used HILIC-ESI-MS to analyze the N-glycan structures. HILIC improved the separation and the combination of normal-phase chromatography and mass spectrometry enhance the efficiency of the detection. We analyzed the native N-glycan structures of ovalbumin and human sera Ig G. The negative ion mode was operated for the detection of Ig G sialylation.
引文
[1]Mann, M.; Jensen, O. N., Proteomic analysis of post-translational modifications. Nat Biotechnol 2003,21, (3),255-61.
    [2]Hogan, J. M.; Pitteri, S. J.; Chrisman, P. A.; McLuckey, S. A., Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 2005,4, (2), 628-32.
    [3]Apweiler, R.; Hermjakob, H.; Sharon, N., On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999,1473, (1),4-8.
    [4]Gupta, G.; Surolia, A.; Sampathkumar, S. G., Lectin microarrays for glycomic analysis. OMICS 2010,14, (4),419-36.
    [5]Geyer, R.; Geyer, H., Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 2006,1764, (12),1853-69.
    [6]Lau, K. S.; Dennis, J. W., N-Glycans in cancer progression. Glycobiology 2008, 18,(10),750-60.
    [7]Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A., Glycosylation and the immune system. Science 2001,291, (5512),2370-6.
    [8]Magnani, J. L., The discovery, biology, and drug development of sialyl Lea and sialyl Lex. Arch Biochem Biophys 2004,426, (2),122-31.
    [9]Kondo, A.; Li, W.; Nakagawa, T.; Nakano, M.; Koyama, N.; Wang, X.; Gu, J.; Miyoshi, E.; Taniguchi, N., From glycomics to functional glycomics of sugar chains: Identification of target proteins with functional changes using gene targeting mice and knock down cells of FUT8 as examples. Biochim Biophys Acta 2006,1764, (12), 1881-9.
    [10]Uchiyama, N.; Kuno, A.; Tateno, H.; Kubo, Y.; Mizuno, M.; Noguchi, M.; Hirabayashi, J., Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 2008,8, (15),3042-50.
    [11]Dube, D. H.; Bertozzi, C. R., Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005,4, (6),477-88.
    [12]Hossler, P.; Khattak, S. F.; Li, Z. J., Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 2009,19, (9),936-49.
    [13]Morelle, W.; Canis, K.; Chirat, F.; Faid, V.; Michalski, J. C., The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 2006,6, (14), 3993-4015.
    [14]Taniguchi, N.; Hancock, W.; Lubman, D. M.; Rudd, P. M., The second golden age of glycomics:from functional glycomics to clinical applications. J Proteome Res 2009,8, (2),425-6.
    [15]Dodds, E. D.; Seipert, R. R.; Clowers, B. H.; German, J. B.; Lebrilla, C. B., Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J Proteome Res 2009,8, (2), 502-12.
    [16]Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F., Recent applications in chiral high performance liquid chromatography:a review. Anal Chim Acta 2011, 706, (2),205-22.
    [17]Bleckmann, C.; Geyer, H.; Reinhold, V.; Lieberoth, A.; Schachner, M.; Kleene, R.; Geyer, R., Glycomic analysis of N-linked carbohydrate epitopes from CD24 of mouse brain. J Proteome Res 2009,8, (2),567-82.
    [18]Wedepohl, S.; Kaup, M.; Riese, S. B.; Berger, M.; Dernedde, J.; Tauber, R.; Blanchard, V., N-Glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs. J Proteome Res 2010,9, (7),3403-11.
    [19]Ghosh, D.; Krokhin, O.; Antonovici, M.; Ens, W.; Standing, K. G.; Beavis, R. C.; Wilkins, J. A., Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 2004,3, (4),841-50.
    [20]Qiu, R.; Regnier, F. E., Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal Chem 2005,77, (22), 7225-31.
    [21]Lee, A.; Kolarich, D.; Haynes, P. A.; Jensen, P. H.; Baker, M. S.; Packer, N. H., Rat liver membrane glycoproteome:enrichment by phase partitioning and glycoprotein capture. JProteome Res 2009,8, (2),770-81.
    [22]Liu, T.; Qian, W. J.; Gritsenko, M. A.; Camp, D. G.,2nd; Monroe, M. E.; Moore, R. J.; Smith, R. D., Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 2005,4, (6), 2070-80.
    [23]Dai, Z.; Fan, J.; Liu, Y.; Zhou, J.; Bai, D.; Tan, C.; Guo, K.; Zhang, Y.; Zhao, Y.; Yang, P., Identification and analysis of alpha 1,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis 2007,28, (23), 4382-91.
    [24]Zielinska, D. F.; Gnad, F.; Wisniewski, J. R.; Mann, M., Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010,141,(5),897-907.
    [25]Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003,21, (6),660-6.
    [26]Sun, B.; Ranish, J. A.; Utleg, A. G.; White, J. T.; Yan, X.; Lin, B.; Hood, L Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 2007,6, (1),141-9.
    [27]Tian, Y.; Gurley, K.; Meany, D. L.; Kemp, C. J.; Zhang, H., N-Linked glycoproteomic analysis of formalin-fixed and paraffin-embedded tissues. J Proteome Res 2009,8, (4),1657-62.
    [28]Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 2009,8, (2),651-61.
    [29]Zhou, Y.; Aebersold, R.; Zhang, H., Isolation of N-linked glycopeptides from plasma. Anal Chem 2007,79, (15),5826-37.
    [30]Tian, Y.; Zhou, Y.; Elliott, S.; Aebersold, R.; Zhang, H., Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2007,2, (2),334-9.
    [31]Berven, F. S.; Ahmad, R.; Clauser, K. R.; Carr, S. A., Optimizing performance of glycopeptide capture for plasma proteomics. J Proteome Res 2010,9 (4),1706-15.
    [32]Wollscheid, B.; Bausch-Fluck, D.; Henderson, C.; O'Brien, R.; Bibel, M.; Schiess, R.; Aebersold, R.; Watts, J. D., Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 2009,27, (4), 378-86.
    [33]Zeng, Y.; Ramya, T. N.; Dirksen, A.; Dawson, P. E.; Paulson, J. C., High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods 2009, 6, (3),207-9.
    [34]Shakey, Q.; Bates, B.; Wu, J., An approach to quantifying N-linked glycoproteins by enzyme-catalyzed 18O3-labeling of solid-phase enriched glycopeptides. Anal Chem 2010,82, (18),7722-8.
    [35]Ding, W.; Nothaft, H.; Szymanski, C. M.; Kelly, J., Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 2009,8, (9),2170-85.
    [36]Wada, Y.; Tajiri, M.; Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 2004,76, (22),6560-5.
    [37]Cao, J.; Shen, C.; Wang, H.; Shen, H.; Chen, Y.; Nie, A.; Yan, G.; Lu, H.; Liu, Y.; Yang, P., Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res 2009,8, (2),662-72.
    [38]Larsen, M. R.; Jensen, S. S.; Jakobsen, L. A.; Heegaard, N. H., Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 2007,6, (10),1778-87.
    [39]Xu, Y.; Wu, Z.; Zhang, L.; Lu, H.; Yang, P.; Webley, P. A.; Zhao, D., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 2009,81, (1),503-8.
    [40]Alvarez-Manilla, G.; Atwood, J.,3rd; Guo, Y.; Warren, N. L.; Orlando, R.; Pierce, M., Tools for glycoproteomic analysis:size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 2006,5 (3),701-8.
    [41]Kvaratskhelia, M.; Clark, P. K.; Hess, S.; Melder, D. C.; Federspiel, M. J.; Hughes, S. H., Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry. Virology 2004,326, (1),171-81.
    [42]Chalkley, R. J.; Burlingame, A. L., Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol Cell Proteomics 2003,2, (3),182-90.
    [43]Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A. V.; Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004,4, (2),454-65.
    [44]Larsen, M. R.; Hojrup, P.; Roepstorff, P., Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 2005,4, (2),107-19.
    [45]Seipert, R. R.; Dodds, E. D.; Lebrilla, C. B., Exploiting differential dissociation chemistries of O-linked glycopeptide ions for the localization of mucin-type protein glycosylation. JProteome Res 2009,8, (2),493-501.
    [46]Tie, J. K.; Zheng, M. Y.; Pope, R. M.; Straight, D. L.; Stafford, D. W., Identification of the N-linked glycosylation sites of vitamin K-dependent carboxylase and effect of glycosylation on carboxylase function. Biochemistry 2006,45, (49), 14755-63.
    [47]Kaji, H.; Saito, H.; Yamauchi, Y.; Shinkawa, T.; Taoka, M.; Hirabayashi, J.; Kasai, K.; Takahashi, N.; Isobe, T., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 2003,21, (6), 667-72.
    [48]Liu, Z.; Cao, J.; He, Y.; Qiao, L.; Xu, C.; Lu, H.; Yang, P., Tandem 18O stable isotope labeling for quantification of N-glycoproteome. J Proteome Res 2009,9, (1), 227-36.
    [49]Zhang, W.; Wang, H.; Zhang, L.; Yao, J.; Yang, P., Large-scale assignment of N-glycosylation sites using complementary enzymatic deglycosylation. Talanta 2011, 85,(1),499-505.
    [50]O'Neill, R. A., Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatogr A 1996,720, (1-2), 201-15.
    [51]Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, (4926),64-71.
    [52]Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1988,2, (8),151-3.
    [53]Aebersold, R.; Goodlett, D. R., Mass spectrometry in proteomics. Chem Rev 2001,101, (2),269-95.
    [54]Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422,(6928),198-207.
    [55]Domon, B.; Aebersold, R., Mass spectrometry and protein analysis. Science 2006, 312, (5771),212-7.
    [56]Wells, J. M.; McLuckey, S. A., Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 2005,402,148-85.
    [57]Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F., Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry [J]. Proc Natl Acad Sci USA 2004,101, (26),9528-33.
    [58]Mikesh, L. M.; Ueberheide, B.; Chi, A.; Coon, J. J.; Syka, J. E.; Shabanowitz, J.; Hunt, D. F., The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 2006,1764,(12),1811-22.
    [59]Zubarev, R. A.; Zubarev, A. R.; Savitski, M. M., Electron capture/transfer versus collisionally activated/induced dissociations:solo or duet? J Am Soc Mass Spectrom 2008,19, (6),753-61.
    [60]Wang, Y. F.; Ao, X. P.; Vuong, H.; Konanur, M.; Miller, F. R.; Goodison, S.; Lubman, D. M., Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res 2008,7, (10), 4313-25.
    [61]Julenius, K.; Molgaard, A.; Gupta, R.; Brunak, S., Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2005,15, (2),153-64.
    [62]Bari, R.; Zhang, Y. H.; Zhang, F.; Wang, N. X.; Stipp, C. S.; Zheng, J. J.; Zhang, X. A., Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 2009,174, (2),647-60.
    [63]Morelle, W.; Michalski, J. C., Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2007,2, (7),1585-602.
    [64]Wada, Y.; Azadi, P.; Costello, C. E.; Dell, A.; Dwek, R. A.; Geyer, H.; Geyer, R.; Kakehi, K.; Karlsson, N. G.; Kato, K.; Kawasaki, N.; Khoo, K. H.; Kim, S.; Kondo, A.; Lattova, E.; Mechref, Y.; Miyoshi, E.; Nakamura, K.; Narimatsu, H.; Novotny, M. V.; Packer, N. H.; Perreault, H.; Peter-Katalinic, J.; Pohlentz, G.; Reinhold, V. N.; Rudd, P. M.; Suzuki, A.; Taniguchi, N., Comparison of the methods for profiling glycoprotein glycans--HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 2007,17, (4),411-22.
    [65]Xia, B.; Feasley, C. L.; Sachdev, G. P.; Smith, D. F.; Cummings, R. D., Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem 2009,387, (2), 162-70.
    [66]Vercoutter-Edouart, A. S.; Slomianny, M. C.; Dekeyzer-Beseme, O.; Haeuw, J. F.; Michalski, J. C., Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 2008,8, (16), 3236-56.
    [67]Kuster, B.; Wheeler, S. F.; Hunter, A. P.; Dwek, R. A.; Harvey, D. J., Sequencing of N-linked oligosaccharides directly from protein gels:in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 1997,250, (1),82-101.
    [68]Royle, L.; Campbell, M. P.; Radcliffe, C. M.; White, D. M.; Harvey, D. J.; Abrahams, J. L.; Kim, Y. G.; Henry, G. W.; Shadick, N. A.; Weinblatt, M. E.; Lee, D. M.; Rudd, P. M.; Dwek, R. A., HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 2008,376, (1),1-12.
    [69]Anumula, K. R., Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem 2006,350, (1),1-23.
    [70]Pabst, M.; Kolarich, D.; Poltl, G.; Dalik, T.; Lubec, G.; Hofinger, A.; Altmann, F., Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 2009,384, (2),263-73.
    [71]Zhao, J.; Patwa, T. H.; Pal, M.; Qiu, W.; Lubman, D. M., Analysis of protein glycosylation and phosphorylation using liquid phase separation, protein microarray technology, and mass spectrometry. Methods Mol Biol 2009,492,321-51.
    [72]Mechref, Y.; Novotny, M. V., Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom Rev 2009,28, (2),207-22.
    [73]Hardy, M. R.; Townsend, R. R.; Lee, Y. C., Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem 1988,170, (1),54-62.
    [74]Bereman, M. S.; Williams, T. I.; Muddiman, D. C., Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem 2009,81,(3),1130-6.
    [75]Barroso, B.; Dijkstra, R.; Geerts, M.; Lagerwerf, F.; van Veelen, P.; de Ru, A., On-line high-performance liquid chromatography/mass spectrometric characterization of native oligosaccharides from glycoproteins. Rapid Commun Mass Spectrom 2002, 16, (13),1320-9.
    [76]Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem 2009,394,(1),163-74.
    [77]Chu, C. S.; Ninonuevo, M. R.; Clowers, B. H.; Perkins, P. D.; An, H. J.; Yin, H.; Killeen, K.; Miyamoto, S.; Grimm, R.; Lebrilla, C. B., Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 2009,9, (7), 1939-51.
    [78]Royle, L.; Radcliffe, C. M.; Dwek, R. A.; Rudd, P. M., Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol Biol 2006,347, 125-43.
    [79]Barrabes, S.; Pages-Pons, L.; Radcliffe, C. M.; Tabares, G.; Fort, E.; Royle, L.; Harvey, D. J.; Moenner, M.; Dwek, R. A.; Rudd, P. M.; De Llorens, R.; Peracaula, R., Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 2007,17, (4),388-400.
    [80]Abd Hamid, U. M.; Royle, L.; Saldova, R.; Radcliffe, C. M.; Harvey, D. J.; Storr, S. J.; Pardo, M.; Antrobus, R.; Chapman, C. J.; Zitzmann, N.; Robertson, J. F.; Dwek, R. A.; Rudd, P. M., A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 2008,18, (12), 1105-18.
    [81]Irungu, J.; Go, E. P.; Zhang, Y.; Dalpathado, D. S.; Liao, H. X.; Haynes, B. F.; Desaire, H., Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J Am Soc Mass Spectrom 2008,19, (8),1209-20.
    [82]An, H. J.; Miyamoto, S.; Lancaster, K. S.; Kirmiz, C.; Li, B.; Lam, K. S.; Leiserowitz, G. S.; Lebrilla, C. B., Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res 2006,5, (7),1626-35.
    [83]Zaia, J., Mass spectrometry and the emerging field of glycomics. Chem Biol 2008,15, (9),881-92.
    [84]Domon, B.; Costello C. E., A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J 1988, 5, (4) 397-409.
    [85]Mechref, Y.; Novotny, M. V.; Krishnan, C., Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 2003,75, (18),4895-903.
    [86]Ciucanu, I.; Costello, C. E., Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 2003,125, (52),16213-9.
    [87]Costello, C. E.; Contado-Miller, J. M.; Cipollo, J. F., A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 2007, 18,(10),1799-812.
    [88]Orlando, R., Quantitative glycomics. Methods Mol Biol 2010,600,31-49.
    [89]Ashline, D.; Singh, S.; Hanneman, A.; Reinhold, V., Congruent strategies for carbohydrate sequencing.1. Mining structural details by MS". Anal Chem 2005,77, (19),6250-62.
    [90]Kang, P.; Mechref, Y.; Klouckova, I.; Novotny, M. V., Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 2005,19, (23),3421-8.
    [91]Kyselova, Z.; Mechref, Y.; Kang, P.; Goetz, J. A.; Dobrolecki, L. E.; Sledge, G. W.; Schnaper, L.; Hickey, R. J.; Malkas, L. H.; Novotny, M. V., Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 2008,54, (7),1166-75.
    [92]Xia, B.; Kawar, Z. S.; Ju, T.; Alvarez, R. A.; Sachdev, G. P.; Cummings, R. D., Versatile fluorescent derivatization of glycans for glycomic analysis. Nat Methods 2005,2, (11),845-50.
    [93]Morelle, W.; Faid, V.; Michalski, J. C., Structural analysis of permethylated oligosaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry and deutero-reduction. Rapid Commun Mass Spectrom 2004,18, (20), 2451-64.
    [94]White, K. Y.; Rodemich, L.; Nyalwidhe, J. O.; Comunale, M. A.; Clements, M. A.; Lance, R. S.; Schellhammer, P. F.; Mehta, A. S.; Semmes, O. J.; Drake, R. R., Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. J Proteome Res 2009,8, (2),620-30.
    [95]Aoki-Kinoshita, K. F., An introduction to bioinformatics for glycomics research. PLoS Comput Biol 2008,4, (5), e1000075.
    [96]Goldberg, D.; Sutton-Smith, M.; Paulson, J.; Dell, A., Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 2005,5, (4), 865-75.
    [97]Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M., GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008,7 (4),1650-9.
    [98]Tousi, F.; Hancock W. S.; Hincapie, M., Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal Methods 2011,3,20-32
    [99]Angeloni, S.; Ridet, J. L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005,15, (1),31-41.
    [100]Chergui, F.; Chretien, A. S.; Bouali, S.; Ramacci, C.; Rouyer, M.; Bastogne, T. Genin, P.; Leroux, A.; Merlin, J. L., Validation of a phosphoprotein array assay for characterization of human tyrosine kinase receptor downstream signaling in breast cancer. Clin Chem 2009,55, (7),1327-36.
    [101]Yamamoto, K.; Yasukawa, F.; Ito, S., Measurement of the sugar-binding specificity of lectins using multiplexed bead-based suspension arrays. Methods Mol Biol 2007,381,401-9.
    [102]Qiu, Y.; Patwa, T. H.; Xu, L.; Shedden, K.; Misek, D. E.; Tuck, M.; Jin, G.; Ruffin, M. T.; Turgeon, D. K.; Synal, S.; Bresalier, R.; Marcon, N.; Brenner, D. E.; Lubman, D. M., Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res 2008,7, (4), 1693-703.
    [103]Zhao, J.; Patwa, T. H.; Qiu, W.; Shedden, K.; Hinderer, R.; Misek, D. E.; Anderson, M. A.; Simeone, D. M.; Lubman, D. M., Glycoprotein microarrays with multi-lectin detection:unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res 2007,6, (5),1864-74.
    [104]Liu, Y.; He, J.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D. M., Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations. J Proteome Res 2009, 9, (2),798-805.
    [105]Chen, S.; LaRoche, T.; Hamelinck, D.; Bergsma, D.; Brenner, D.; Simeone, D.; Brand, R. E.; Haab, B. B., Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 2007,4, (5),437-44.
    [106]Pilobello, K. T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L. K., Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 2005, 6, (6),985-89.
    [107]Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Ebe, Y.; Takashima, S.; Yamada, M.; Hirabayashi, J., Evanescent-field fluorescence-assisted lectin microarray:a new strategy for glycan profiling. Nat Methods 2005,2, (11),851-6.
    [108]Rosenfeld, R.; Bangio, H.; Gerwig, G. J.; Rosenberg, R.; Aloni, R.; Cohen, Y.; Amor, Y.; Plaschkes, I.; Kamerling, J. P.; Maya, R. B., A lectin array-based methodology for the analysis of protein glycosylation. J Biochem Biophys Methods 2007,70, (3),415-26.
    [109]Zheng, T.; Peelen, D.; Smith, L. M., Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 2005,127, (28),9982-3.
    [110]Tateno, H.; Uchiyama, N.; Kuno, A.; Togayachi, A.; Sato, T.; Narimatsu, H.; Hirabayashi, J., A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 2007,17, (10),1138-46.
    [111]Ebe, Y.; Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Yamada, M.; Sato, T. Narimatsu, H.; Hirabayashi, J., Application of lectin microarray to crude samples: Differential glycan profiling of Lee mutants. J Biochem 2006,139, (3),323-7.
    [112]Tao, S. C.; Li, Y.; Zhou, J.; Qian, J.; Schnaar, R. L.; Zhang, Y.; Goldstein, I. J.; Zhu, H.; Schneck, J. P., Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008,18, (10),761-9.
    [113]Hsu, K. L.; Pilobello, K. T.; Mahal, L. K., Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2006,2, (3),153-7.
    [114]Hsu, K. L.; Mahal, L. K., A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc 2006,1, (2),543-9.
    [115]Kuno, A.; Ikehara, Y.; Tanaka, Y.; Angata, T.; Unno, S.; Sogabe, M.; Ozaki, H.; Ito, K.; Hirabayashi, J.; Mizokami, M.; Narimatsu, H., Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clin Chem 2011,57, (1),48-56.
    [116]Li, Y.; Tao, S. C.; Bova, G. S.; Liu, A. Y.; Chan, D. W.; Zhu, H.; Zhang, H., Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 2011,83, (22),8509-16.
    [117]Kuno, A.; Kato, Y.; Matsuda, A.; Kaneko, M. K.; Ito, H.; Amano, K.; Chiba, Y.; Narimatsu, H.; Hirabayashi, J., Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol. Cell. Proteomics 2009,8, (1),99-108.
    [118]Yamamoto, K.; Ito, S.; Yasukawa, F.; Konami, Y.; Matsumoto, N., Measurement of the carbohydrate-binding specificity of lectins by a multiplexed bead-based flow cytometric assay. Anal Biochem 2005,336, (1),28-38.
    [119]Wuhrer, M.; Catalina, M. I.; Deelder, A. M.; Hokke, C. H., Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2007,849, (1-2),115-28.
    [120]Coon, J. J., Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem 2009,81, (9),3208-15.
    [121]Alley, W. R., Jr.; Mechref, Y.; Novotny, M. V., Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 2009,23, (1), 161-70.
    [122]Catalina, M. I.; Koeleman, C. A.; Deelder, A. M.; Wuhrer, M., Electron transfer dissociation of N-glycopeptides:loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom 2007,21, (6),1053-61.
    [123]Scott, N. E.; Parker, B. L.; Connolly, A. M.; Paulech, J.; Edwards, A. V. Crossett, B.; Falconer, L.; Kolarich, D.; Djordjevic, S. P.; Hojrup, P.; Packer, N. H.; Larsen, M. R.; Cordwell, S. J., Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 2011,10, (2), M000031-MCP201.
    [124]Perry, R. H.; Cooks, R. G.; Noll, R. J., Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 2008,27, (6), 661-99.
    [125]Zhou, L.; Beuerman, R. W.; Chan, C. M.; Zhao, S. Z.; Li, X. R.; Yang, H.; Tong, L.; Liu, S.; Stern, M. E.; Tan, D., Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 2009,8, (11), 4889-905.
    [126]Ueda, K.; Katagiri, T.; Shimada, T.; Irie, S.; Sato, T. A.; Nakamura, Y.; Daigo, Y., Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzensulfenyl (NBS) stable isotope labeling:a new approach for the novel biomarker discovery for cancer. J Proteome Res 2007,6, (9), 3475-83.
    [127]Chaerkady, R.; Thuluvath, P. J.; Kim, M. S.; Nalli, A.; Vivekanandan, P.; Simmers, J.; Torbenson, M.; Pandey, A., O Labeling for a Quantitative Proteomic Analysis of Glycoproteins in Hepatocellular Carcinoma. Clin Proteomics 2008,4, (3-4),137-155.
    [128]Alvarez-Manilla, G.; Warren, N. L.; Abney, T.; Atwood, J.,3rd; Azadi, P.; York, W. S.; Pierce, M.; Orlando, R., Tools for glycomics:relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 2007,17, (7),677-87.
    [129]Kang, P.; Mechref, Y.; Kyselova, Z.; Goetz, J. A.; Novotny, M. V., Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 2007,79, (16),6064-73.
    [130]Atwood, J. A.,3rd; Cheng, L.; Alvarez-Manilla, G.; Warren, N. L.; York, W. S.; Orlando, R., Quantitation by isobaric labeling:applications to glycomics. J Proteome Res 2008,7,(1),367-74.
    [131]Orlando, R.; Lim, J. M.; Atwood, J. A.,3rd; Angel, P. M.; Fang, M.; Aoki, K. Alvarez-Manilla, G.; Moremen, K. W.; York, W. S.; Tiemeyer, M.; Pierce, M.; Dalton, S.; Wells, L., IDAWG:Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J Proteome Res 2009,8, (8),3816-23.
    [132]Old, W. M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K. G.; Mendoza, A. Sevinsky, J. R.; Resing, K. A.; Ahn, N. G., Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 2005,4, (10),1487-502.
    [133]Hendrickson, E. L.; Xia, Q.; Wang, T.; Leigh, J. A.; Hackett, M., Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics. Analyst 2006,131,(12),1335-41.
    [134]Li, C.; Zolotarevsky, E.; Thompson, I.; Anderson, M. A.; Simeone, D. M.; Casper, J. M.; Mullenix, M. C.; Lubman, D. M., A multiplexed bead assay for profiling glycosylation patterns on serum protein biomarkers of pancreatic cancer. Electrophoresis 2011,32, (15),2028-35.
    [1]von Heijne, G., The membrane protein universe:what's out there and why bother? J Intern Med 2007,261, (6),543-57.
    [2]Wollscheid, B.; von Haller, P. D.; Yi, E.; Donohoe, S.; Vaughn, K.; Keller, A.; Nesvizhskii, A. I.; Eng, J.; Li, X. J.; Goodlett, D. R.; Aebersold, R.; Watts, J. D., Lipid raft proteins and their identification in T lymphocytes. Subcell Biochem 2004, 37,121-52.
    [3]Hosen, N.; Park, C. Y.; Tatsumi, N.; Oji, Y.; Sugiyama, H.; Gramatzki, M.; Krensky, A. M.; Weissman, I. L., CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 2007,104, (26),11008-13.
    [4]Hopkins, A. L.; Groom, C. R., The druggable genome. Nat Rev Drug Discov 2002, 1,(9),727-30.
    [5]Speers, A. E.; Wu, C. C., Proteomics of integral membrane proteins--theory and application. Chem Rev 2007,107, (8),3687-714.
    [6]Fan, X.; She, Y. M.; Bagshaw, R. D.; Callahan, J. W.; Schachter, H.; Mahuran, D. J., A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. Anal Biochem 2004,332, (1),178-86.
    [7]Tie, J. K.; Zheng, M. Y.; Pope, R. M.; Straight, D. L.; Stafford, D. W., Identification of the N-linked glycosylation sites of vitamin K-dependent carboxylase and effect of glycosylation on carboxylase function. Biochemistry 2006,45, (49), 14755-63.
    [8]Jackson, P.; Marreiros, A.; Russell, P. J., KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 2005,37, (3),530-4.
    [9]Boucheix, C.; Rubinstein, E., Tetraspanins. Cell Mol Life Sci 2001,58, (9), 1189-205.
    [10]Zoller, M., Tetraspanins:push and pull in suppressing and promoting metastasis. Nat Rev Cancer 2009,9, (1),40-55.
    [11]Liu, W. M.; Zhang, X. A., KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 2006,240, (2),183-94.
    [12]Tonoli, H.; Barrett, J. C., CD82 metastasis suppressor gene:a potential target for new therapeutics? Trends Mol Med 2005,11, (12),563-70.
    [13]Vogt, A. B.; Spindeldreher, S.; Kropshofer, H., Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse:lipid raft and tetraspan microdomains. Immunol Rev 2002,189,136-51.
    [14]Zhou, B.; Liu, L.; Reddivari, M.; Zhang, X. A., The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 2004,64, (20),7455-63.
    [15]White, A.; Lamb, P. W.; Barrett, J. C., Frequent downregulation of the KAI1(CD82) metastasis suppressor protein in human cancer cell lines. Oncogene 1998,16, (24),3143-9.
    [16]Ono, M.; Handa, K.; Withers, D. A.; Hakomori, S., Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility:a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in IdID 14 cells. Biochem Biophys Res Commun 2000,279, (3),744-50.
    [17]Ono, M.; Handa, K.; Withers, D. A.; Hakomori, S., Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res 1999,59, (10),2335-9.
    [18]Andre, M.; Morelle, W.; Planchon, S.; Milhiet, P. E.; Rubinstein, E.; Mollicone, R.; Chamot-Rooke, J.; Le Naour, F., Glycosylation status of the membrane protein CD9P-1. Proteomics 2007,7, (21),3880-95.
    [19]Wedepohl, S.; Kaup, M.; Riese, S. B.; Berger, M.; Dernedde, J.; Tauber, R.; Blanchard, V., N-Glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs. JProteome Res 2010,9, (7),3403-11.
    [20]Zhao, J.; Liu, Y. H.; Reichert, P.; Pflanz, S.; Pramanik, B., Glycosylation analysis of interleukin-23 receptor: elucidation of glycosylation sites and characterization of attached glycan structures. J Mass Spectrom 2010,45, (12), 1416-25.
    [21]Kim, M. S.; Kandasamy, K.; Chaerkady, R.; Pandey, A., Assessment of resolution parameters for CID-based shotgun proteomic experiments on the LTQ-Orbitrap mass spectrometer. J Am Soc Mass Spectrom 2010,21, (9),1606-11.
    [22]Trimble, R. B.; Tarentino, A. L., Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum:endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J Biol Chem 1991, 266,(3),1646-51.
    [23]O'Neill, R. A., Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatogr A 1996,720, (1-2), 201-15.
    [24]Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004,3, (3),556-66.
    [25]Kvaratskhelia, M.; Clark, P. K.; Hess, S.; Melder, D. C.; Federspiel, M. J.; Hughes, S. H., Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry. Virology 2004,326, (1),171-81.
    [26]Yates, J. R.; Eng, J. K.; McCormack, A. L.; Schieltz, D., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 1995,67, (8),1426-36.
    [27]Kersey, P. J.; Duarte, J.; Williams, A.; Karavidopoulou, Y.; Birney, E.; Apweiler, R., The International Protein Index:an integrated database for proteomics experiments. Proteomics 2004,4, (7),1985-8.
    [28]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4, (3), 207-14.
    [29]Pedrioli, P. G., Trans-proteomic pipeline:a pipeline for proteomic analysis. Methods Mol Biol 2010,604,213-38.
    [30]Keller, A.; Shteynberg, D., Software pipeline and data analysis for MS/MS proteomics:the trans-proteomic pipeline [J]. Methods Mol Biol 2011,694,169-89.
    [31]Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002,74, (20),5383-92.
    [32]Wollscheid, B.; Bausch-Fluck, D.; Henderson, C.; O'Brien, R.; Bibel, M.; Schiess, R.; Aebersold, R.; Watts, J. D., Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 2009,27, (4), 378-86.
    [33]McDonald, C. A.; Yang, J. Y.; Marathe, V.; Yen, T. Y.; Macher, B. A., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 2009, 8, (2),287-301.
    [34]Schiess, R.; Mueller, L. N.; Schmidt, A.; Mueller, M.; Wollscheid, B.; Aebersold, R., Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol Cell Proteomics 2009,8, (4),624-38.
    [35]Charrin, S.; Le Naour, F.; Labas, V.; Billard, M.; Le Caer, J. P.; Emile, J. F.; Petit, M. A.; Boucheix, C.; Rubinstein, E., EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 2003,373, (Pt 2), 409-21.
    [36]Charrin, S.; Manie, S.; Thiele, C.; Billard, M.; Gerlier, D.; Boucheix, C.; Rubinstein, E., A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 2003,33, (9),2479-89.
    [37]Vogel, C.; Marcotte, E. M., Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protoc 2008,3, (9), 1444-51.
    [38]Braisted, J. C.; Kuntumalla, S.; Vogel, C.; Marcotte, E. M.; Rodrigues, A. R.; Wang, R.; Huang, S. T.; Ferlanti, E. S.; Saeed, A. I.; Fleischmann, R. D.; Peterson, S. N.; Pieper, R., The APEX Quantitative Proteomics Tool:generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics 2008, 9,529.
    [39]Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E. M., Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2007,25, (1),117-24.
    [40]Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. JProteome Res 2009,8, (2),651-61.
    [41]O'Neill, R. A., Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatogr A 1996,720, (1-2), 201-15.
    [42]Lotan, R.; Nicolson, G. L., Purification of cell membrane glycoproteins by lectin affinity chromatography. Biochim Biophys Acta 1979,559, (4),329-76.
    [1]Kornfeld, S., Diseases of abnormal protein glycosylation:an emerging area. J Clin Invest 1998,101, (7),1293-5.
    [2]Lowe, J. B., Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 2003,15, (5),531-8.
    [3]Lis, H.; Sharon, N., Protein glycosylation. Structural and functional aspects. Eur J Biochem 1993,218,(1),1-27.
    [4]Laine, R. A., A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide:the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994,4, (6),759-67.
    [5]Costello, C. E.; Contado-Miller, J. M.; Cipollo, J. F., A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 2007,18, (10),1799-812.
    [6]Freeze, H. H., Update and perspectives on congenital disorders of glycosylation. Glycobiology 2001,11, (12),129R-43R.
    [7]Jaeken, J.; Matthijs, G., Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet 2001,2,129-51.
    [8]Butler, M.; Quelhas, D.; Critchley, A. J.; Carchon, H.; Hebestreit, H. F.; Hibbert, R. G.; Vilarinho, L.; Teles, E.; Matthijs, G.; Schollen, E.; Argibay, P.; Harvey, D. J.; Dwek, R. A.; Jaeken, J.; Rudd, P. M., Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 2003, 13,(9),601-22.
    [9]Tousi, F.; Hancock W. S.; Hincapie, M., Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal Methods,2011,3,20-32.
    [10]Ghosh, D.; Krokhin, O.; Antonovici, M.; Ens, W.; Standing, K. G.; Beavis, R. C.; Wilkins, J. A., Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 2004,3, (4),841-50.
    [11]Harvey, D. J., Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 1999,18, (6),349-450.
    [12]Mechref, Y.; Novotny, M. V.; Krishnan, C., Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 2003,75, (18),4895-903.
    [13]Muzikar, J.; Mechref, Y.; Huang, Y.; Novotny, M. V., Enhanced post-source decay and cross-ring fragmentation of oligosaccharides facilitated by conversion to amino derivatives. Rapid Commun Mass Spectrom 2004,18, (13),1513-8.
    [14]Morelle, W.; Slomianny, M. C.; Diemer, H.; Schaeffer, C.; van Dorsselaer, A.; Michalski, J. C., Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom 2004,18, (22),2637-49.
    [15]Perreault, H.; Costello, C. E., Stereochemical effects on the mass spectrometric behavior of native and derivatized trisaccharide isomers:comparisons with results from molecular modeling. J Mass Spectrom 1999,34, (3),184-97.
    [16]Delaney, J.; Vouros, P., Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. Rapid Commun Mass Spectrom 2001,15, (5),325-34.
    [17]Novotny, M. V.; Mechref, Y., New hyphenated methodologies in high-sensitivity glycoprotein analysis. JSep Sci 2005,28, (15),1956-68.
    [18]Gravel, P., Identification of glycoproteins on nitrocellulose membranes using lectin blotting. The protein protocols handbook (Humana Press Inc.),1996, pp. 603-617, USA
    [19]Brewer, F.; Bhattacharyya, L.; Brown, R. D.,3rd; Koenig, S. H., Interactions of concanavalin A with a trimannosyl oligosaccharide fragment of complex and high mannose type glycopeptides. Biochem Biophys Res Commun 1985,127, (3),1066-71.
    [20]Debray, H.; Decout, D.; Strecker, G.; Spik, G.; Montreuil, J., Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 1981,117, (1),41-55.
    [21]Osawa, T.; Tsuji, T., Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem 1987,56,21-42.
    [22]Andre, M.; Morelle, W.; Planchon, S.; Milhiet, P. E.; Rubinstein, E.; Mollicone, R.; Chamot-Rooke, J.; Le Naour, F., Glycosylation status of the membrane protein CD9P-1. Proteomics 2007,7, (21),3880-95.
    [23]Knibbs, R. N.; Agrwal, N.; Wang, J. L.; Goldstein, I. J., Carbohydrate-binding protein 35. II. Analysis of the interaction of the recombinant polypeptide with saccharides. JBiol Chem 1993,268, (20),14940-7.
    [24]Lotan, R.; Skutelsky, E.; Danon, D.; Sharon, N., The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 1975, 250, (21),8518-23.
    [25]Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M., GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. JProteome Res 2008,7, (4),1650-9.
    [26]Ashline, D. J.; Lapadula, A. J.; Liu, Y. H.; Lin, M.; Grace, M.; Pramanik, B.; Reinhold, V. N., Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 2007,79, (10),3830-42.
    [27]Ciucanu, I.; Costello, C. E., Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 2003,125, (52),16213-9.
    [28]Kuster, B.; Wheeler, S. F.; Hunter, A. P.; Dwek, R. A.; Harvey, D. J., Sequencing of N-linked oligosaccharides directly from protein gels:in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 1997,250, (1),82-101.
    [29]Zhang, W.; Wang, H.; Tang, H.; Yang, P., Endoglycosidase-mediated incorporation of 18O into glycans for relative glycan quantitation. Anal Chem 2011,83, (12),4975-81.
    [30]Granovsky, M.; Fata, J.; Pawling, J.; Muller, W. J.; Khokha, R.; Dennis, J. W., Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 2000, 6, (3),306-12.
    [31]Varki, N. M.; Varki, A., Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 2007,87, (9),851-7.
    [32]Tokuyama, S.; Moriya, S.; Taniguchi, S.; Yasui, A.; Miyazaki, J.; Orikasa, S.; Miyagi, T., Suppression of pulmonary metastasis in murine B16 melanoma cells by transfection of a sialidase cDNA. Int J Cancer 1997,73, (3),410-5.
    [33]Miyoshi, E.; Noda, K.; Ko, J. H.; Ekuni, A.; Kitada, T.; Uozumi, N.; Ikeda, Y.; Matsuura, N.; Sasaki, Y.; Hayashi, N.; Hori, M.; Taniguchi, N., Overexpression of alphal-6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res 1999,59, (9),2237-43.
    [34]Takahashi, T.; Ikeda, Y.; Miyoshi, E.; Yaginuma, Y.; Ishikawa, M.; Taniguchi, N., alphal,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer 2000,88, (6),914-9.
    [35]Takahashi, M.; Kuroki, Y.; Ohtsubo, K.; Taniguchi, N., Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core:their functions and target proteins. Carbohydr Res 2009,344, (12),1387-90.
    [36]Tonoli, H.; Barrett, J. C., CD82 metastasis suppressor gene:a potential target for new therapeutics? Trends Mol Med 2005,11,(12),563-70.
    [1]Apweiler, R.; Hermjakob, H.; Sharon, N., On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999,1473, (1),4-8.
    [2]Geyer, H.; Geyer, R., Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 2006,1764,(12),1853-69.
    [3]Lau, K. S.; Dennis, J. W., N-Glycans in cancer progression. Glycobiology 2008, 18, (10),750-60.
    [4]Dube, D. H.; Bertozzi, C. R., Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005,4, (6),477-88.
    [5]Okuda, H.; Saito, A.; Shiratori, K.; Yamamoto, M.; Takasaki, K.; Nakano, M., Clinicopathologic features of patients with primary malignant hepatic tumors seropositive for alpha-fetoprotein-L3 alone in comparison with other patients seropositive for alpha-fetoprotein-L3. J Gastroenterol Hepatol 2005,20, (5),759-64.
    [6]Kuno, A.; Ikehara, Y.; Tanaka, Y.; Angata, T.; Unno, S.; Sogabe, M.; Ozaki, H.; Ito, K.; Hirabayashi, J.; Mizokami, M.; Narimatsu, H., Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clin Chem 2011,57, (1),48-56.
    [7]Ang, I. L.; Poon, T. C.; Lai, P. B.; Chan, A. T.; Ngai, S. M.; Hui, A. Y.; Johnson, P. J.; Sung, J. J., Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteome Res 2006,5, (10), 2691-700.
    [8]Stadlmann, J.; Weber, A.; Pabst, M.; Anderle, H.; Kunert, R.; Ehrlich, H. J.; Peter Schwarz, H.; Altmann, F., A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 2009,9, (17),4143-53.
    [9]Pucic, M.; Knezevic, A.; Vidic, J.; Adamczyk, B.; Novokmet, M.; Polasek, O.; Gornik, O.; Supraha-Goreta, S.; Wormald, M. R.; Redzic, I.; Campbell, H.; Wright, A.; Hastie, N. D.; Wilson, J. F.; Rudan, I.; Wuhrer, M.; Rudd, P. M.; Josic, D.; Lauc, G, High throughput isolation and glycosylation analysis of Ig G-variability and heritability of the Ig G glycome in three isolated human populations. Mol Cell Proteomics 2011,10(10):M111.010090.
    [10]Kaji, H.; Yamauchi, Y.; Takahashi, N.; Isobe, T., Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 2006,1, (6),3019-27.
    [11]Hirabayashi, J.; Kuno, A.; Tateno, H., Lectin-based structural glycomics:a practical approach to complex glycans. Electrophoresis 2011,32, (10),1118-28.
    [12]Dell, A.; Morris, H. R., Glycoprotein structure determination by mass spectrometry. Science 2001,291, (5512),2351-6.
    [13]Pilobello, K. T.; Slawek, D. E.; Mahal, L. K., A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 2007,104,(28),11534-9.
    [14]Angeloni, S.; Ridet, J. L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005,15, (1),31-41.
    [15]Pilobello, K. T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L. K., Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 2005, 6, (6),985-9.
    [16]Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Ebe, Y.; Takashima, S.; Yamada, M.; Hirabayashi, J., Evanescent-field fluorescence-assisted lectin microarray:a new strategy for glycan profiling. Nat Methods 2005,2, (11),851-6.
    [17]Rosenfeld, R.; Bangio, H.; Gerwig, G. J.; Rosenberg, R.; Aloni, R.; Cohen, Y. Amor, Y.; Plaschkes, I.; Kamerling, J. P.; Maya, R. B., A lectin array-based methodology for the analysis of protein glycosylation. J Biochem Biophys Methods 2007,70, (3),415-26.
    [18]Zheng, T.; Peelen, D.; Smith, L. M., Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 2005,127, (28),9982-3.
    [19]Tateno, H.; Uchiyama, N.; Kuno, A.; Togayachi, A.; Sato, T.; Narimatsu, H.; Hirabayashi, J., A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 2007,17, (10),1138-46.
    [20]Ebe, Y.; Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Yamada, M.; Sato, T. Narimatsu, H.; Hirabayashi, J., Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem 2006,139, (3),323-7.
    [21]Tao, S. C.; Li, Y.; Zhou, J.; Qian, J.; Schnaar, R. L.; Zhang, Y.; Goldstein, I. J.; Zhu, H.; Schneck, J. P., Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008,18, (10),761-9.
    [22]Hsu, K. L.; Pilobello, K. T.; Mahal, L. K., Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2006,2, (3),153-7.
    [23]Hsu, K. L.; Mahal, L. K., A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc 2006,1, (2),543-9.
    [24]Li, Y.; Tao, S. C.; Bova, G. S.; Liu, A. Y.; Chan, D. W.; Zhu, H.; Zhang, H., Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 2011,83, (22),8509-16.
    [25]Gao, J.; Liu, D.; Wang, Z., Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem 2010,82, (22),9240-7.
    [26]Meany, D. L.; Hackler, L., Jr.; Zhang, H.; Chan, D. W., Tyramide signal amplification for antibody-overlay lectin microarray:a strategy to improve the sensitivity of targeted glycan profiling. J Proteome Res 2011,10, (3),1425-31.
    [27]Chergui, F.; Chretien, A. S.; Bouali, S.; Ramacci, C.; Rouyer, M.; Bastogne, T. Genin, P.; Leroux, A.; Merlin, J. L., Validation of a phosphoprotein array assay for characterization of human tyrosine kinase receptor downstream signaling in breast cancer. Clin Chem 2009,55, (7),1327-36.
    [28]Kellar, K. L.; Iannone, M. A., Multiplexed microsphere-based flow cytometric assays. Exp Hematol 2002,30, (11),1227-37.
    [29]Kellar, K. L, Applications of multiplexed fluorescent microsphere-based assays to studies of infectious disease. J Clin Ligand Assay 2003,26,76-86.
    [30]Nolan, J. P.; Mandy, F. F., Suspension array technology:new tools for gene and protein analysis. Cell Mol Biol (Noisy-le-grand) 2001,47, (7),1241-56.
    [31]Nolan, J. P.; Sklar, L. A., Suspension array technology:evolution of the flat-array paradigm. Trends Biotechnol 2002,20, (1),9-12.
    [32]Dunbar, S. A., Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2006,363, (1-2), 71-82.
    [28]Kuno, A.; Kato, Y.; Matsuda, A.; Kaneko, M. K.; Ito, H.; Amano, K.; Chiba, Y. Narimatsu, H.; Hirabayashi, J., Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics 2009,8, (1),99-108.
    [29]Li, X.; Gao, J.; Liu, D.; Wang, Z., Studying the interaction of carbohydrate-protein on the dendrimer-modified solid support by microarray-based plasmon resonance light scattering assay. Analyst 2011,136, (20),4301-7.
    [1]Hirabayashi, J.; Arata, Y.; Kasai, K., Glycome project:concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics 2001,1, (2),295-303.
    [2]Taniguchi, N.; Hancock, W.; Lubman, D. M.; Rudd, P. M., The second golden age of glycomics:from functional glycomics to clinical applications. J Proteome Res 2009,8, (2),425-6.
    [3]Adham, S. A.; Coomber, B. L., Glucose is a key regulator of VEGFR2/KDR in human epithelial ovarian carcinoma cells. Biochem Biophys Res Commun 2009,390, (1),130-5.
    [4]Guo, H. B.; Randolph, M.; Pierce, M., Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase. J Biol Chem 2007,282, (30),22150-62.
    [5]Zhang, X.; Wu, X.; Li, J.; Sun, Y.; Gao, P.; Zhang, C.; Zhang, H.; Zhou, G., MDR1 (multidrug resistence 1) can regulate GCS (glucosylceramide synthase) in breast cancer cells. J Surg Oncol 2011,104, (5),466-71.
    [6]Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Ebe, Y.; Takashima, S.; Yamada, M.; Hirabayashi, J., Evanescent-field fluorescence-assisted lectin microarray:a new strategy for glycan profiling. Nat Methods 2005,2, (11),851-6.
    [7]Kuno, A.; Kato, Y.; Matsuda, A.; Kaneko, M. K.; Ito, H.; Amano, K.; Chiba, Y.; Narimatsu, H.; Hirabayashi, J., Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics 2009,8, (1),99-108.
    [8]Kuno, A.; Ikehara, Y.; Tanaka, Y.; Angata, T.; Unno, S.; Sogabe, M.; Ozaki, H.; Ito, K.; Hirabayashi, J.; Mizokami, M.; Narimatsu, H., Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clin Chem 2011,57, (1),48-56.
    [9]Li, Y.; Tao, S. C.; Bova, G. S.; Liu, A. Y.; Chan, D. W.; Zhu, H.; Zhang, H., Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 2011,83, (22),8509-16.
    [10]Zhou, S. M.; Cheng, L.; Guo, S. J.; Zhu, H.; Tao, S. C., Lectin microarrays:a powerful tool for glycan-based biomarker discovery. Comb Chem High Throughput Screen 2011,14, (8),711-9.
    [11]Kanoh, Y.; Mashiko, T.; Danbara, M.; Takayama, Y.; Ohtani, S.; Imasaki, T. Abe, T.; Akahoshi, T., Analysis of the oligosaccharide chain of human serum immunoglobulin g in patients with localized or metastatic cancer. Oncology 2004,66, (5),365-70.
    [12]Chergui, F.; Chretien, A. S.; Bouali, S.; Ramacci, C.; Rouyer, M.; Bastogne, T. Genin, P.; Leroux, A.; Merlin, J. L., Validation of a phosphoprotein array assay for characterization of human tyrosine kinase receptor downstream signaling in breast cancer. Clin Chem 2009,55, (7),1327-36.
    [13]Gray, J. S.; Yang, B. Y.; Montgomery, R., Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr Res 1998,311, (1-2),61-9.
    [14]Wimmerova, M.; Mitchell, E.; Sanchez, J. F.; Gautier, C.; Imberty, A., Crystal structure of fungal lectin:six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 2003,278, (29),27059-67.
    [15]Knibbs, R. N.; Perini, F.; Goldstein, I. J., Structure of the major concanavalin A reactive oligosaccharides of the extracellular matrix component laminin. Biochemistry 1989,28, (15),6379-92.
    [16]Henning, S.; Peter-Katalinic, J.; Pohlentz, G., Structure elucidation of glycoproteins by direct nanoESI MS and MS/MS analysis of proteolytic glycopeptides. J Mass Spectrom 2007,42, (11),1415-21.
    [17]Leipold, M. D.; Herrera, I.; Ornatsky, O.; Baranov, V.; Nitz, M., ICP-MS-based multiplex profiling of glycoproteins using lectins conjugated to lanthanide-chelating polymers. J Proteome Res 2009,8, (2),443-9.
    [18]Wuhrer, M.; Porcelijn, L.; Kapur, R.; Koeleman, C. A.; Deelder, A.; de Haas, M.; Vidarsson, G., Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 2009,8, (2),450-6.
    [19]Lewis, M. J.; Wagner, B.; Woof, J. M., The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies. Mol Immunol 2008,45, (3),818-27.
    [20]Martinez, T.; Pace, D.; Brady, L.; Gerhart, M.; Balland, A., Characterization of a novel modification on IgG2 light chain. Evidence for the presence of O-linked mannosylation. J Chromatogr A 2007,1156, (1-2),183-7.
    [21]Huhn, C.; Selman, M. H.; Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., IgG glycosylation analysis. Proteomics 2009,9, (4),882-913.
    [22]Varki, N. M.; Varki, A., Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 2007,87, (9),851-7.
    [23]Mueller, S. N.; Hosiawa-Meagher, K. A.; Konieczny, B. T.; Sullivan, B. M.; Bachmann, M. F.; Locksley, R. M.; Ahmed, R.; Matloubian, M., Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 2007,317, (5838),670-4.
    [24]Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F., Cancer-related inflammation. Nature 2008,454, (7203),436-44.
    [25]Miyoshi, E.; Noda, K.; Ko, J. H.; Ekuni, A.; Kitada, T.; Uozumi, N.; Ikeda, Y.; Matsuura, N.; Sasaki, Y.; Hayashi, N.; Hori, M.; Taniguchi, N., Overexpression of alphal-6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res 1999,59, (9),2237-43.
    [26]Takahashi, T.; Ikeda, Y.; Miyoshi, E.; Yaginuma, Y.; Ishikawa, M.; Taniguchi, N., alphal,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer 2000,88, (6),914-9.
    [27]Shields, R. L.; Lai, J.; Keck, R.; O'Connell, L. Y.; Hong, K.; Meng, Y. G.; Weikert, S. H.; Presta, L. G., Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RⅢ and antibody-dependent cellular toxicity. J Biol Chem 2002,277, (30),26733-40.
    [28]Iida, S.; Misaka, H.; Inoue, M.; Shibata, M.; Nakano, R.; Yamane-Ohnuki, N.; Wakitani, M.; Yano, K.; Shitara, K.; Satoh, M., Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res 2006,12, (9),2879-87.
    [29]Li, C.; Zolotarevsky, E.; Thompson, I.; Anderson, M. A.; Simeone, D. M.; Casper, J. M.; Mullenix, M. C.; Lubman, D. M., A multiplexed bead assay for profiling glycosylation patterns on serum protein biomarkers of pancreatic cancer. Electrophoresis 2011,32, (15),2028-35.
    [1]Harvey, D. J., Proteomic analysis of glycosylation: structural determination of N-and O-linked glycans by mass spectrometry. Expert Rev Proteomics 2005,2, (1), 87-101.
    [2]Morelle, W.; Michalski, J. C., The mass spectrometric analysis of glycoproteins and their glycan content. Curr Anal Chem.2005,1,29-57.
    [3]Beavis, R. C.; Chait, B. T., High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal Chem 1990, 62,(17),1836-40.
    [4]Finke, B.; Mank, M.; Daniel, H.; Stahl, B., Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal Biochem 2000,284, (2),256-65.
    [5]Zaia, J., Mass spectrometry and glycomics. OMICS 2010,14, (4),401-18.
    [6]Domon, B.; Costello C. E., A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J 1988, 5, (4) 397-409.
    [7]Harvey, D. J.; Royle, L.; Radcliffe, C. M.; Rudd, P. M.; Dwek, R. A., Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem 2008,376, (1),44-60.
    [8]Morelle, W.; Faid, V.; Michalski, J. C., Structural analysis of permethylated oligosaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry and deutero-reduction. Rapid Commun Mass Spectrom 2004,18, (20), 2451-64.
    [9]Friedl, C. H.; Lochnit, G.; Geyer, R.; Karas, M.; Bahr, U., Structural elucidation of zwitterionic sugar cores from glycosphingolipids by nanoelectrospray ionization-ion-trap mass spectrometry. Anal Biochem 2000,284, (2),279-87.
    [10]Viseux, N.; de Hoffmann, E.; Domon, B., Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal Chem 1997,69, (16),3193-8.
    [11]Ashline, D. J.; Lapadula, A. J.; Liu, Y. H.; Lin, M.; Grace, M.; Pramanik, B.; Reinhold, V. N., Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 2007,79, (10),3830-42.
    [12]Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M., GlycoWorkbench:a tool for the computer-assisted annotation of mass spectra of glycans. JProteome Res 2008,7, (4),1650-9.
    [13]Costello, C. E.; Contado-Miller, J. M.; Cipollo, J. F., A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 2007, 18, (10),1799-812.
    [14]Korner, R.; Limberg, G.; Christensen, T. M.; Mikkelsen, J. D.; Roepstorff, P., Sequencing of partially methyl-esterified oligogalacturonates by tandem mass spectrometry and its use to determine pectinase specificities. Anal Chem 1999,71, (7), 1421-7.
    [15]Nett, I. R.; Mehlert, A.; Lamont, D.; Ferguson, M. A., Application of electrospray mass spectrometry to the structural determination of glycosylphosphatidylinositol membrane anchors. Glycobiology 2010,20, (5),576-85.
    [16]Delaney, J.; Vouros, P., Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. Rapid Commun Mass Spectrom 2001,15, (5),325-34.
    [17]Zhao, C.; Xie, B.; Chan, S. Y.; Costello, C. E.; O'Connor, P. B., Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides. J Am Soc Mass Spectrom 2008,19, (1),138-50.
    [1]Dwek, M. V.; Brooks, S. A., Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 2004,4, (5),425-42.
    [2]Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005,5, (7),526-42.
    [3]Bernardes, G. J.; Castagner, B.; Seeberger, P. H., Combined approaches to the synthesis and study of glycoproteins. ACS Chem Biol 2009,4, (9),703-13.
    [4]Seeberger, P. H.; Werz, D. B., Synthesis and medical applications of oligosaccharides. Nature 2007,446, (7139),1046-51.
    [5]Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, P. R. Saccharide structure and nomenclature, Chapter 2. In Essentials of glycobiology (Cold Harbor Laboratory Press),1999, pp.17-30, USA
    [6]Brooks, S. A.; Dwek, M. V.; Schumacher, U., An introduction to carbohydrate chemistry, Chapter 1. In Functional and molecular glycobiology (Bios Scientific Publishers, Ltd),2002, pp.1-30, USA
    [7]Brooks, S. A., Strategies for analysis of the glycosylation of proteins:current status and future perspectives. Mol Biotechnol 2009,43, (1),76-88.
    [8]Hardy, M. R., Monosaccharide analysis of glycoconjugates by high-performance anion-exchange chromatography with pulsed amperometric detection. Methods Enzymol 1989,179,76-82.
    [9]Gey, M. H.; Unger, K. K., A strategy for chromatographic and structural analysis of monosaccharide species from glycoproteins. Anal Bioanal Chem 1996,356, (8), 488-94.
    [10]Karlsson, N. G.; Hansson, G. C., Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal Biochem 1995,224, (2),538-41.
    [11]Guttman, A., Analysis of monosaccharide composition by capillary electrophoresis. J Chromatogr A 1997,763, (1-2),271-7.
    [12]Brooks, S. A.; Carter, T. M.; Royle, L.; Harvey, D. J.; Fry, S. A.; Kinch, C.; Dwek, R. A.; Rudd, P. M., Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies. Anticancer Agents Med Chem 2008,8, (1), 2-21.
    [13]Rudd, P. M.; Guile, G. R.; Kuster, B.; Harvey, D. J.; Opdenakker, G.; Dwek, R. A., Oligosaccharide sequencing technology. Nature 1997,388, (6638),205-7.
    [14]Harvey, D. J.; Royle, L.; Radcliffe, C. M.; Rudd, P. M.; Dwek, R. A., Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem 2008,376, (1),44-60.
    [15]Gil, G. C.; Kim, Y. G.; Kim, B. G., A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2008,379, (1),45-59.
    [16]Wuhrer, M.; Porcelijn, L.; Kapur, R.; Koeleman, C. A.; Deelder, A.; de Haas, M.; Vidarsson, G., Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 2009,8, (2),450-6.
    [17]Montesino, R.; Toledo, J. R.; Sanchez, O.; Zamora, Y.; Barrera, M.; Royle, L.; Rudd, P. M.; Dwek, R. A.; Harvey, D. J.; Cremata, J. A., N-Glycosylation pattern of E2 glycoprotein from classical swine fever virus. J Proteome Res 2009,8, (2), 546-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700