全息模式波前传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全息模式波前传感器是近年来提出的一种新型波前传感技术,其利用复用全息元件实现对多阶像差模式的存储与探测,输出信号在一定范围内与各阶待测像差模式系数具有近似线性关系,在转化为波前校正器控制信号过程中不需要复杂的矩阵运算,有助于提高自适应光学系统的工作带宽和紧凑性,从而有望将软件驱动的传统自适应光学系统转化为不需要计算机控制的纯电子电路系统。该传感器对待测光波的强度非均匀性不敏感,能够适用于强湍流、强闪烁环境,在空基高能激光、无人机高清晰成像、自由空间光通信等系统中均有潜在的应用价值。论文分别从理论分析、数值模拟、实验验证和技术扩展四个方面对全息模式波前传感技术进行了深入研究。主要内容包括以下几个部分:
     1、对模式偏置波前传感技术进行了系统的理论和数值分析。在小像差条件下,分析并推广了传感器输出信号与待测像差模式系数之间近似线性关系的相关因子表达式,即传感器灵敏度因子。通过数值模拟,对比分析了传感器的灵敏度响应曲线特性与待测像差模式的类型与阶数、焦面光斑信息提取方式、传感器信号输出方式等的联系。分析了偏置模式系数、焦面光斑的环围光阑半径、倾斜像差模式的存在等因素对传感器性能的影响。总结了实现多阶模式偏置的波前传感技术方案。研究结果表明:归一化光强差或修正型归一化光强差较适合于作为传感器的输出信号;对于不同的偏置模式,偏置模式系数、焦面光斑的环围光阑半径等参数的合理选择,能够优化传感器的绝对灵敏度、动态测量范围等性能,并有效抑制像差模式间的串扰效应。
     2、以计算全息编码作为复用全息元件的实现方式,从解析理论和数值模拟两方面对全息模式波前传感技术进行了研究。揭示了全息模式波前传感技术本质上属于多阶模式同步偏置波前传感技术;对比分析了相位型复用计算全息元件的编码设计图、焦面衍射光斑和衍射效率;从灵敏度响应曲线特性、灵敏度矩阵标定、像差模式探测和静态像差闭环校正四个方面,对基于相位型复用计算全息元件的模式波前传感技术进行了数值分析和对比。结果表明:二元相位型复用计算全息元件能够有效抑制零级衍射光斑强度,相对提高一级衍射光斑强度;基于线性载频编码生成的相位型复用计算全息元件具有较高的衍射效率,且灵敏度矩阵为近似对角矩阵;对静态相位屏的探测和闭环校正验证了传感器在开环和闭环自适应光学系统中的性能。
     3、分别基于空间光调制器和微光刻衍射元件建立了两套实验系统,以动态全息和静态全息方式对全息模式波前传感技术进行实验验证。验证了传感器对单阶模式的灵敏度响应特性,对于编码较多阶模式或二阶载频复用计算全息图的衍射场特性进行了初步验证,实验上对比了不同载频布局对传感器性能的影响效果。
     4、通过引入三种不同定义和性质的正交模式,将全息模式波前传感技术进行了扩展。以变形镜本征模式作为复用计算全息元件的编码模式,有望实现波前传感器与变形镜的紧密匹配,从而减小闭环校正系统的残差;以Karhunen-Loeve模式作为复用计算全息元件的编码模式,可以使波前传感器更适合于探测大气湍流引起的波前畸变;以Lukosz-Zernike模式作为复用计算全息元件的编码模式,能够有效扩展波前传感器的动态测量范围。
Holographic modal wavefront sensor (HMWFS) is a novel wavefront sensing technology proposed in recent years, which is implemented by recording and sensing several aberration modes with a multiplexed holographic element. Its output signals can be related near linearly to the coefficients of tested aberration modes, and readily transformed into the control signals of wavefront correctors without heavy matrix computation. This may help improve the bandwidth and compactness of adaptive optics (AO) systems, and hence make it possible to transform general software into computer-free, electronics-only and basic circuitry for AO systems. Also, HMWFS is insensitive to the intensity nonuniformity of optical field, and can be adapted to the circumstances such as high turbulence, strong scintillation. HMWFS has valuable potential inapplications in terms of unmanned aerial vehicles’high resolution image, airborne high energy lasers and free-space optical communications. In this dissertation,
     we carry out extensive investigations on HMWFS in four aspects, respectively, including theoretical analysis, numerical simulation, experimental demonstration and technology extentions. The primary contents are presented as follows: Mode-biased wavefront sensing (MBWFS) technology is theoretically and experimentally analyzed in detail. With the small-phase approximation, we analyze and extend the expressions of correlative factors, i.e., sensitivity factors, of near linear relationships between the output signals of MBWFS and the tested aberration modes’coefficients. We numerically compare and analyze the characteristics of MBWFS’s sensitivity response curves corresponding to various types and orders of tested aberration modes, ways of taking information from focal spots, and ways of output signals. We also analyze the impacts upon performance of MBWFS from factors such as bias modes’coefficients, iris size of focal spots. Several approaches of MBWFS with multiple bias modes are summarized. The results indicate that, the normalized intensity difference (NID) or modified NID is suitable to be output signals of MBWFS; for different bias modes, the performance can be optimized by selecting appropriate parameters such as bias modes’coefficients, iris size of focal spots, e.g., absolute sensitivity improvement, dynamic measurement range extensions, intermodal cross-talk restraint, and so on.
     HMWFS is studied theoretically and numerically by implementing the multiplexed holographic optical element with computer-generated hologram, i.e., multiplexed computer-generated holographic element (MCGHE). It is figured out that the essence of HMWFS belongs to MBWFS with multiple synchronization bias modes. The designed holograms, the diffraction patterns and diffraction efficiencies in focal plane of the phase MCGHEs are comparatively analyzed. HMWFS based on different phase MCGHEs are analyzed in terms of sensitivity response characteristics, calibrated sensitivity matrixs, static aberration modes detection and close-loop correction. The results show that, binary phase MCGHEs can restrain intensity of zero diffraction order, and thus relatively enhance that of first diffraction order; and that, phase MCGHEs coded with linear carrier frequencies have higher diffraction efficiencies and approximate diagonal sensitivity matrixes; the performance of HMWFS is numerically validated through sensing and compensating static phase screens in both open-loop and close-loop AO systems.
     We establish two experimental systems based on spatial light modulators (SLMs) and micro-lithographic diffractive element respectively, and validate HMWFS through dynamic and static holography experiments accordingly. We demonstrate the sensitivity response characteristics of HMWFS to sense single aberration mode, and verify the properties of optical fields, in focal plane, generated from MCGHEs, which are coded with more multiple modes or quadratic carrier frequencies. The impacts of various carrier frequency distributions on the performance of HMWFS is comparatively demonstrated in experiment.
     The HMWFS technology is extended by introducing three orthogonal modes of different definitions and characteristics. HMWFS based on MCGHEs coded with deformable mirror (DM) modes could be matched well with particular DM, and the residual error in the close-loop correction systems will be somewhat diminished. Those coded with Karhunen-Loeve modes will be adapted to sensing wavefront aberration distorted by atmospheric turbulence. And those coded with Lukosz-Zernike modes will own effective extended dynamic measurement ranges.
引文
[1] H.W. Babcock, The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953. 65(386): 229~236.
    [2] V.P. Linnick, On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy, 1957. 3: 401~2.
    [3] F. Roddier, Adaptive optics in astronomy[M]. 1999: Cambridge university press.
    [4] V. P.Lukin and B. V.Fortes, Adaptive Beaming and Imaging in the Turbulent Atmosphere[M]. 2002, Washington: SPIE.
    [5] J.W. Hardy, Adaptive optics for astronomical telescopes[M]. 1998, Oxford,UK.: Oxford university press.
    [6]苏毅,万敏,高能激光系统[M]. 2004,北京:国防工业出版社.
    [7] Y.H. Xing, et al., Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Appl. Opt., 2000. 39(18): 3023~3031.
    [8] K.N. LaFortune, et al., Technical challenges for the future of high energy lasers[M]. 2007.
    [9] M. Carbon. Laser beam shaping in space using adaptive optics[C]. Proc. of SPIE. 2003.5087: 83~86.
    [10] S.W. Bahk, et al., A high-resolution, adaptive beam-shaping system for high-power lasers[J]. Opt. Express, 2010. 18(9): 9151~9163.
    [11] J. Wenhan, R. Xuejun, and L. Ning. Laser wave-front measurment of ICF amplifiers using Hartmann-Shack wave-front sensor[C]. Proc. of SPIE. 2000.4124: 148~157.
    [12] R.K. Tyson, Adaptive optics and ground-to-space laser communications[J]. Appl. Opt., 1996. 35(19): 3640~3646.
    [13] J. Porter, et al., Adaptive optics for vision science: principles, practices, desiging, and applications[M]. 2006: Wiley & Sons, Inc., Publication.
    [14] R.J. Zawadzki, et al., Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging[J]. Opt. Express, 2005. 13(21): 8532~8546.
    [15] G. Vdovin, M. Loktev, and A. Naumov, On the possibility of intraocular adaptive optics[J]. Opt. Express, 2003. 11(7): 810~817.
    [16] P.M. Prieto, et al., Adaptive optics with a programmable phase modulator: applications in the human eye[J]. Opt. Express, 2004. 12(17): 4059~4071.
    [17] M.J. Booth, Adaptive optics in microscopy[J]. Phil. Trans. R. Soc. A., 2007. 365: 2829~2843.
    [18] M.A.A. Neil, et al., Active aberration correction for the writing of three-dimensional optical memory devices[J]. Appl. Opt., 2002. 41(7): 1374~1379.
    [19] A. Jesacher, et al., Full phase and amplitude control of holographic optical tweezers with high ef?ciency[J]. Opt. Express, 2008. 16(7): 4479~4486.
    [20] C.L. Quesada, J. Andilla, and E.M. Badosa, Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor[J]. Appl. Opt., 2009. 48(6): 1084~1090.
    [21] D. Gil-leyva, et al., Aberration correction in an adaptive free-space optical interconnect with an error diffusion algorithm[J]. Appl. Opt., 2006. 45(16):3782~3792.
    [22] D. Malacara, Optical shop testing[M]. 2nd 1992, New York: John Wiley & Sons.
    [23] R.K. Tyson, Principles of adaptive optics[M]. 1991, San Diego: Academic Press. 213~255.
    [24] R.A. Gonsalves, Phase retrieval by differential intensity measurements[J]. J. Opt. Soc. Am. A, 1987. 4(1): 166~170.
    [25] S.R. Robinson, On the problem of phase from intensity measurements[J]. J. Opt. Soc. Am., 1978. 68(1): 87~92.
    [26] J.C. Dainty and M.A. Fiddy, The essential role of prior knowledge in phase retrival[J]. Optica Acta, 1984. 31(3): 325~330.
    [27] R.K. Tyson, Adaptive optics engineering handbook[M]. 2000, New York: Marcel Dekker Inc.
    [28] H.I. Campbell and A.H. Greenaway, Wavefront sensing: from historical roots to the state-of-the-art[J]. Astronomy with high contrast imaging III, EAS publication series., 2006. 22: 165~185.
    [29] W.J.Bates, A wavefront shearing interferometer[J]. Proc.Phys.Soc., 1947. 59: 940~950.
    [30] M.V.R.K.Murty, The use of a single plane parallel plate as a lateral shearing interometer with a visible gas laser source[J]. Appl.Opt., 1964. 3(4): 531~534.
    [31] M.V.R.K.Murty and E.C.Hagerott, Rotation-shearing interferometry[J]. Appl.Opt., 1966. 5(4): 615~619.
    [32] M.V.R.K.Murty, A compact radial shearing interferometer based on the law of refraction[J]. Appl.Opt., 1964. 3(7): 853~858.
    [33] C. Roddier, Measurements of the atmospheric attenuation of the spectral components of astronomical images[J]. J. Opt. Soc. Am., 1976. 66(5): 478~482.
    [34] A.H. Greenaway and C. Roddier, A 180o rotation shearing interferometer with increased optical efficiency[J]. Opt. Commun., 1980. 32(1): 48~50.
    [35] C.L. Koliopoulos, Radial grating lateral heterodyne interferometer[J]. Appl. Opt., 1980. 19(9): 1523~1528.
    [36] F. Roddier and C. Roddier, Phase closure with rotational shear interferometers[J]. Opt. Commun., 1986. 60(6): 350~352.
    [37] T.J. Licznerski, H.T. kasprzak, and W. Kowalik, Analysis of shearing interferograms of tear film using fast Fourier transforms[J]. J. Biomed. Opt., 1998. 3(1): 32.
    [38] B.C. Platt and R. Shack, History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001. 17: s453~s457.
    [39] J. Primot, Theoretical description of Shack-Hartmann wavefront sensor[J]. Opt. Commun., 2003. 222: 81~92.
    [40] N. Roddier. Curvature sensing and compensation: a computer simulation[C]. Proc. of SPIE. 1989.1114: 92~96.
    [41] F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics[J]. Appl. Opt., 1988. 27(2): 1223~1225.
    [42] F. Roddier, Curvature sensing: a diffraction theory, NOAO advanced development program[J]. R&D Note, 1987: No. 87~3.
    [43] S. Ríos, E. Acosta, and S. Bará, Modal phase estimation from wavefront curvature sensing [J]. Opt. Commun., 1996. 123: 453~456.
    [44] F. Roddier. Wavefront curvature sensing and compensation methods in adaptiveoptics[C]. Proc. of SPIE. 1991.1487
    [45] X. Fengjie, et al., Wavefront curvature sensor with phase defocus grating[J]. Acta Optica Sinica, 2007. 27(2): 377~378.
    [46] R.N. Smartt and J. Strong, Point-diffraction interferometer [J]. J. Opt. Soc. Am., 1972. 62(5): 737.
    [47] R.N. Smartt, Theory and application of point-diffraction interferometers[J]. J. Appl. Phys., 1975. 14(14-1): 351~356.
    [48] C.R. Mercer and K. Creath, Liquid-crystal point-diffraction interferometer for wave-front measurements[J]. Appl. Opt., 1996. 35(10): 1633~1642.
    [49] O.Y. Kwon, Mutlichannel phase-shifted interferometer[J]. Opt. Lett., 1984. 9(2): 59~61.
    [50] G. Love, T. Oag, and A. Kirby, Common path interferometric wavefront sensor for extreme adaptive optics[J]. Opt. Express, 2005. 13(9): 3491~3499.
    [51] R. Ragazzoni, Pupil plane wavefront sensing with an oscilating prism[J]. J. Mod. Opt., 1996. 43(2): 289~293.
    [52] R. Ragazzoni, E. Diolaiti, and E. Vernet, A pyramid wavefront sensor with no dynamic modulation[J]. Opt. Commun., 2002. 208: 51~60.
    [53] I. Iglesias, et al., Extended source pyramid wave-front sensor for the human eye[J]. Opt. Express, 2002. 10(9): 419~428.
    [54] E. Diolaiti, et al. Some novel concepts in multipyramid wavefront sensing[C]. Proc. of SPIE. 2002.4839: 299.
    [55] F. Gont, et al., APE: the active phasing experiment to test new control system and phasing technology for a European extremely large optical telescope[J]. Proc. of SPIE, 2005. 5894: 306.
    [56] B.R. Boruah, Zonal wavefront sensing using an array of gratings[J]. Opt. Lett., 2010. 35(2): 202~204.
    [57] C. Kai, et al. Performance of the PSD-based Hartmann-Shack wavefront sensor[C]. Proc. of SPIE. 2005.6018: 1~10.
    [58] K. Chen, et al. PSD-based Hartmann-Shack wavefront sensor [C]. Proc. of SPIE. 2004.5639: 87~94.
    [59] K. Buse and M. Luennemann, 3D Imaging: wave front sensing utilizing a birefringent crystal[J]. Phys. Rev. Lett., 2000. 85(16): 3385~3387.
    [60] M.A. Vorontsov, E.W. Justh, and L.A. Beresnev, Adaptive optics with advanced phase-contrast techniques.I. High-resolution wave-front sensing[J]. J. Opt. Soc. Am. A, 2001. 18(6): 1289~1299.
    [61] M. Loktev, et al. Modal wavefront correction with liquid crystals: different options [C]. Proc. of SPIE. 2005.5741: 163~170.
    [62] M.Y. Loktev. Modal wavefront correctors based on nematic liquid crystals[D].Samara state university, Rusland 2005.
    [63] S.P. Kotova, et al., Technology and electro-optical properties of modal liquid crystal wavefront correctors[J]. J. Opt. A: Pure Appl. Opt., 2003. 5: S231~S238.
    [64] N.A. Massie, Modal sensor[P]. US:4344707. 1982.
    [65] M.A.A. Neil, M.J. Booth, and T. Wilson, New modal wave-front sensor: a theoretical analysis[J]. J. Opt. Soc. Am. A, 2000. 17(6): 1098~1107.
    [66] M.J. Booth, M.A.A. Neil, and T. Wilson, New modal wave-front sensor: application to adaptive confocal ?uorescence microscopy and two-photon excitation ?uorescence microscopy[J]. J. Opt. Soc. Am. A, 2002. 19(10): 2112~2120.
    [67] M.A.A. Neil, M.J. Booth, and T. Wilson, Closed-loop aberration correction by use of a modal Zernike wave-front sensor[J]. Opt. Lett., 2000. 25(15): 1083~1085.
    [68] M.J. Booth. Direct measurement of Zernike aberration modes with a modal wavefront sensor[C]. SPIE, Bellingham, WA: Proc. of SPIE. 2003.5162: 79~90.
    [69] E. N.Ribak, A fast modal wave-front sensor[J]. Opt. Express, 2001. 9(3): 152~157.
    [70] D.M. Faichnie, et al., Thin film metrology using modal wavefront sensing[J]. J. Opt. A: Pure Appl. Opt., 2005. 7: S290~S297.
    [71] M.A. Lauterbach, M. Ruckel, and W. Denk, Light-efficient, quntum-limited interferometric wavefront estimation by virtual mode sensing[J]. Opt. Express, 2006. 14(9): 3700~3714.
    [72] R.J. Noll, Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am., 1976. 66(3): 207~211.
    [73] A. Dubra, Wavefront sensor and wavefront corrector matching in adaptive optics[J]. Opt. Express, 2007. 15(6): 2762~2769.
    [74] D. Debarre, M.J. Booth, and T. Wilson, Image based adaptive optics through optimisation of low spatial frequencies[J]. Opt. Express, 2007. 15(13): 8176~8190.
    [75] M.J. Booth, Wavefront sensorless adaptive optics for large aberrations[J]. Opt. Lett., 2007. 32(1): 5~7.
    [76] D. Gabor, Resolution beyond the information limit in transmission electron microscopy[J]. Nature, 1948. 161: 777~778.
    [77] E.N. Leith and J. Upatnieks, Reconstructed wavefronts and communication theory[J]. J. Opt. Soc. Am., 1962. 52: 1123~1130.
    [78] B.R. Brown and A.W. Lohmann, Complex spatial filtering with binary masks[J]. Appl. Opt., 1966. 5(6): 967~969.
    [79] A.W. Lohmann and D.P. Paris, Binary Fraunhofer holograms, generated by computer[J]. Appl. Opt., 1967. 6(10): 1739~1748.
    [80] J.W. Goodman and R.W. Lwrence, Digital image formulation from electronically detected holograms[J]. Appl. Phys. Lett., 1967. 11(3): 77~79.
    [81] T.S. Huang, Digital holography[J]. Proc. of IEEE, 1971. 59(9): 1335~1346.
    [82]周海宪,程云芳,全息光学——设计、制造和应用[M]. 2006,北京:化学工业出版社.
    [83] T.-C. Poon, Optical scanning holography with Matlab[M]. 2007: Springer.
    [84] U. Schnars and W. Jueptner, Digital recording and reconstruction of holograms in holographic interferometry and shearography[J]. Appl. Opt., 1994. 33(20): 4373~4377.
    [85] I. Yamaguchi, Phase-shifting digital holography[J]. Opt. Lett., 1997. 22(16): 1268~1270.
    [86] P. Ferraro, L. Miccio, and S. Grilli, Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography[J]. Opt. Express, 2007. 15(22): 14591~14600.
    [87] U. Schnars, Direct phase determination in hologram interferometry with use of digital recording holograms[J]. J. Opt. Am. A, 1994. 11(7): 2011~2015.
    [88] L.C. Ferri, Visualization of 3D information with digital holography using laserprinters[J]. Computers & Graphic, 2001. 25(4): 309~321.
    [89] B. Javidi and E. Tajahuerce, Three dimensional object recognition by use of digital holography[J]. Opt. Lett., 2000. 25(9): 610~612.
    [90] J. Sheng, E. Malkiel, and J. Katz, Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Appl. Opt., 2006. 45(16): 3893~3901.
    [91] J. Desse, P. Picart, and P. Tankam, Digital three-color holographic interferometry for flow analysis[J]. Opt. Express, 2008. 16(5): 5471~5480.
    [92] M.Y.Y. Huang, L. Lin, and H.M. Shang, Simple method for direct determination of bending strains by use of digital holography[J]. Appl. Opt., 2001. 40(25): 4514~4518.
    [93] Y. Fu, G. Pedrini, and W. Osten, Vibration measurement by temporal Fourier analyses of a digital hologram sequence[J]. Appl. Opt., 2007. 46(23): 5719~5727.
    [94]虞祖良,金国藩,计算机制全息图[M].第一版. 1984,北京:清华大学出版社. 194.
    [95]金国藩,严瑛白,乌敏贤,二元光学[M]. 1998,北京:国防工业出版社.
    [96] E.G. Churin, Diffraction-limited laser beam shaping by use of computer-generated holograms with dislocations[J]. Opt. Lett., 1999. 24(9): 620~621.
    [97] X. Xuewu, et al., Computer-generated holography for dynamic display of 3D objects with full parallax[J]. The International Journal of Virtual Reality, 2009. 8(2): 33~38.
    [98] J.Y. Son, et al., Shack-Hartmann wavefront sensor with holographic memory[J]. Opt. Eng, 2003. 42(11): 3389~3398.
    [99] D.V. Podanchuk, et al., Shack-hartmann wavefront sensor with holographic lenslet array for the aberration measurements in a speckle field[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. 11(1): 29~33.
    [100] P.M. Blanchard, et al., Phase-diversity wave-front sensing with a distorted diffraction grating[J]. Appl. Opt., 2000. 39(35): 6649~6655.
    [101] P.M. Blanchard and A.H. Greenaway, Simultaneous multiplane imaging with a distorted diffraction grating[J]. Appl. Opt., 1999. 38(32): 6692~6699.
    [102] O. Bryngdahl and W.H. Lee, Shearing interferometer in polar coordinates[J]. J.Opt. Soc. Am., 1974. 64(12): 1606~1615.
    [103] G.P. Anderson and R. Reibel, Holographic wavefront sensor[P]. US:7268937B1. 2007.
    [104] M.A. Stevens and A.C. Layton, High-speed readout of a wavefront sensor using position sensing device[P]. US:7645972. 2010.
    [105] G.P. Anderson, Holographic adaptive optic system[P]. US:7495200B1. 2009.
    [106] G.P. Andersen and R. Reibel. Holographic wavefront sensor[C]. Proc. of SPIE. 2005.5894: 58940O-1~8.
    [107] G.P. Anderson. Fast Holographic Wavefront Sensor: Sensing Without Computing[C]. Proc. of SPIE. 2006.6272: 6272E-1~8.
    [108] P. Dyrud and G. Andersen. Fast holographic wavefront sensor[C]. Proc. of SPIE. 2006.6215: 1~8.
    [109] G. Andersen, F. Ghebremichael, and K.S. Gurley, Fast computing-free wavefront sensing[J]. OSA/AO, 2007: 3.
    [110] G. Andersen, F. Ghebremichael, and K. Gurley. Holographic wavefront sensor--fast sensing, no computing[C]. Proc. of SPIE. 2007.6488 648801~8.
    [111] F. Ghebremichael, G.P. Andersen, and K.S. Gurley, Holography-based wavefront sensing[J]. Appl. Opt., 2008. 47(4): A62~70.
    [112] G.P. Anderson, et al., Holographic wavefront sensor [J]. Opt. Eng., 2009. 48(8): 085801-1~5.
    [113] G.P. Andersen. Fast, autonomous holographic adaptive optics[C]. Proc. of SPIE. 2010.7736: O1~8.
    [114] M. Schwertner, M.J. Booth, and T. Wilson, Characterizing specimen induced aberrations for high NA adaptive optical microscopy[J]. Opt. Express, 2004. 12(26): 6540~6552.
    [115] M.J. Booth, Wave front sensorless adaptive optics, modal wave-front sensing, and sphere packings[J].
    [116] A.D. Corbett, et al., Designing a holographic modal wavefront sensor for the detection of static ocular aberrations[J]. J. Opt. Soc. Am. A, 2007. 24(5): 1266~1275.
    [117] A.D. Corbett, et al. Characterising a holographic modal phase mask for the detection of ocular aberrations[C]. Proc. of SPIE. 2005.6018: 1~11.
    [118] J.J. Zhong, et al. Mirror-mode sensing with a holographic modal wavefront sensor[C]. Proc. of SPIE 2005.6018: 601811-1~7.
    [119] R. Bhatt, et al., Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and Simulation[J]. Opt. Laser. Eng., 2008. 46: 428~439.
    [120] S.K. Mishra, R. Bhatt, and D. Mohan, Differential modal Zernike wavfront sensor employing a computer-generated hologram: a proposal[J]. Appl. Opt., 2009. 48(33): 6458~6465.
    [121]刘长海,姜宗福,全息模式波前传感器理论分析及数值模拟[J].中国激光, 2009. 36(s2): 147~152.
    [122]刘长海,习锋杰,黄盛炀,姜宗福,马浩统,基于复用全息元件的多阶模式偏置波前传感器[J].中国激光, 2011. 38(2): 0214002-1~6.
    [123]刘长海,姜宗福,黄盛炀,习锋杰,模式偏置波前传感器理论模拟及实验验证[J].强激光与粒子束, 2011. 23(2): 344~348.
    [124]刘长海,习锋杰,黄盛炀,姜宗福,马浩统,偏置模式波前传感器光强信息提取及输出信号对比分析[J].强激光与离子束, 2011: (待刊).
    [125]刘长海,习锋杰,姜宗福,黄盛炀,马浩统,振幅型复合计算全息模式波前传感理论及验证[J].国防科技大学学报, 2011: (审稿中).
    [126]刘长海,姜宗福,黄盛炀,马浩统,全息模式波前传感器的像差探测[J].光学学报, 2010. 30(11): 3069~3075.
    [127] L. Changhai, et al., Modal wavefront sensor based on binary phase-only multiplexed computer-generated hologram[J]. Appl. Opt., 2010. 49(27): 5117~5124.
    [128] L. Changhai, et al., Performance analysis of multiplexed phase computer-generated hologram for modal wavefront sensing[J]. Appl. Opt., 2011. 50(11): 1631~1639.
    [129] L. Changhai, et al., Demonstration of multiplexed phase computer-generated hologram for modal wavefront sensing with spatial light modulator [J]. Opt. Lett., 2011: (submitted).
    [130]周仁忠,自适应光学[M]. 1996,北京:国防工业出版社.
    [131] J.W. Goodman, Introduction to Fourier optics[M]. 2006, Beijing: Publishing house of electronics industry.
    [132] Born and Wolf, Principles of Optics[M]. 7th. 2006, Beijing: Publishing House of Electronics Industry.
    [133] L.P. Murray. Smart optics: Wavefront sensor-less adaptive optics - Image correction through sharpness maximisation[D]. Galway:National University of Ireland. 2006:p27.
    [134] L. Min, L. Xinyang, and J. Wenhan, Small-phase retrieval with a single far-field image[J]. Opt. Express, 2008. 16(11): 8190~8197.
    [135] R.A. Gonsalves, Small-phase solution to the phase-retrieval problem[J]. Opt. Lett., 2001. 26(10): 684~685.
    [136] W.J. Wild, Linear phase retrieval for wave-front sensing[J]. Opt. Lett., 1998. 23(8): 573~575.
    [137] L. Min and L. Xinyang, Linear phase retrieval with a single far-field image based on Zernike polynomials[J]. Opt. Express, 2007. 17(17): 15257~15263.
    [138] V.N. Mahajan, Zernike circle polynomials and optical aberrations of systems with circular pupils[J]. Engineering Laboratory Notes [Supplement to Applied Optics], 1994. 33: 8121~8124.
    [139]苏显渝,李继陶,信息光学[M]. 1999,北京:科学出版社.
    [140]李俊昌,熊秉衡,信息光学理论与计算[M]. 2009,北京:科学出版社.
    [141] L. Onural, Sampling of the diffraction field[J]. Appl. Opt., 2000. 39(32): 5929~5935.
    [142] L. Onural, Some mathematical properties of the uniformly sampled quadratic phase function and associated issues in digital Fresnel diffraction simulations[J]. Opt. Eng., 2004. 43(11): 2557~2563.
    [143] T.M. Kreis, Frequency analysis of digital holography[J]. Opt. Eng., 2002. 41(4): 771~778.
    [144] A. Stern, Analysis of practical sampling and reconstruction from Fresnel fields[J]. Opt. Eng., 2004. 43(1): 239~250.
    [145] L. Onural, Exact analysis of the effects of sampling of the scalar diffraction field[J]. J. Opt. Soc. Am. A, 2007. 24(2): 359~367.
    [146] D.G. Voelz and M.C. Roggemann, Digital simulation of scalar optical diffraction:revisiting chirp function sampling criteria and consequences[J]. Appl. Opt., 2009. 48(32): 6132~6142.
    [147]维克多.索菲尔,衍射光学元件的计算机设计方法[M]. 2007,天津:天津科学技术出版社.
    [148] J.A. Davis, K.O. Valadez, and D.M. Cottrell, Encoding amplitude and phase information onto a binary phase-only spatial light modulator[J]. Appl. Opt., 2003. 42(11): 2003~2008.
    [149] S. Yang and T. Shimomura, Interlacing technique approach for the synthesis of kinoforms[J]. Appl. Opt., 1996. 35(35): 6983~6989.
    [150] Y. Maotian and D. Jiangping, Area encoding for design of phase-only computer-generated holograms[J]. Opt. Commun., 2002. 203: 51~60.
    [151] M.A. Golub and V.S. Pavelyev, Phase coding in iterative synthesis of computer-generated holograms[J]. Opt. Las. Tech., 1995. 27(4): 223~228.
    [152] J.P. Kirk and A.L. Jones, Phase-only complex-valued spatial filter[J]. J. Opt. Soc.Am., 1971. 61(8): 1023~1028.
    [153] D.C. Chu, J.R. Fienup, and J.W. Goodman, Multiemulsion on-axis computer-generated hologram[J]. Appl. Opt., 1973. 12(7): 1386~1388.
    [154] R.W. Gerchberg and W.O. Saxton, A practical algorithm for the deyermination of phase from image and diffraction plane pictures[J]. Optik, 1972. 35(2): 227~246.
    [155] K.-H. Brenner, Method for designing arbitry two-dimmensional continuous phase elements[J]. Opt. Lett., 2000. 25(1): 31~33.
    [156] A. Hermerschmidt, S. Kruger, and G. Wernicke, Binary diffractive beam splitters with arbitrary diffraction angles[J]. Opt. Lett., 2007. 32(5): 448~450.
    [157] M.A. Seldowitz, J.P. Allebach, and D.W. Sweeney, Synthesis of digital holograms by direct binary search[J]. Appl. Opt., 1987. 26(14): 2788~2798.
    [158] S.Y. Bhupendra Bimal Chhetri, and Teruo Shimomura, Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis[J]. Appl.Opt., 2000. 39(32): 5956~5964.
    [159] J.Y. Zhuang and O.K. Ersoy, Fast decimation-in-frequency direct binary search algorithms for synthesis of computer-generated holograms[J]. J. Opt. Soc. Am. A, 1994. 11(1): 135~143.
    [160] B.K. Jennison, J.P. Allebach, and D.W. Sweeney, Efficient design of direct-binary-search computer-generated holograms[J]. J. Opt. Soc. Am. A, 1991. 8(4): 652~660.
    [161] M. Clark. Direct-search method for the computer design of holograms[D]. London:University of London. 1997:134.
    [162] S. Kirkpatrick, C.D. Gellatt, and M.P. Vecchi, Optimization by simulated annealing[J]. Science, 1983. 220(4598): 671~680.
    [163] M.R. Feldman and C.C. Guest, iterative encoding of high-efficiency holograms for generation of spot arrays[J]. Opt. Lett., 1989. 14(10): 479~481.
    [164] F.T. Lin, C.Y. Kao, and C.C. Hsu, Applying the genetic approach to simulated annealing in solving some NP-hard problems[J]. IEEE Trans. Syst., 1993. 23(6): 1752~1767.
    [165] S.W. Mahfouda and D.E. Goldbergb, Parallel recombinative simulated annealing: A genetic algorithm[J]. Parallel Computing, 1995. 21(1): 1~28.
    [166] A. Kirk, K. Powell, and T. Hall, A generalisation of the error diffusion method for binary computer generated hologram design[J]. Opt. Commun., 1992. 92: 12~18.
    [167] L. Changhai, et al. Simulation of modal wavefront sensor employed multiplexed holographic optical elements[C]. Proc. of SPIE. 2010.7657: 765707-1~9.
    [168]陶世荃,王大勇,江竹青,袁泉,光全息存储[M]. 1998,北京:北京工业大学出版社.
    [169] D. Mendlovic, Double-multiplexed computer-generated holograms[J]. Appl. Opt., 1996. 35(20): 3887~3890.
    [170] E. Dai, et al., Multifunctional double-layered diffractive optical element[J]. Opt. Lett., 2003. 28(17): 1513~1515.
    [171] J.-N. Gillet and Y. Sheng, Multiplexed computer-generated hologram with polygonal apertures[J]. Appl. Opt., 2002. 41(2): 298~307.
    [172] S. Borgsmuller, et al., Computer-generated stratified diffractive optical elements[J]. Appl. Opt., 2003. 42(26): 5274~5283.
    [173] D.M. Chambers, Stratified volume diffractive optical elements ashigh-efficiency gratings[J]. J. Opt. Soc. Am. A, 1999. 16(5): 1184~1193.
    [174] R.V. Johnson and A.R.Tanguay, Stratified volume holographic optical elements[J]. Opt. Lett., 1988. 13(3): 189~191.
    [175] G.P. Nordin, et al., Diffraction properties of stratified volume holographic optical elements[J]. J. Opt. Soc. Am. A, 1992. 9(12): 2206~2217.
    [176] L. Changhai, et al., Modal wavefront sensor employing stratified computer-generated holographic elements[J]. J. Opt. A: Pure Appl. Opt., 2011: submitted.
    [177]羊国光,宋菲军,高等物理光学[M]. 2008,合肥:中国科学技术大学出版社.
    [178] M. Abramovitz and I.A. Stegun, Handbook of mathematical functions[M]. 1965, Dover, New York.
    [179]钟锡华,光波衍射与变换光学[M]. 1985,北京:高等教育出版社.
    [180] P. Hariharan, Basics of holography[M]. 2002: Cambridge University Press.
    [181] S. Mias and H. Camon, A review of active optical devices: II. Phase modulation[J]. J. Micromech. Microeng., 2008. 18(083002): 22.
    [182]郑华东.数字全息三维立体显示关键技术研究[D].上海大学. 2009.
    [183]蔡冬梅.液晶空间光相位调制器特性研究及在自适应光学中的应用[D].成都:中科院光电技术研究所. 2007.
    [184] S. Zwick, et al., Dynamic holography using pixelated light modulators[J]. Appl. Opt., 2010. 49(25): F47~58.
    [185] J.P. Gaffard and C. Boyer, Adaptive optics for optimization of image resolution[J]. Appl. Opt., 1987. 26(18): 3772~3777.
    [186] J.P. Gaffard and G. Ledanois. Adaptive optical transfer function modeling[C]. Proc. of SPIE. 1991.1542: 34~45.
    [187] J.P. Gaffard, P. Gosselin, and G. Ledanois. Adaptive optics for high resolution imagery: optimization of corrections[C]. Proc. of SPIE. 1992.1780: 891~904.
    [188] W. Lukosz, Der einflu der aberrationen auf die optische ubertragungsfunktion bei kleinen orts-frequenzen[J]. Optica Acta, 1963. 10: 1~19.
    [189] J. Braat, Polynomial expansion of severely aberrated wave fronts[J]. J. Opt. Soc. Am. A, 1987. 4: 643~650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700