含有ww结构域的寄主蛋白对正链RNA病毒复制的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酵母作为基因组结构简单(只编码大约6000个基因)、基因中内含子少、基因组信息最完备的模式真核生物,能够支持一些病毒在其细胞中完成复制的大多数步骤(Jandaand Ahlquist1993;Naito et al.2007a;Panavas et al.2005b;Panavas and Nagy2003;Pantaleoet al.2003;Raghavan et al.2004),使其成为研究病毒复制的模式寄主。研究表明,酵母E3泛素连接酶Rsp5p中的ww结构域通过与番茄丛矮病毒(TBSV)复制蛋白p92pol结合并促进p92pol降解而抑制TBSV在酵母体内的复制(Barajas et al.2009a)。本课题以酵母作为模式寄主,探索寄主蛋白在正链RNA病毒复制过程中的作用机理。运用相关质粒分别表达正链RNA病毒番茄丛矮病毒(TBSV)、兽棚病毒(FHV)和野田村病毒(NoV)的复制蛋白和复制RNA,研究五个含有ww结构域的酵母蛋白质在酵母体内及体外对TBSV以及两种昆虫病毒FHV和NoV复制的影响。并通过烟草体内试验探究四个含有ww结构域的拟南芥蛋白质对番茄丛矮病毒属黄瓜坏死病毒(CNV)复制的影响。另外,运用蛋白质体外pulldown试验和膜酵母双杂交(MYTH,membrane yeast two-hybrid)试验研究含有ww结构域的目的蛋白与病毒复制蛋白之间的相互作用关系和相互作用位点。
     本研究的主要成果如下:
     (1)除Rsp5p之外,另外三个含有ww结构域的酵母蛋白对酵母中TBSV的复制具有强烈抑制作用,它们是Prp40p、Wwm1p和Ess1p。Rsp5p、Wwm1p和Prp40p的过量表达也能抑制酵母中FHV和NoV的复制。
     (2)Prp40p和Ess1p的过表达抑制TBSV复制蛋白p92pol的积累,Rsp5p、Prp40p和Wwm1p的过表达抑制FHV和NoV的复制蛋白PrtA的积累。它们很可能与Rsp5p对TBSV复制的抑制具有相同机理,通过促进病毒关键复制蛋白(即RNA-dependent RNApolymerase,RdRp)的降解而抑制正链RNA病毒复制。
     (3)Wwm1的下调表达、两个基因(Wwm1和Rsp5;Wwm1和Prp40;Wwm1和Ess1)同时下调表达以及多个基因下调表达(在敲除Wwm1的酵母中同时抑制Rsp5和Prp40的表达;在敲除Wwm1的酵母中同时抑制Rsp5、Prp40和Ess1的表达)都促进TBSV复制,并且提高p33和p92pol的积累水平。在体外复制实验中,Wwm1和所有两个基因和多个基因组合(同上)的下调表达都促进TBSV复制。基因下调试验表明,Rsp5p和Wwm1p是调节TBSV复制的主要因子,而Prp40p和Ess1p的作用微弱或存在基因间功能的互补。
     (4)酵母中五个含有ww结构域的蛋白质(Rsp5p、Prp40p、Wwm1p、Urn1p和Ess1p)都能够与TBSV的复制蛋白p33和p92pol发生相互作用,并且Rsp5p与p33C的结合位点在RNA结合域上(即RPR基序)。并且这五个蛋白质也都能够与FHV和NoV的复制蛋白PrtA发生相互作用。
     (5)在Rsp5p蛋白中,ww结构域的数量越多,对TBSV复制的抑制作用越强,三个ww结构域的共同作用抑制效果最强。
     (6)在烟草中,三个含有ww结构域的拟南芥蛋白质对番茄丛矮病毒属CNV的复制具有抑制作用,它们是AtDRH1、AtPrp40c(At3g19840)和AtFCA。并且这三个蛋白的ww结构域都可以和CNV的复制蛋白p33发生相互作用。
     本文对模式寄主酵母和烟草中九个含有ww结构域的蛋白质在影响四种正链RNA病毒复制中的作用进行了研究,结果显示具有ww结构域的七个寄主蛋白对至少其中一种正链RNA病毒的复制起到抑制作用,并且在含有1-3个ww结构域的Rsp5重组蛋白片段中,抑制作用与ww结构域的数量正相关。本课题就含有相同结构域的蛋白质家族对正链RNA病毒复制的影响进行了研究,可以作为基因组范围和蛋白质组范围筛选的有效补充,鉴定出在这些高通量方法中遗漏的与病毒复制相关的寄主因子,丰富了我们对正链RNA病毒复制的理解。
As a model eukaryote, yeast has a small genome with few introns. Yeast also has thehighest percentage characterized genes. Because certain viruses can complete most of thesteps required for intracellular replication in yeast cells (Janda and Ahlquist1993; Naito et al.2007a; Panavas et al.2005b; Panavas and Nagy2003; Pantaleo et al.2003; Raghavan et al.2004), yeast has become a model host to study virus replication. The ww domains in yeastRsp5E3Ubiquitin ligase have been shown to interact with TBSV replication protein p92pol.Overexpression of Rsp5p inhibits TBSV replication through the degradation of p92polby itsww domains (Barajas et al.2009a). This dissertation focuses on the effect of host proteins on(+) RNA virus in yeast model host. Selective plasmids were transformed to yeast to expressthe replication proteins and replication RNAs of (+) RNA viruses Tomato bushy stunt virus(TBSV), Flock house virus (FHV) and Nodamura virus (NoV). The functions of five wwdomain-containing yeast proteins in the replication of TBSV, two insect viruses FHV andNoV were tested in yeast and in vitro. Four Arabidopsis thaliana ww domain-containingproteins were transformed to Nicotiana Benthamiana to test their function in Cucumbernecrosis virus (CNV) replication. Moreover, in vitro pulldown assay and membrane yeasttwo-hybrid (MYTH) assay were performed to test the interaction between wwdomain-containing host proteins and virus replication proteins. The binding domain was alsodetermined.
     Main results from this research are:
     (1) In addition to Rsp5p, three yeast ww domain-containing proteins inhibit TBSVreplication in yeast. They are Prp40p, Wwm1p and Ess1p. Overexpression of Rsp5p, Wwm1por Prp40p also inhibits the replication of FHV and NoV.
     (2) Overexpression of Prp40p or Ess1p inhibits the accumulation of TBSV p92pol.Overexpression of Rsp5p, Prp40p or Wwm1p inhibits the accumulation of FHV and NoVreplication proteins (Protein A, PrtA). They likely function in the same way as Rsp5p, whichinhibits (+) RNA replication by facilitating the degradation of the key replication protein(RNA-dependent RNA polymerase, RdRp).
     (3) Downregulation of Wwm1, two ww genes (Wwm1and Rsp5, Wwm1and Prp40,Wwm1and Ess1) or several genes (Wwm1, Rsp5and Prp40; Wwm1, Rsp5, Prp40and Ess1) increases TBSV replication and the accumulation of p33and p92pol. From the replicase assayin vitro, downregulation of Wwm1or all the gene combinations leads to higher TBSVreplication. These downregulation experiments suggest that Rsp5p and Wwm1p are importantregulators of TBSV replication, while the other ww domain proteins have lesser effects orthey have redundant function in TBSV replication in yeast.
     (4) Five yeast ww domain-containing proteins (Rsp5p, Prp40p, Wwm1p, Urn1p andEss1p) interact with TBSV p33and p92pol. The binding domain of Rsp5p and p33C is in theRNA binding domain (termed RPR domain). Moreover, all the five yeast ww proteins interactwith FHV and NoV replication protein PrtA.
     (5) More ww domains within Rsp5p, more inhibitory function on TBSV replication. Thehighest inhibition appears when there are three ww domains in Rsp5p.
     (6) Three Arabidopsis ww domain-containing proteins inhibit CNV replication in N.Benthamiana. They are AtDRH1、AtPrp40c (At3g19840) and AtFCA. All of them interactwith CNV replication protein p33.
     This dissertation studied the inhibitory functions of nine proteins from yeast model hostand Arabidopsis on four (+) RNA viruses. Results show that seven of them inhibit at least one(+) RNA virus replication. The number of ww domains in Rsp5p correlates with the inhibitoryfunction. Protein family members with same domains are studied here to test their effect on (+)RNA replication. This could be an efficient way to identify hose factors which were missed inthe genome-wide and proteomics-wide screens, as a supplement of the genome-wide andproteomics-wide studies, and broaden our understanding on (+) RNA virus replication.
引文
Ahlquist P.2002. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science296:1270–1273
    Ahlquist P.2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses anddouble-stranded RNA viruses. Nat. Rev. Microbiol.4:371–382
    Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT.2003. Host factors in positivestrand RNAvirus genome replication. J. Virol.77:8181–8186
    Ahlquist P, Schwartz M, Chen J, Kushner D, Hao L, Dye BT.2005. Viral and host determinants ofRNA virus vector replication and expression. Vaccine23:1784–1787
    Barajas, D. Li, Z. Nagy, P.D.2009a. The Nedd4-Type Rsp5p ubiquitin ligase inhibits tombusvirusreplication by regulating degradation of the p92replication protein and decreasing the activity of thetombusvirus replicase. J. Virol.83(22),11751–11764
    Barajas, D. Jiang, Y. Nagy, P.D.2009b. A unique role for the host ESCRT proteins in replication ofTomato bushy stunt virus. PLoS Pathog.5(12), e1000705.
    Barretto, N. Jukneliene, D. Ratia, K. Chen, Z. Mesecar, A. D. and Baker, S. C.2005. The papain-likeprotease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol.79:15189–15198.
    Barry, M. and Fruh, K.2006. Viral modulators of cullin RING ubiquitin ligases: Culling the hostdefense. Sci. STKE2006:pe21
    Bartenschlager, R. Cosset, F.L. Lohmann, V.2010. Hepatitis C virus replication cycle. J. Hepatol.53(3):583–585
    Bonet, R. Ramirez-Espain, X. Macias, M.J.2008. Solution structure of the yeast URN1splicing factorFF domain: comparative analysis of charge distributions in FF domain structures-FFs and SURPs, twodomains with a similar fold. Proteins73(4):1001–1009
    Boone C, Bussey H, Andrews BJ.2007. Exploring genetic interactions and networks with yeast. Nat.Rev. Genet.8:437–449
    Brodsky, J. L. and Chiosis, G.2006. Hsp70molecular chaperones: Emerging roles in human diseaseand identification of small molecule modulators. Curr. Top. Med. Chem.6:1215–1225
    Brown, G. Rixon, H. W. Steel, J. McDonald, T. P. Pitt, A. R. Graham, S. and Sugrue, R. J.2005.Evidence for an association between heat shock protein70and the respiratory syncytial virus polymerasecomplex within lipid-raft membranes during virus infection. Virology338:69–80
    Castorena, K. M. Weeks, S. A. Stapleford, K. A. Cadwallader, A. M. and Miller, D. J.2007. Afunctional heat shock protein90chaperone is essential for efficient flock house virus RNA polymerasesynthesis in Drosophila cells. J. Virol.81:8412–8420
    Chen J, Noueiry A, Ahlquist P.2001. Brome mosaic virus Protein1a recruits viral RNA2to RNAreplication through a5’ proximal RNA2signal. J. Virol.75:3207–3219
    Cheng, C.P., Jaag, H.M., Jonczyk, M., Serviene, E., Nagy, P.D.,2007. Expression of the ArabidopsisXrn4p5’–3’ exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence ofviral variants in plants. Virology368(2):238–248
    Cheng, C. P. Serviene, E. and Nagy, P. D.2006. Suppression of viral RNA recombination by a hostexoribonuclease. J. Virol.80:2631–2640
    Cherry, S. Doukas, T. Armknecht, S. Whelan, S. Wang, H. Sarnow, P. Perrimon, N.2005.Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to hosttranslation inhibition. Genes Dev.19(4):445–452
    Connor, J. H. McKenzie, M. O. Parks, G. D. and Lyles, D. S.2007. Antiviral activity and RNApolymerase degradation following Hsp90inhibition in a range of negative strand viruses. Virology362:109–119.
    den Boon, J.A. Ahlquist, P.2010. Organelle-like membrane compartmentalization of positive-strandRNA virus replication factories. Annu. Rev. Microbiol.64:241–256
    Finnen, R.L. Rochon, D.M.1993. Sequence and structure of defective interfering RNAs associatedwith cucumber necrosis virus infections. J. Gen. Virol.74(Pt.8):1715–1720
    Gari, E., Piedrafita, L., Aldea, M., Herrero, E.,1997. A set of vectors with a tetracyclineregulatablepromoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast13(9):837–848
    Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, et al.2005. Biochemical and geneticanalysis of the yeast proteome with a movable ORF collection. Genes Dev.19:2816–2826
    Geoffroy, M. C. Chadeuf, G. Orr, A. Salvetti, A. and Everett, R. D.2006. Impact of the interactionbetween herpes simplex virus type1regulatory protein ICP0and ubiquitinspecific protease USP7onactivation of adeno-associated virus type2rep gene expression. J. Virol.80:3650–3654
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, et al.2003. Global analysis of proteinexpression in yeast. Nature425:737–741
    Hampsey, M.1998. Molecular genetics of the RNA polymerase II general transcriptional machinery.Microbiol. Mol. Biol. Rev.62(2):465–503
    Hao, L. Sakurai, A. Watanabe, T. Sorensen, E. Nidom, C.A. Newton, M.A. Ahlquist, P. Kawaoka, Y.2008. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature454(7206):890–893
    Hericourt, F. Blanc, S. Redeker, V. and Jupin, I.(2000). Evidence for phosphorylation andubiquitinylation of the Turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed ina baculovirus-insect cell system. Biochem. J.349(Pt.2):417–425
    Hesselberth, J.R. Miller, J.P. Golob, A. Stajich, J.E. Michaud, G.A. Fields, S.2006. Comparativeanalysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol.7(4):R30
    Hillman, B.I. Carrington, J.C. Morris, T.J.1987. A defective interfering RNA that contains a mosaic ofa plant virus genome. Cell51(3):427–433
    Huang, T. S.&Nagy, P. D.2011. Direct inhibition of tombusvirus plus-strand RNA synthesis by adominant-negative mutant of a host metabolic enzyme, GAPDH, in yeast and plants. J. Virol.85,9090–9102
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al.2003. Global analysis of proteinlocalization in budding yeast. Nature425:686–691
    Ingham, R.J. Gish, G. Pawson, T.2004. The Nedd4family of E3ubiquitin ligases: functional diversitywithin a common modular architecture. Oncogene23(11):1972–1984
    Jaag, H. H. M., Pogany, J., and Nahy, P. D.2010. A host Ca2+/Mn2+ion pump is a factor in theemergence of viral RNA recombinants. Cell Host Microbe.7:74–81.
    Janda M, Ahlquist P.1993. RNA-dependent replication, transcription, and persistence of bromemosaic virus RNA replicons in S. cerevisiae. Cell72:961–970
    Janda M, Ahlquist P.1998. Brome mosaic virus RNA replication protein1a dramatically increases invivo stability but not translation of viral genomic RNA3. Proc. Natl. Acad. Sci. USA95:2227–2232
    Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, et al.2004. A versatile toolbox for PCR-basedtagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast21:947–962
    Jiang, Y. Serviene, E. Gal, J. Panavas, T. Nagy, P.D.2006. Identification of essential host factorsaffecting tombusvirus RNA replication based on the yeast Tet promoters Hughes Collection. J. Virol.80(15):7394–7404
    Jonczyk M, Pathak KB, Sharma M, Nagy PD.2007. Exploiting alternative subcellular location forreplication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes.Virology362:320–330
    Kok, K. H. Lei, T. and Jin, D. Y.2009. siRNA and shRNA screens advance key understanding of hostfactors required for HIV-1replication. Retrovirology6:78.
    Kopek, B. G. Perkins, G. Miller, D. J. Ellisman, M. H. and Ahlquist, P.2007. Threedimensionalanalysis of a viral RNA replication complex reveals a virus-induced miniorganelle. PLoS Biol.5:e220
    Krishnan, M.N. Ng, A. Sukumaran, B. Gilfoy, F.D. Uchil, P.D. Sultana, H. Brass, A.L. Adametz, R.Tsui, M. Qian, F. Montgomery, R.R. Lev, S. Mason, P.W. Koski, R.A. Elledge, S.J. Xavier, R.J. Agaisse, H.Fikrig, E.2008. RNA interference screen for human genes associated with West Nile virus infection.Nature455(7210):242–245
    Kumar, M. and Mitra, D.2005. Heat shock protein40is necessary for human immunodeficiencyvirus-1Nef-mediated enhancement of viral gene expression and replication. J. Biol. Chem.280:40041–40050
    Kushner, D.B. Lindenbach, B.D. Grdzelishvili, V.Z. Noueiry, A.O. Paul, S.M. Ahlquist, P.2003.Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus.Proc. Natl. Acad. Sci. U. S. A.100(26):15764–15769
    Li, Z. Barajas, D. Panavas, T. Herbst, D. A. and Nagy, P. D.2008. Cdc34p ubiquitinconjugatingenzyme is a component of the tombusvirus replicase complex and ubiquitinates p33replication protein. J.Virol.82:6911–6926
    Li, Z. Nagy, P.D.2011. Diverse roles of host RNA binding proteins in RNA virus replication. RNABiol.8(2):305–315
    Li, Z. Pogany, J. Panavas, T. Xu, K. Esposito, A. M. Kinzy, T. G. and Nagy, P. D.2009. Translationelongation factor1A is a component of the tombusvirus replicase complex and affects the stability of thep33replication co-factor. Virology385:245–260
    Madeo, F. Herker, E. Wissing, S. Jungwirth, H. Eisenberg, T. Frohlich, K.U.2004. Apoptosis in yeast.Curr. Opin. Microbiol.7(6):655–660
    Mayer, M. P.2005. Recruitment of Hsp70chaperones: A crucial part of viral survival strategies. Rev.Physiol. Biochem. Pharmacol.153:1–46
    McCartney, A. W. Greenwood, J. S. Fabian, M. R. White, K. A. and Mullen, R. T.2005. Localizationof the Tomato bushy stunt virus replication protein p33reveals a peroxisometo-endoplasmic reticulumsorting pathway. Plant Cell17:3513–3531
    Mechali, F. Hsu, C. Y. Castro, A. Lorca, T. and Bonne-Andrea, C.2004. Bovine papillomavirusreplicative helicase E1is a target of the ubiquitin ligase APC. J. Virol.78:2615–2619
    Mendu, V., Chiu, M., Barajas, D., Li, Z., Nagy, P.D.,2010. Cpr1cyclophilin and Ess1parvulin prolylisomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host.Virology406(2):342–351
    Miller, C. L. Parker, J. S. Dinoso, J. B. Piggott, C. D. Perron, M. J. and Nibert, M. L.2004. Increasedubiquitination and other covariant phenotypes attributed to a strain-and temperature-dependent defect ofreovirus core protein mu2. J. Virol.78:10291–10302
    Miller, S. Krijnse-Locker, J.2008. Modification of intracellular membrane structures for virusreplication. Nat. Rev. Microbiol.6(5):363–374
    Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, et al.2004. Exploration of essential genefunctions via titratable promoter alleles. Cell118:31–44
    Momose, F. Naito, T. Yano, K. Sugimoto, S. Morikawa, Y. and Nagata, K.2002. Identification ofHsp90as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem.277:45306–45314
    Nagy, P.D.2008. Yeast as a model host to explore plant virus–host interactions. Annu. Rev.Phytopathol.46,217–242
    Nagy, P.D.2011. The roles of host factors in tombusvirus RNA recombination. Adv. Virus Res.81:63–84
    Nagy, P.D. Pogany, J.2000. Partial purification and characterization of Cucumber necrosis virus andTomato bushy stunt virus RNA-dependent RNA polymerases: similarities and differences in template usagebetween tombusvirus and carmovirus RNA-dependent RNA polymerases. Virology276(2):279–288
    Nagy, P. D. Pogany, J.2006. Yeast as a model host to dissect functions of viral and host factors intombusvirus replication. Virology344:211–220
    Nagy, P.D. Pogany, J.2010. Global genomics and proteomics approaches to identify host factors astargets to induce resistance against Tomato bushy stunt virus. Adv. Virus Res.76:123–177
    Nagy, P.D. Pogany, J.2012. The dependence of viral RNA replication on co-opted host factors. Nat.Rev. Microbiol.10:137–149
    Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R, et al.2007a. An influenza virus repliconsystem in yeast identified Tat-SF1as a stimulatory host factor for viral RNA synthesis. Proc. Natl. Acad.Sci. USA104:18235–18240
    Naito, T. Momose, F. Kawaguchi, A. and Nagata, K.2007b. Involvement of Hsp90in assembly andnuclear import of influenza virus RNA polymerase subunits. J. Virol.81:1339–1349
    Nakagawa, S. Umehara, T. Matsuda, C. Kuge, S. Sudoh, M. and Kohara, M.2007. Hsp90inhibitorssuppress HCV replication in replicon cells and humanized liver mice. Biochem. Biophys. Res. Commun.353:882–888
    Navarro, B. Rubino, L. Russo, M.2004. Expression of the Cymbidium ringspot virus33-kilodaltonprotein in Saccharomyces cerevisiae and molecular dissection of the peroxisomal targeting signal. J. Virol.78(9):4744–4752
    Nerenberg, B. T. Taylor, J. Bartee, E. Gouveia, K. Barry, M. and Fruh, K.2005. The poxviral RINGprotein p28is a ubiquitin ligase that targets ubiquitin to viral replication factories. J. Virol.79:597–601
    Novoa, R.R. Calderita, G. Arranz, R. Fontana, J. Granzow, H. Risco, C.2005. Virus factories:associations of cell organelles for viral replication and morphogenesis. Biol. Cell97(2):147–172
    Okamoto, T. Nishimura, Y. Ichimura, T. Suzuki, K. Miyamura, T. Suzuki, T. Moriishi, K. andMatsuura, Y.2006. Hepatitis C virus RNA replication is regulated by FKBP8and Hsp90. EMBO J.25:5015–5025
    Ooi SL, Pan X, Peyser BD, Ye P, Meluh PB, et al.2006. Global synthetic-lethality analysis and yeastfunctional profiling. Trends Genet.22:56–63
    Oster, S.K. Wu, B. White, K.A.1998. Uncoupled expression of p33and p92permits amplification oftomato bushy stunt virus RNAs. J. Virol.72(7):5845–5851
    Ott, D. E. Coren, L. V. Chertova, E. N. Gagliardi, T. D. and Schubert, U.2000. Ubiquitination ofHIV-1and MuLV Gag. Virology278:111–121
    Otte, L. Wiedemann, U. Schlegel, B. Pires, J.R. Beyermann, M. Schmieder, P. Krause, G.Volkmer-Engert, R. Schneider-Mergener, J. Oschkinat, H.2003. WW domain sequence activityrelationships identified using ligand recognition propensities of42WW domains. Protein Sci.12(3):491–500
    Panavas, T.Nagy, P.D.2003. Yeast as amodel host to study replication and recombination of defectiveinterfering RNA of Tomato bushy stunt virus. Virology314(1):315–325
    Panavas, T. Hawkins, C. M. Panaviene, Z. and Nagy, P. D.2005a. The role of the p33:p33/p92interaction domain in RNA replication and intracellular localization of p33and p92proteins of Cucumbernecrosis tombusvirus. Virology338:81–95
    Panavas, T. Nagy, P.D.2005b. Mechanism of stimulation of plus-strand synthesis by an RNAreplication enhancer in a tombusvirus. J. Virol.79(15):9777–9785
    Panavas, T. Panaviene, Z. Pogany, J. Nagy, P.D.2003. Enhancement of RNA synthesis by promoterduplication in tombusviruses. Virology310(1):118–129
    Panavas, T. Serviene, E. Brasher, J. Nagy, P.D.2005c. Yeast genome-wide screen reveals dissimilarsets of host genes affecting replication of RNA viruses. Proc. Natl. Acad. Sci. U. S. A.102(20):7326–7331
    Panaviene, Z. Panavas, T. Serva, S. Nagy, P.D.2004. Purification of the cucumber necrosis virusreplicase from yeast cells: role of coexpressed viral RNA in stimulation of replicase activity. J. Virol.78(15):8254–8263
    Panaviene Z, Panavas T, Nagy PD.2005. Role of an internal and two3’-terminal RNA elements inassembly of tombusvirus replicase. J. Virol.79:10608–10618
    Pantaleo, V. Rubino, L. Russo, M.2003. Replication of Carnation Italian ringspot virus defectiveinterfering RNA in Saccharomyces cerevisiae. J. Virol.77(3):2116–2123
    Pathak, K. B. Sasvari, Z. and Nagy, P. D.2008. The host Pex19p plays a role in peroxisomallocalization of tombusvirus replication proteins. Virology379:294–305
    Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S.2003. Protein analysis on a proteomic scale.Nature422:208–215
    Phizicky EM, Grayhack EJ.2006. Proteome-scale analysis of biochemical activity. Crit. Rev. Biochem.Mol. Biol.41:315–327
    Pogany, J., Panavas, T., Serviene, E., Nawaz-Ul-Rehman, M.S., Nagy, P.D.,2010. A high-throughputapproach for studying virus replication in yeast. Curr. Protoc. Microbiol. Chapter16, Unit16J1
    Pogany, J. Stork, J. Li, Z. and Nagy, P. D.2008. In vitro assembly of the Tomato bushy stunt virusreplicase requires the host heat shock protein70. Proc. Natl. Acad. Sci. USA105:19956–19961
    Poon, A. P. Gu, H. and Roizman, B.2006. ICP0and the US3protein kinase of herpes simplex virus1independently block histone deacetylation to enable gene expression. Proc. Natl. Acad. Sci. USA103:9993–9998
    Qanungo, K. R. Shaji, D. Mathur, M. and Banerjee, A. K.2004. Two RNA polymerase complexesfrom vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA.Proc. Natl. Acad. Sci. USA101:5952–5957
    Quadt R, Ishikawa M, Janda M, Ahlquist P.1995. Formation of brome mosaic virus RNA dependentRNA polymerase in yeast requires coexpression of viral proteins and viral RNA. Proc. Natl. Acad. Sci. USA92:4892–4896
    Rajendran, K.S. Nagy, P.D.2003. Characterization of the RNA-binding domains in the replicaseproteins of tomato bushy stunt virus. J. Virol.77(17):9244–9258
    Rajendran, K.S. Nagy, P.D.2004. Interaction between the replicase proteins of Tomato Bushy Stuntvirus in vitro and in vivo. Virology326(2):250–261
    Rajendran, K.S., Nagy, P.D.,2006. Kinetics and functional studies on interaction between thereplicase proteins of tomato bushy stunt virus: requirement of p33:p92interaction for replicase assembly.Virology345(1):270–279.
    Rajendran, K.S. Nagy, P.D.2006. Kinetics and functional studies on interaction between the replicaseproteins of Tomato Bushy Stunt Virus: Requirement of p33:p92interaction for replicase assembly. Viology345:270-279
    Randall, G. Panis, M. Cooper, J.D. Tellinghuisen, T.L. Sukhodolets, K.E. Pfeffer, S. Landthaler, M.Landgraf, P. Kan, S. Lindenbach, B.D. Chien, M. Weir, D.B. Russo, J.J. Ju, J. Brownstein, M.J. Sheridan, R.Sander, C. Zavolan, M. Tuschl, T. Rice, C.M.2007. Cellular cofactors affecting hepatitis C virus infectionand replication. Proc. Natl. Acad. Sci. U. S. A.104(31):12884–12889
    Raghavan V, Malik PS, Choudhury NR, Mukherjee SK.2004. The DNA-A component of a plantgeminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J. Virol.78:2405–2413
    Ratia, K. Saikatendu, K. S. Santarsiero, B. D. Barretto, N. Baker, S. C. Stevens, R. C. and Mesecar, A.D.2006. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viraldeubiquitinating enzyme. Proc. Natl. Acad. Sci. USA103:5717–5722.
    Restrepo-Hartwig MA, Ahlquist P.1996. Brome mosaic virus helicase-and polymerase-like proteinscolocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J. Virol.70:8908–8916
    Restrepo-Hartwig M, Ahlquist P.1999. Brome mosaic virus RNA replication proteins1a and2acolocalize and1a independently localizes on the yeast endoplasmic reticulum. J. Virol.73:10303–10309
    Rubino L, Navarro B, Russo M.2007. Cymbidium ringspot virus defective interfering RNAreplication in yeast cells occurs on endoplasmic reticulum-derived membranes in the absence ofperoxisomes. J. Gen. Virol.88:1634–1642
    Russo, M. Burgyan, J. Martelli, G.P.1994. Molecular biology of tombusviridae. Adv. Virus Res.44:381–428
    Salonen, A. Ahola, T. and Kaariainen, L.2005. Viral RNA replication in association with cellularmembranes. Curr. Top. Microbiol. Immunol.285:139–173
    Scholthof, K.B. Scholthof, H.B. Jackson, A.O.1995. The tomato bushy stunt virus replicase proteinsare coordinately expressed and membrane associated. Virology208(1):365–369
    Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P.2002. A positive-strand RNA virusreplication complex parallels form and function of retrovirus capsids. Mol. Cell9:505–514
    SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S,Wickens M.1996. A three-hybrid system todetect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA93:8496–8501
    Serva, S. and Nagy, P. D.2006. Proteomics analysis of the tombusvirus replicase: Hsp70molecularchaperone is associated with the replicase and enhances viral RNA replication. J. Virol.80:2162–2169
    Serviene, E. Shapka, N. Cheng, C.P. Panavas, T. Phuangrat, B. Baker, J. Nagy, P.D.2005.Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S.A.102(30):10545–10550
    Serviene, E. Jiang, Y. Cheng, C. P. Baker, J. and Nagy, P. D.2006. Screening of the yeast yTHCcollection identifies essential host factors affecting tombusvirus RNA recombination. J. Virol.80:1231–1241
    Sessions, O.M. Barrows, N.J. Souza-Neto, J.A. Robinson, T.J. Hershey, C.L. Rodgers, M.A. Ramirez,J.L. Dimopoulos, G. Yang, P.L. Pearson, J.L. Garcia-Blanco, M.A.2009. Discovery of insect and humandengue virus host factors. Nature458(7241):1047–1050
    Shackelford, J. and Pagano, J. S.2004. Tumor viruses and cell signaling pathways: Deubiquitinationversus ubiquitination. Mol. Cell. Biol.24:5089–5093
    Shapka, N. Stork, J. and Nagy, P. D.2005. Phosphorylation of the p33replication protein ofCucumber necrosis tombusvirus adjacent to the RNA binding site affects viral RNA replication. Virology343:65–78
    Sohn, S. Y. Kim, S. B. Kim, J. and Ahn, B. Y.2006. Negative regulation of hepatitis B virusreplication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J. Gen.Virol.87(Pt.7):1883–1891
    Sopko R, Papp B, Oliver SG, Andrews BJ.2006. Phenotypic activation to discover biologicalpathways and kinase substrates. Cell Cycle5:1397–1402
    Stork J, Kovalev N,Sasvari Z, Nagy P.D.2011. RNA chaperone activity of the tombusviral p33replication protein facilitates initiation of RNA synthesis by the viral RdRp in vitro. Virology409:338-347
    Stork, J. Panaviene, Z. Nagy, P.D.2005. Inhibition of in vitro RNA binding and replicase activity byphosphorylation of the p33replication protein of Cucumber necrosis tombusvirus. Virology343(1):79–92
    Sudol, M. Hunter, T.2000. NeW wrinkles for an old domain. Cell103(7):1001–1004
    Sulea, T. Lindner, H. A. Purisima, E. O. and Menard, R.2005. Deubiquitination, a new function of thesevere acute respiratory syndrome coronavirus papain-like protease? J. Virol.79:4550–4551
    Sullivan ML, Ahlquist P.1999. A brome mosaic virus intergenic RNA3replication signal functionswith viral replication protein1a to dramatically stabilize RNA in vivo. J. Virol.73:2622–2632
    Szallies, A. Kubata, B.K. Duszenko, M.2002. A metacaspase of Trypanosoma brucei causes loss ofrespiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett.517(1–3):144–150
    Tai, A.W. Benita, Y. Peng, L.F. Kim, S.S. Sakamoto, N. Xavier, R.J. Chung, R.T.2009. A functionalgenomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe5(3):298–307
    Taylor, J. M. and Barry, M.2006. Near death experiences: Poxvirus regulation of apoptotic death.Virology344:139–150
    Tomita, Y. Mizuno, T. Diez, J. Naito, S. Ahlquist, P. and Ishikawa, M.2003. Mutation of host DnaJhomolog inhibits Brome mosaic virus negative-strand RNA synthesis. J. Virol.77:2990–2997
    Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, et al.2001. Systematic genetic analysis withordered arrays of yeast deletion mutants. Science294:2364–2368
    Tong AH, Lesage G, Bader GD, Ding H, Xu H, et al.2004. Global mapping of the yeast geneticinteraction network. Science303:808–813
    Vlot AC, Neeleman L, Linthorst HJ, Bol JF.2001. Role of the3’-untranslated regions of alfalfamosaic virus RNAs in the formation of a transiently expressed replicase in plants and in the assembly ofvirions. J. Virol.75:6440–6449
    Wang, J. Loveland, A. N. Kattenhorn, L. M. Ploegh, H. L. and Gibson, W.2006. Highmolecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: Mutantviruses altered in its active-site cysteine or histidine are viable. J. Virol.80:6003–6012
    Wang, R. Y. and Nagy, P. D.2008. Tomato bushy stunt virus co-opts the RNA-binding function of ahost metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe3:178–187
    Wang, R. Y., Stork, J., Pogany, J., and Nagy, P. D.2009a. A temperature sensitive mutant of heat shockprotein70reveals an essential role during the early steps of tombusvirus replication. Virology394:28–38
    Wang, R. Y. Stork, J. and Nagy, P. D.2009b. A key role for heat shock protein70in the localizationand insertion of tombusvirus replication proteins to intracellular membranes. J. Virol.83:3276–3287.
    Wang, G. Yang, J. Huibregtse, J.M.1999. Functional domains of the Rsp5ubiquitin–protein ligase.Mol. Cell. Biol.19(1):342–352
    Watashi K, Shimotohno K.2007. Chemical genetics approach to hepatitis C virus replication:cyclophilin as a target for antihepatitis C virus strategy. Rev. Med. Virol.17:245–252
    Weber-Lotfi F, Dietrich A, Russo M, Rubino L.2002. Mitochondrial targeting and membraneanchoring of a viral replicase in plant and yeast cells. J. Virol.76:10485–10496
    Weeks, S. A. and Miller, D. J.2008. The heat shock protein70cochaperone YDJ1is required forefficient membrane-specific flock house virus RNA replication complex assembly and function inSaccharomyces cerevisiae. J. Virol.82:2004–2012
    White, K.A. Morris, T.J.1994a. Nonhomologous RNA recombination in tombusviruses: generationand evolution of defective interfering RNAs by stepwise deletions. J. Virol.68(1):14–24
    White, K.A. Morris, T.J.1994b. Recombination between defective tombusvirus RNAs generatesfunctional hybrid genomes. Proc. Natl. Acad. Sci. U.S.A.91(9):3642–3646
    White, K.A. Nagy, P.D.2004. Advances in the molecular biology of tombusviruses: gene expression,genome replication, and recombination. Prog. Nucleic Acid Res. Mol. Biol.78:187–226
    Wong, J. Zhang, J. Si, X. Gao, G. and Luo, H.2007. Inhibition of the extracellular signalregulatedkinase signaling pathway is correlated with proteasome inhibitor suppression of coxsackievirus replication.Biochem. Biophys. Res. Commun.358:903–907
    Woo, J. L. and Berk, A. J.2007. Adenovirus ubiquitin-protein ligase stimulates viral late mRNAnuclear export. J. Virol.81:575–587
    Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, et al.2001. Global analysis of protein activitiesusing proteome chips. Science293:2101–2105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700