豚鼠抗流感病毒相关因子研究及H9N2亚型禽流感病毒致病力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来A型流感病毒(AIV)在中国的频繁暴发给人们的生命健康带来了严重威胁,造成了巨大的经济损失。高致病性流感病毒会导致感染动物体内炎性因子大量升高,由此认为细胞因子风暴是导致动物死亡的主要原因。早期研究证明流感病毒可以在豚鼠体内感染复制,本研究进一步发现病毒感染并不能导致豚鼠机体产生“高细胞因子风暴”,且豚鼠可以在感染后5~7天清除流感病毒,这为我们研究宿主利用先天性免疫应答机制清除流感病毒提供了十分理想的动物模型。本课题共分为两大部分,第一部分主要是利用豚鼠作为模式动物,豚鼠细胞系作为模式细胞,利用H5N1禽流感病毒作为模式病毒研究宿主抵抗流感病毒的先天性免疫决定因子。主要利用iTRAQ定量蛋白质组学方法结合转录水平分析对AIV感染的豚鼠肺脏组织和肺成纤维细胞系进行表达谱分析。在此基础上,对差异表达蛋白进行抗AIV功能的探索,筛选到了抑制流感病毒复制和下调细胞因子的关键蛋白,明确了豚鼠抗炎性反应的关键通路。论文第二部分为了探索低致病H9N2禽流感病毒对人类的致病性,利用恒河猴作为动物模型进行了H9N2流感病毒致病力分析。具体介绍如下:
     第一部分:
     通过对豚鼠肺脏组织和肺脏成纤维细胞转录水平和蛋白表达谱变化分析,结果表明无论从体内水平(豚鼠肺脏)还是体外水平(豚鼠肺成纤维细胞),豚鼠感染H5N1AIV后都没有高细胞因子的发生。感染豚鼠24小时后引发肺脏65个蛋白表达上调,135个蛋白表达下调。感染72小时后引发肺脏24个蛋白表达上调,39个蛋白表达下调。AIV感染肺脏成纤维细胞12小时后引发61个蛋白表达上调,71个蛋白表达下调。感染24小时后引发51个蛋白表达上调,30个蛋白表达下调。AIV感染后导致豚鼠肺脏和肺成纤维细胞中免疫应答相关基因表达发生变化,这些基因参与IFN途径、细胞凋亡以及补体激活等。这些H5N1AIV感染变化基因可能具有抗病毒作用,也可能具有调节细胞因子的作用。
     利用过表达技术和RNAi技术,在体外过表达RIG-I、MVAS、SPA、SPD、GBP-1、 Mx-1、HSP70和HSP90,同时对GBP-1进行RNAi体外抑制该基因表达,探索上述基因的抗AIV活性。结果表明过表达RIG-I和MAVS可明显抑制流感病毒在豚鼠细胞中的复制,Mx-1也具有抑制作用,但效果不如RIG-I和MAVS明显。GBP-1细胞水平过表达可以下调流感病毒诱导的细胞因子,其在协同RIG-I发挥抗AIV作用中发挥重要作用。
     通过研究AIV感染后豚鼠体内补体变化情况发现,豚鼠感染AIV后会导致体内补体C3表达量升高。通过药物拮抗豚鼠体内补体后其抗流感病毒能力明显减弱,同时伴随着抑制体内细胞凋亡,显著上调趋化因子IP10的表达量,表明补体可能通过调控体内细胞凋亡进而可以发挥调节细胞因子的作用。
     第二部分:
     利用非人类灵长类动物——恒河猴作为模式动物进行了H9N2AIV致病性研究,结果表明感染后恒河猴出现双向热和病毒性肺炎,可以从感染猴的鼻洗液和咽拭子中分离出流感病毒,排毒期持续7~9天,组织嗜性和免疫组化结果表明H9N2AIV可以在上呼吸道(鼻甲骨、气管和支气管)和所有的肺叶中复制。通过本次研究表明恒河猴是一种研究H9N2AIV进化和致病力的较为理想的动物模型。
Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans and poultry, which have become serious health and economic concerns in China. Because proinflammatory cytokines are markedly elevated during highly pathogenic avian influenza virus infection, the cytokine storm is hypothesized to be the main cause of mortaily. Previous reports showed the guinea pig is susceptible to influenza virus. Further study showed that the virus failed to induce the cytokine storm in guinea pig, which is easily eliminated5-7dpi. These demonstrate that the guinea pig is a suitable animal model for host defense against influenza virus studies. This study is mainly divided into two parts. The first part is using guinea pigs as model animal, JH4and104C1as model cells, H5N1influenza viruses as model virus. The host factors affect resistant to infection with influenza A virus was evaluated. In this study, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach and Real-time PCR method was used to investigate the dynamic host response induced by H5N1influenza virus in vivo and in vitro. Based on the data from proteomics analysis, we probe the antivirus function of differentially expressed protein and identify the key pathway of anti-inflammatory activity. The second part is to evaluate the pathogenesis of humans to H9N2avian influenza virus (AIV). The pathogenicity analysis of H9N2influenza virus was determined in non-human primates.
     Part1:The global differential expressed protein and selected gene expression changes in lungs and JH4cell infected with H5N1AIV were investigated using iTRAQ proteomic approach and quantitative real-time PCR. The results showed that the H5N1AIV wasn't supportive to induce early and sustained inflammatory in vivo and in vitro. Proteomic approach analysis showed that200proteins were significantly differential expression at1dpi, and63proteins changed at3dpi in lungs in response to H5N1AIV infection. In addition, the cell level showed that132proteins were changed at12hpi, and81proteins changed at24hpi in JH4cell. Using gene ontology and KEGG pathways analysis, the results indicate the differentially expressed proteins are mainly involved in interferon pathways, apoptosis and complement activation. The results suggest that the modulated proteins in infected lungs and cells were possibly involved in protective effects and cytokine regulation.
     In vitro anti-influenza virus function of RIG-I, MAVS, SPD, SPA, GBP-1, Mx-1, HSP70and HSP90were investigated using overexpression technology. The GBP-1gene was also investigated using RNAi technology. The results showed that protein expression to over-express RIG-I, MAVS and Mx-1gene decreased the titers of AIV in JH4cell and104C1cell. The inhibition ratio of RIG-I and MAVS are more significantly higher than Mx-1. The overexpression of GBP-1reduced the level of cytokine induced by AIV, however, it made antiviral effect by the synergic action of RIG-I.
     Complement C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. In this study, we demonstrate that H5N1influenza virus infected guinea pig had increased levels of C3activation byproducts as compared to guinea pig infected with pandemic2009H1N1influenza viruses. Research in CVF-treated guinea pig demonstrated that C3was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. Interestingly, Treatment of influenza virus infected guinea pig with CVF, resulted in a reduction of cell apoptosis and robust IP10gene expression. The results suggest that the complement C3may help control an acute inflammatory response by inducing apoptosis.
     Part2:Several cases of humans infected with the H9N2avian influenza virus have been described since1999, however, the infectivity and pathogenicity of H9N2in humans is not well defined. A non-human primate model in rhesus macaques was developed to study H9N2virus infections as a means of better understanding the pathogenesis and virulence of this virus, in addition to testing antiviral drugs. Rhesus macaques inoculated with H9N2AIV presented with biphasic fever and viral pneumonia. H9N2was recovered from nasal washes and pharyngeal samples up to days7-9post infection followed by an increase in HI (hemagglutination inhibition) antibody titers. Tissue tropism and immunohistochemistry indicated that H9N2AIV replicated in the upper respiratory tract (turbinate, trachea, and bronchus) and in all lobes of the lung. Our data suggest that rhesus macaques are a suitable animal model to study H9N2influenza virus infections, particularly in the context of viral evolution and pathogenicity.
引文
[1]Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev.1992;56:152-79.
    [2]Hurt AC, Barr IG, Komadina N, Hampson AW. A novel means of identifying the neuraminidase type of currently circulating human A(H1) influenza viruses. Virus Res.2004;103:79-83.
    [3]Homme PJ, Easterday BC. Avian influenza virus infections. Ⅰ. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis.1970;14:66-74.
    [4]Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A.2012; 109:4269-74.
    [5]Qi T, Guo W, Huang WQ, Li HM, Zhao LP, Dai LL, et al. Genetic evolution of equine influenza viruses isolated in China. Arch Virol.2010.
    [6]Li YG, Chittaganpitch M, Waicharoen S, Kanai Y, Bai GR, Kameoka M, et al. Characterization of H5N1 influenza viruses isolated from humans in vitro. Virol J.2010;7:112.
    [7]Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science.2010;328:1272-5.
    [8]Capua I, Alexander DJ. Human health implications of avian influenza viruses and paramyxoviruses. Eur J Clin Microbiol Infect Dis.2004;23:1-6.
    [9]Zeng H, Goldsmith C, Thawatsupha P, Chittaganpitch M, Waicharoen S, Zaki S, et al. Highly pathogenic avian influenza H5N1 viruses elicit an attenuated type i interferon response in polarized human bronchial epithelial cells. J Virol.2007;81:12439-49.
    [10]Abolnik C, Gerdes GH, Sinclair M, Ganzevoort BW, Kitching JP, Burger CE, et al. Phylogenetic analysis of influenza A viruses (H6N8, H1N8, H4N2, H9N2, H10N7) isolated from wild birds, ducks, and ostriches in South Africa from 2007 to 2009. Avian diseases.2010;54:313-22.
    [11]Alexander DJ. An overview of the epidemiology of avian influenza. vaccine.2007;25:5637-44.
    [12]Tumpey TM, Lu X, Morken T, Zaki SR, Katz JM. Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. Journal of virology.2000;74:6105-16.
    [13]Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses:a mechanism for the unusual severity of human disease? Lancet.2002;360:1831-7.
    [14]Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med.2002;8:950-4.
    [15]Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus:functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol. 2005;79:14933-44.
    [16]Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191.
    [17]Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84:4395-406.
    [18]Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009;5:e1000709.
    [19]Aggarwal S, Bradel-Tretheway B, Takimoto T, Dewhurst S, Kim B. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex. plos one.2010;5:e 10372.
    [20]Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol.2000;74:6015-20.
    [21]Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog.2009;5:e1000252.
    [22]Ozawa M, Basnet S, Burley LM, Neumann G, Hatta M, Kawaoka Y. Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J Virol.2011.
    [23]Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe.2009;5:439-49.
    [24]Miranda E, Forafonov F, Tavassoli A. Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system. Mol Biosyst.2011;7:1042-5.
    [25]Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 2007;9:930-8..
    [26]Lam WY, Tang JW, Yeung AC, Chiu LC, Sung JJ, Chan PK. Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J Virol. 2008;82:2741-51.
    [27]Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, et al. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice:the role of cytokines and B- and T-cell responses. J Gen Virol.2005;86:1121-30.
    [28]Muranaka M, Yamanaka T, Katayama Y, Hidari K, Kanazawa H, Suzuki T, et al. Distribution of influenza virus sialoreceptors on upper and lower respiratory tract in horses and dogs. J Vet Med Sci. 2011;73:125-7.
    [29]Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Mizuike R, Hiramatsu H, et al. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. PLoS Pathog.2011;7:e1002068.
    [30]Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu:influenza virus receptors in the human airway. nature.2006;440:435-6.
    [31]Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol.2006;80:7469-80.
    [32]Ramos I, Bernal-Rubio D, Durham N, Belicha-Villanueva A, Lowen AC, Steel J, et al. Effects of receptor binding specificity of avian influenza virus on the human innate immune response. J Virol. 2011.
    [33]Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog.2010;6.
    [34]Govorkova EA, Rehg JE, Krauss S, Yen HL, Guan Y, Peiris M, et al. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol.2005;79:2191-8.
    [35]Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 Residue 158 Is a Pathogenic Determinant of Pandemic H1N1 and H5 Influenza A Viruses in Mice. J Virol.2011;85:357-65.
    [36]Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS pathogens.2007;3:e151.
    [37]Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, et al. Avian influenza A (H5N1) infection in humans. N Engl J Med.2005;353:1374-85.
    [38]Songserm T, Amonsin A, Jam-on R, Sae-Heng N, Meemak N, Pariyothorn N, et al. Avian influenza H5N1 in naturally infected domestic cat. Emerg Infect Dis.2006;12:681-3.
    [39]Brown JD, Stallknecht DE, Swayne DE. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg Infect Dis.2008; 14:136-42.
    [40]Giese M, Harder TC, Teifke JP, Klopfleisch R, Breithaupt A, Mettenleiter TC, et al. Experimental infection and natural contact exposure of dogs with avian influenza virus (H5N1). Emerg Infect Dis. 2008;14:308-10.
    [41]Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, et al. Avian H5N1 influenza in cats. science.2004;306:241.
    [42]Belser JA, Bridges CB, Katz JM, Tumpey TM. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis.2009;15:859-65.
    [43]Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, et al. Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada,2007. Emerg Infect Dis. 2009;15:1492-5.
    [44]Gambaryan AS, Tuzikov AB, Pazynina GV, Desheva JA, Bovin NV, Matrosovich MN, et al. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J.2008;5:85.
    [45]Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment? J Virol.2001;75:9679-86.
    [46]Chen H, Subbarao K, Swayne D, Chen Q, Lu X, Katz J, et al. Generation and evaluation of a high-growth reassortant H9N2 influenza A virus as a pandemic vaccine candidate, vaccine. 2003;21:1974-9.
    [47]Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. plos one.2009;4:e5788.
    [48]Guan Y, Shortridge KF, Krauss S, Chin PS, Dyrting KC, Ellis TM, et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol. 2000;74:9372-80.
    [49]Yang H, Chen LM, Carney PJ, Donis RO, Stevens J. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site. PLoS Pathog.2010;6.
    [50]Rebel JM, Peeters B, Fijten H, Post J, Cornelissen J, Vervelde L. Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs:small differences in general acute responses. Vet Res.2011;42:10.
    [51]Grafe A. A history of experimental virology:Springer-Verlag; 1991.
    [52]Bouvier NM, Lowen AC. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses.2010;2:1530-63.
    [53]Wu R, Sui Z, Liu Z, Liang W, Yang K, Xiong Z, et al. Transmission of avian H9N2 influenza viruses in a murine model. Vet Microbiol.2010;142:211-6.
    [54]Yassine HM, Lee CW, Gourapura R, Saif YM. Interspecies and intraspecies transmission of influenza A viruses:viral, host and environmental factors. Anim Health Res Rev.2010;11:53-72.
    [55]Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier RA, Osterhaus AD. Pathogenesis of influenza A (H5N1) virus infection in a primate model. J Virol.2001;75:6687-91.
    [56]Gardner MB, Luciw PA. Macaque models of human infectious disease. ILAR J.2008;49:220-55.
    [57]Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A.2006;103:9988-92.
    [58]Padilla-Carlin DJ, McMurray DN, Hickey AJ. The guinea pig as a model of infectious diseases. Comparative medicine.2008;58:324.
    [59]Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, et al. Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model:antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol.2009;83:2851-61.
    [60]Bushnell RV, Tobin JK, Long J, Schultz-Cherry S, Chaudhuri AR, Nara PL, et al. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein. Virol J.2010;7:200.
    [61]Mubareka S, Lowen AC, Steel J, Coates AL, Garc"aa-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model. Journal of Infectious Diseases.2009; 199:858.
    [62]Tang X, Chong KT. Histopathology and growth kinetics of influenza viruses (H1N1 and H3N2) in the upper and lower airways of guinea pigs. J Gen Virol.2009;90:386-91.
    [63]Sun Y, Bi Y, Pu J, Hu Y, Wang J, Gao H, et al. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses, plos one.2010;5:e15537.
    [64]Qiu C, Tian D, Wan Y, Zhang W, Zhu Z, Ye R, et al. Early Adaptive Humoral Immune Responses and Virus Clearance in Humans Recently Infected with Pandemic 2009 H1N1 Influenza Virus, plos one. 2011;6:e22603.
    [65]Okomo-Adhiambo M, Nguyen HT, Sleeman K, Sheu TG, Deyde VM, Garten RJ, et al. Host cell selection of influenza neuraminidase variants:implications for drug resistance monitoring in A(H1N1) viruses. Antiviral Res.2010;85:381-8.
    [66]Kawai T, Akira S. TLR signaling. Cell Death Differ.2006;13:816-25.
    [67]Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. science.2010;327:286-90.
    [68]Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity. Rev Med Virol. 2010;20:4-22.
    [69]Heine H. TLRs, NLRs and RLRs:innate sensors and their impact on allergic diseases-a current view. Immunology Letters.2011.
    [70]Huang J, Liu T, Xu LG, Chen D, Zhai Z, Shu HB. SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. EMBO J.2005;24:4018-28.
    [71]Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol.2005; 175:5260-8.
    [72]Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA:role of TLR3. Cytokine Growth Factor Rev.2005;16:1-14.
    [73]Takeshita F, Tanaka T, Matsuda T, Tozuka M, Kobiyama K, Saha S, et al. Toll-like receptor adaptor molecules enhance DNA-raised adaptive immune responses against influenza and tumors through activation of innate immunity. J Virol.2006;80:6218-24.
    [74]Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, et al. Differential role of TLR-and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol. 2007;179:4711-20.
    [75]Karpala AJ, Lowenthal JW, Bean AG. Activation of the TLR3 pathway regulates IFN [beta] production in chickens. Developmental & Comparative Immunology.2008;32:435-44.
    [76]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol.2010;11:373-84.
    [77]Wang JP, Zhang Y, Wei X, Li J, Nan XP, Yu HT, et al. Circulating Toll-like receptor (TLR) 2, TLR4, and regulatory T cells in patients with chronic hepatitis C. APMIS.2010;118:261-70.
    [78]Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway. Rev Med Virol.2011.
    [79]Kumagai Y, Kumar H, Koyama S, Kawai T, Takeuchi O, Akira S. Cutting Edge:TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-{alpha} production in plasmacytoid dendritic cells. J Immunol.2009; 182:3960-4.
    [80]Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, et al. Detrimental contribution of the Toll-like receptor (TLR) 3 to influenza A virus-induced acute pneumonia. PLoS pathogens.2006;2:e53.
    [81]Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol.2004;5:730-7.
    [82]Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, et al. Cell type-specific involvement of RIG-I in antiviral response, immunity.2005;23:19-28.
    [83]Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol.2005;6:981-8.
    [84]Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell.2005;19:727-40.
    [85]Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. The journal of immunology.2005;175:2851.
    [86]Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, et al. LGP2 is a positive regulator of RIG-I-and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A. 2010;107:1512-7.
    [87]Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. nature.2006;441:101-5.
    [88]Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol.2008;82:335-45.
    [89]Sarkar D, Desalle R, Fisher PB. Evolution of MDA-5/RIG-I-dependent innate immunity: independent evolution by domain grafting. Proc Natl Acad Sci U S A.2008;105:17040-5.
    [90]Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell.2005;122:669-82.
    [91]Sun Q, Sun L, Liu HH, Chen X, Seth RB, Forman J, et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity.2006;24:633-42.
    [92]Ohman T, Rintahaka J, Kalkkinen N, Matikainen S, Nyman TA. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J Immunol.2009;182:5682-92.
    [93]Tang ED, Wang CY. MAVS self-association mediates antiviral innate immune signaling. J Virol. 2009;83:3420-8.
    [94]Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Current Opinion in Immunology.2011.
    [95]Paz S, Vilasco M, Werden SJ, Arguello M, Joseph-Pillai D, Zhao T, et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res.2011.
    [96]Anders HJ. Innate pathogen recognition in the kidney:toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney Int.2007;72:1051-6.
    [97]Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol.2010.
    [98]Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol.2009; 10:1073-80.
    [99]Shaw MH, Kamada N, Warner N, Kim YG, Nunez G. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol.2011;32:73-9.
    [100]Guarda G, Dostert C, Staehli F, Cabalzar K, Castillo R, Tardivel A, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature. 2009;460:269-73.
    [101]Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature.2011;477:596-600.
    [102]Ray K. Crystal arthritis:NLRP3 inflammasome mediates crystal-induced joint inflammation and dysfunction. Nature reviews Rheumatology.2011;7:684.
    [103]Franchi L, Eigenbrod T, Nunez G. Cutting edge:TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183:792-6.
    [104]Thomas PG, Dash P, Aldridge JR, Jr., Ellebedy AH, Reynolds C, Funk AJ, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity.2009;30:566-75.
    [105]Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity.2009;30:556-65.
    [106]Van Reeth K. Cytokines in the pathogenesis of influenza. Vet Microbiol.2000;74:109-16.
    [107]Casado C, Colombo S, Rauch A, Martinez R, Gunthard HF, Garcia S, et al. Host and viral genetic correlates of clinical definitions of HIV-1 disease progression. plos one.2010;5:e11079.
    [108]Matikainen S, Siren J, Tissari J, Veckman V, Pirhonen J, Severa M, et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol.2006;80:3515-22.
    [109]Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, Evans D. Apoptosis:a mechanism of cell killing by influenza A and B viruses. Journal of virology.1994;68:3667.
    [110]Olsen CW, Kehren JC, Dybdahl-Sissoko NR, Hinshaw VS. bcl-2 alters influenza virus yield, spread, and hemagglutinin glycosylation. J Virol.1996;70:663-6.
    [111]Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, et al. Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J.2003;22:2717-28.
    [112]Lavrik IN, Golks A, Krammer PH. Caspases:pharmacological manipulation of cell death. Journal of Clinical Investigation.2005;115:2665.
    [113]Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009;7:144-55.
    [114]Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell.2009;138:838-54.
    [115]Ellebedy AH, Lupfer C, Ghoneim HE, DeBeauchamp J, Kanneganti TD, Webby RJ. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Natl Acad Sci U S A.2011;108:2927-32.
    [116]Balachandran S, Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, et al. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. Journal of virology.2000;74:1513.
    [117]Zhang C, Yang Y, Zhou X, Yang Z, Liu X, Cao Z, et al. The NS1 protein of influenza a virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells:Implication for virus-induced apoptosis. Virol J.2011;8:181.
    [118]Kwon YK, Lipatov AS, Swayne DE. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus. Vet Pathol.2009;46:138-41.
    [119]Chou Y, Albrecht RA, Pica N, Lowen AC, Richt JA, Garcia-Sastre A, et al. The M segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the guinea pig model. Journal of virology.2011;85:11235.
    [120]Long J, Bushnell RV, Tobin JK, Pan K, Deem MW, Nara PL, et al. Evolution of H3N2 Influenza Virus in a Guinea Pig Model. plos one.2011;6:e20130.
    [121]Xu C, Song X, Fu L, Dong D, Wu S, Li G, et al. Antiviral Potential of Exogenous Human Omega Interferon to Inhibit Pandemic 2009 A (H1N1) Influenza Virus. Viral Immunology.2011;24:369-74.
    [122]Grosshans H, Filipowicz W. Proteomics joins the search for microRNA targets. Cell. 2008; 134:560-2.
    [123]Zhu JP, Zou W, Jia GM, Zhou HB, Hu Y, Peng MY, et al. Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. Journal of proteomics.2011.
    [124]Vogels MW, van Balkom BWM, Kaloyanova DV, Batenburg JJ, Heck AJ, Helms JB, et al. Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. Proteomics.2011.
    [125]Lietzen N, Ohman T, Rintahaka J, Julkunen I, Aittokallio T, Matikainen S, et al. Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages. plos pathogens.2011;7:e1001340.
    [126]Cao Z, Han Z, Shao Y, Geng H, Kong X, Liu S. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Science. 2011;9:11.
    [127]van Diepen A, Brand HK, Sama I, Lambooy LHJ, van den Heuvel LP, van der Well L, et al. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. Journal of proteomics. 2010;73:1680-93.
    [128]Coombs KM, Berard A, Xu W, Krokhin O, Meng X, Cortens JP, et al. Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. Journal of virology. 2010;84:10888-906.
    [129]Vester D, Rapp E, Gade D, Genzel Y, Reichl U. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics.2009;9:3316-27.
    [130]Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology.1938;27:493-7.
    [131]Baas T, Baskin C, Diamond DL, Garcia-Sastre A, Bielefeldt-Ohmann H, Tumpey T, et al. Integrated molecular signature of disease:analysis of influenza virus-infected macaques through functional genomics and proteomics. Journal of virology.2006;80:10813.
    [132]Morrissey B, Downard KM. A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics.2006;6:2034-41.
    [133]Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreno N, Albar JP, et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics. 2008;8:2077-88.
    [134]Liu N, Song W, Wang P, Lee K, Chan W, Chen H, et al. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics. 2008;8:1851-8.
    [135]Boon AC, deBeauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, et al. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol. 2009;83:10417-26.
    [136]Reemers SS, Van Haarlem DA, Koerkamp MJG, Vervelde L. Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. Journal of general virology.2009;90:2134-46.
    [137]de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12:1203-7.
    [138]Hui KP, Lee SM, Cheung CY, Ng IH, Poon LL, Guan Y, et al. Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK. J Immunol.2009;182:1088-98.
    [139]Salomon R, Hoffmann E, Webster RG. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A.2007;104:12479-81.
    [140]Osterlund P, Pirhonen J, Ikonen N, Ronkko E, Strengell M, Makela SM, et al. Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol.2010;84:1414-22.
    [141]Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol.2007;81:2736-44.
    [142]Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature.2007;445:319-23.
    [143]Marcelin G, Aldridge JR, Duan S, Ghoneim HE, Rehg J, Marjuki H, et al. Fatal Outcome of Pandemic H1N12009 Influenza Virus Infection Is Associated with Immunopathology and Impaired Lung Repair, Not Enhanced Viral Burden, in Pregnant Mice. Journal of virology.2011;85:11208.
    [144]Hayashi T, Hiromoto Y, Chaichoune K, Patchimasiri T, Chakritbudsabong W, Prayoonwong N, et al. Host Cytokine Responses of Pigeons Infected with Highly Pathogenic Thai Avian Influenza Viruses of Subtype H5N1 Isolated from Wild Birds, plos one.2011;6:e23103.
    [145]Bigger CB, Guerra B, Brasky KM, Hubbard G, Beard MR, Luxon BA, et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. Journal of virology. 2004;78:13779-92.
    [146]Sariol CA, Munoz-Jordan JL, Abel K, Rosado LC, Pantoja P, Giavedoni L, et al. Transcriptional activation of interferon-stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. Clinical and Vaccine Immunology.2007;14:756-66.
    [147]Knapp S, Yee L, Frodsham A, Hennig B, Hellier S, Zhang L, et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection:roles of MxA, OAS-1 and PKR. Genes and immunity.2003;4:411-9.
    [148]Kajaste-Rudnitski A, Mashimo T, Frenkiel M-P, Guenet J-L, Lucas M, Despres P. The 2',5'-oligoadenylate synthetase lb is a potent inhibitor of West Nile virus replication inside infected cells. Journal of Biological Chemistry.2006;281:4624-37.
    [149]Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, Brizuela N, et al. Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. Journal of virology. 2003;77:11822-32.
    [150]Li G, Zhang J, Tong X, Liu W, Ye X. Heat shock protein 70 inhibits the activity of influenza a virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo. PLoS One. 2011;6:e16546.
    [151]Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, et al. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity.2002;16:685-95.
    [152]Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. Journal of Biological Chemistry. 2002;277:45306-14.
    [153]Eleouet J-F, Slee EA, Saurini F, Castagne N, Poncet D, Garrido C, et al. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis. Journal of virology.2000;74:3975-83.
    [154]Belyavsky M, Belyavskaya E, Levy GA, Leibowitz JL. Coronavirus MHV-3-induced apoptosis in macrophages. Virology.1998;250:41-9.
    [155]Yuan X, Shan Y, Zhao Z, Chen J, Cong Y. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol J.2005;2:198-0024.
    [156]Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS pathogens.2005; 1:e4.
    [157]Eggleton P, Reid K. Lung surfactant proteins involved in innate immunity. Current opinion in immunology.1999;11:28-33.
    [158]Hawgood S, Brown C, Edmondson J, Stumbaugh A, Allen L, Goerke J, et al. Pulmonary collectins modulate strain-specific influenza a virus infection and host responses. Journal of virology. 2004;78:8565-72.
    [159]Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Front Biosci.2012;17:407-29.
    [160]Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. nature.2010;463:818-22.
    [161]Barber MR, Aldridge JR, Jr., Webster RG, Magor KE. Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A.2010;107:5913-8.
    [162]Kopf M, Abel B, Gallimore A, Carroll M, Bachmann MF. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nature medicine. 2002;8:373-8.
    [163]Takeuchi O, Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol.2008;20:17-22.
    [164]Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. science.2006;314:997-1001.
    [165]Fishelson Z, Attali G, Mevorach D. Complement and apoptosis. Molecular Immunology. 2001;38:207-19.
    [166]O'Brien KB, Morrison TE, Dundore DY, Heise MT, Schultz-Cherry S. A Protective Role for Complement C3 Protein during Pandemic 2009 H1N1 and H5N1 Influenza A Virus Infection, plos one. 2011;6:e17377.
    [167]Fernandez Gonzalez S, Jayasekera JP, Carroll MC. Complement and natural antibody are required in the long-term memory response to influenza virus, vaccine.2008;26 Suppl 8:186-93.
    [168]Vogel CW. Cobra venom factor:The complement-activating protein of cobra venom. HANDBOOK OF NATURAL TOXINS 1991.1991.
    [169]Chen G, Wang XM, Sun QY, Shen SQ, Guo H, Wang H, et al. Prevention of hyperacute rejection of pig-to-monkey cardiac xenografts by Chinese cobra venom factor. Transplant Proc.2001;33:3857-8.
    [170]Qian-Yun S, Qiu-Min L, Wan-Yu W, Yu-Liang X. A highly active anticomplement factor from the venom of Naja kaouthia. Acta Biochimica et Biophysica Sinica.2001:05.
    [171]Wang SY, Veeramani S, Racila E, Cagley J, Fritzinger DC, Vogel CW, et al. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood. 2009; 114:5322.
    [172]Young JA, Sermwittayawong D, Kim HJ, Nandu S, An N, Erdjument-Bromage H, et al. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem.2011;286:6521-31.
    [173]Ueda M, Daidoji T, Du A, Yang CS, Ibrahim MS, Ikuta K, et al. Highly pathogenic H5N1 avian influenza virus induces extracellular Ca2+influx, leading to apoptosis in avian cells. J Virol. 2010;84:3068-78.
    [174]Shen Y, Wang X, Guo L, Qiu Y, Li X, Yu H, et al. Influenza A virus induces p53 accumulation in a biphasic pattern. Biochem Biophys Res Commun.2009;382:331-5.
    [175]Rossman JS, Lamb RA. Autophagy, apoptosis, and the influenza virus M2 protein. Cell Host & Microbe.2009;6:299-300.
    [176]Sakabe S, Iwatsuki-Horimoto K, Takano R, Nidom CA, Le MT, Nagamura-Inoue T, et al. Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza viruses. J Gen Virol.2011.
    [177]Woo PC, Tung ET, Chan KH, Lau CC, Lau SK, Yuen KY. Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus:implications for treatment strategies. J Infect Dis. 2010;201:346-53.
    [178]Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice, plos pathogens.2008;4:e1000115.
    [179]Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, et al. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. Journal of virology. 2008;82:11308-17.
    [180]Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology.2001;281:156-62.
    [181]Xu KM, Li KS, Smith GJ, Li JW, Tai H, Zhang JX, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China,2000 to 2005. J Virol.2007;81:2635-45.
    [182]Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, et al. The genesis and evolution of H9N2 influenza viruses in poultry from southern China,2000 to 2005. J Virol.2007;81:10389-401.
    [183]Abdel-Moneim AS, Afifi MA, El-Kady MF. Isolation and mutation trend analysis of influenza A virus subtype H9N2 in Egypt. Virol J.2012;9:173.
    [184]Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol.2005;43:5760-7.
    [185]Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses:were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A.1999;96:9363-7.
    [186]Uyeki TM, Chong YH, Katz JM, Lim W, Ho YY, Wang SS, et al. Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis.2002;8:154-9.
    [187]Hossain MJ, Hickman D, Perez DR. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens, plos one.2008;3:e3170.
    [188]Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, et al. Replication and transmission of H9N2 influenza viruses in ferrets:evaluation of pandemic potential, plos one. 2008;3.e2923.
    [189]Dong W, Li-Feng X, Cun-Lian W, Ming-Ju X, Rui-Hua Z, Ying L, et al. A mouse model of swine influenza virus H9N2 infection with acute lung injury. Acta virologica.2012;56:227.
    [190]Lv J, Wei B, Yang Y, Yao M, Cai Y, Gao Y, et al. Experimental transmission in guinea pigs of H9N2 avian influenza viruses from indoor air of chicken houses. Virus Res.2012.
    [191]Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier RA, Osterhaus AD. A primate model to study the pathogenesis of influenza A (H5N1) virus infection. Avian Dis. 2003;47:931-3.
    [192]Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, Garcia-Sastre A, et al. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A.2009; 106:3455-60.
    [193]Chen Y, Deng W, Jia C, Dai X, Zhu H, Kong Q, et al. Pathological lesions and viral localization of influenza A (H5N1) virus in experimentally infected Chinese rhesus macaques:implications for pathogenesis and viral transmission. Arch Virol.2009;154:227-33.
    [194]Cilloniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog.2009;5:e1000604.
    [195]Kitano M, Itoh Y, Kodama M, Ishigaki H, Nakayama M, Nagata T, et al. Establishment of a cynomolgus macaque model of influenza B virus infection. Virology.2010;407:178-84.
    [196]Shinya K, Gao Y, Cilloniz C, Suzuki Y, Fujie M, Deng G, et al. Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol.2012;86:6055-66.
    [197]Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, et al. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs. BMC Syst Biol.2012;6:117.
    [198]Ge FF, Zhou JP, Liu J, Wang J, Zhang WY, Sheng LP, et al. Genetic evolution of H9 subtype influenza viruses from live poultry markets in Shanghai, China. J Clin Microbiol.2009;47:3294-300.
    [199]Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature.2009;460:1021-5.
    [200]Herfst S, van den Brand JM. Schrauwen EJ, de Wit E, Munster VJ, van Amerongen G, et al. Pandemic 2009 H1N1 influenza virus causes diffuse alveolar damage in cynomolgus macaques. Vet Pathol.2010;47:1040-7.
    [201]Richt JA, Rockx B, Ma W, Feldmann F, Safronetz D, Marzi A, et al. Recently emerged swine influenza A virus (H2N3) causes severe pneumonia in Cynomolgus macaques. PLoS One. 2012;7:e39990.
    [202]Kuiken T, Van Den Brand J, Van Riel D, Pantin-Jackwood M, Swayne D. Comparative pathology of select agent influenza a virus infections. Veterinary Pathology Online.2010;47:893-914.
    [203]Chen Y, Deng W, Jia C, Dai X, Zhu H, Kong Q, et al. Pathological lesions and viral localization of influenza A (H5N1) virus in experimentally infected Chinese rhesus macaques:implications for pathogenesis and viral transmission. Archives of virology.2009;154:227-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700