H5N1亚型禽流感病毒对家鸭致病力分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水禽包括家鸭是H5N1亚型流感病毒的储存宿主,早期病毒不致死水禽,感染病毒的水禽自身也不表现出明显的临床症状,但可以长时间的带毒并向外界排毒,具有潜在感染其他宿主的危险。先前H5N1亚型禽流感病毒和水禽一直保持着和谐关系,但是随着病毒的不断进化,对水禽高致病力的毒株也随之出现。如2002年首次报道在香港出现致死水禽的H5N1亚型毒株,2005年青海湖大规模爆发H5N1亚型禽流感致死候鸟事件等。本实验选取13株2001-2005年部分H5N1分离株,以家鸭为水禽的模型,分析这些毒株对家鸭的致病力。结果发现这13株病毒对家鸭表现出不同的致病性,致死率从0%-100%不等,表明在这期间我国H5N1毒株对家鸭的致病性表现出多样性的特点。由于低致病性和中等致病性毒株的存在,因此在我国家鸭仍然是H5N1重要的储存宿主之一,在流行病学具有重要意义。
     为了解H5N1亚型禽流感病毒对水禽致病力改变的内在分子基础,我们选取了两株模式病毒。A/Goose/HB65对家鸭表现为典型的弱毒株,106EID50剂量感染家鸭后,家鸭并不表现出可见的临床症状,其DLD50>108.5 EID50。相反A/Duck/HB49对家鸭表现出明显的高致病性,106EID50剂量感染家鸭后,全部感染鸭在感染后3-5天内全部死亡,而且表现出明显的神经症状,其DLD50,102.5 EID50。进一步比较两株病毒在家鸭体内复制情况,发现两株病毒在肺脏、肾脏及胰腺都可以很好的复制,可以达到很高病毒滴度;但是病毒在脑内滴度差异显著, A/Duck/HB49可以达到107.6EID50/ml而A/Goose/HB65滴度仅为102.5EID50/ml。因此推测H5N1亚型禽流感病毒对家鸭产生高致病性原因是病毒侵害中枢神经系统。比较A/Goose/HB65和A/Duck/HB49基因组的相似性,发现它们各基因片段相似性均达到99%以上。因此A/Goose/HB65和A/Duck/HB49是研究H5N1亚型禽流感病毒对家鸭致病力分子基础的理想模式病毒
     选择了A/Goose/HB65和A/Duck/HB49作为本研究的模式病毒,我们分别建立了这两株病毒的反向遗传操作系统。为了弄清决定这两株病毒的致病力的主要基因,我们拯救出一系列单基因替换病毒,并将这些病毒做家鸭感染实验。结果发现PA基因决定了A/Goose/HB65和A/Duck/HB49对家鸭的致病性。在A/Goose/HB65背景下,将65PA替换为49PA,拯救出病毒GS/HB65-49PA,其致病力显著增强。其DLD50,103.5 EID50,相对于亲本病毒A/Goose/HB65(DLD50>108.5 EID50)其致病力增强了10万倍以上,病毒在脑内滴度也显著提高,分别为GS/HB65,102.5EID50/ml而GS/HB65-49PA,105.2EID50/ml;相反当在A/Duck/HB49背景下,将49PA替换为65PA时,拯救出病毒DK/HB49-65PA,其致病力下降了100倍(DK/HB49,102.5 EID50 VS DK/HB49-56PA,104.5 EID50)。相对于亲本病毒,感染DK/HB49-65PA病毒家鸭脑组织滴度也有所下降。为进一步在PA上寻找其影响致病力的关键位点,我们拯救出一系列PA突变的病毒,并且做了感染家鸭实验。结果发现PA224和383位氨基酸共同决定了这两株病毒对家鸭的致病力。PA蛋白S224P和N383D的突变可以显著增强GS/HB65对家的致病力(增强10万倍以上);P224S和D383N的突变可以降低DK/HB49对家鸭的致病力(降低100倍)。
     PA224和383位氨基的改变是怎样影响病毒对家鸭的致病力?我们对其可能的机制进行深入探讨。分别在聚合酶活性、PA蛋白在细胞核内聚集、PA蛋白自身稳定性及PA和DK-CLE蛋白的相互作用方面进行研究。结果发现PA蛋白383位点的改变影响H5N1亚型流感病毒聚合酶活性,同时也影响了PA和PB1蛋白在细胞核内的聚集。而224位点则不影响这两个方面。S224P改变导致PA蛋白丢失潜在磷酸化位点,但具体对PA功能的影响,仍有待进一步的研究。此外PA蛋白224和383位改变并不影响自身的稳定性,也不影响和DK-CLE蛋白的相互作用。
     总之,本实验以2001-2005年间13株H5N1亚型禽流感病毒为研究对象,从中筛选出2株研究病毒对家鸭致病力分子机制的模式病毒。利用反向遗传操作技术,首次证明PA是决定H5N1亚型禽流感病毒对家鸭致病力的主要基因。通过定点突变,首次发现PA蛋白224和383位氨基酸是影响病毒对家鸭致病力的关键位点,并对这两个位点的改变是如何影响致病力的可能机理做了深入的探讨。
Wild waterfowl, including ducks are natural hosts of H5N1 influenza virus. Early strains rarely caused disease in natural hosts. The infected hosts showed no sign of disease, but could shed virus to enviroment which other annimals can be easily infected. However with the evolution of H5N1 virus, reemerging H5N1 influenza virus in HK in 2002 are highly pathogenic to wild migratory birds and resident waterfowl. Late in 2005 an outbreak of H5N1 virus infection occurred among migratory birds at Qinhai Lake in china. However the molecular basis for H5N1 virus transforming from low pathogenicty to higy pathogenicity for waterflow is still unkwon.
     The present studies characterised pathogenicity of 13 strains of H5N1 influenza viruses for ducks which islolated from china during 2001 to 2005. The results showed there are highly, moderately or low pathogenic for ducks. This indicated diverse pathogenicity among H5N1 viruses for ducks in china. So domestic ducks will still play an important role in epidemiology of H5N1 avian influenza virus in china. To understand the genetic determinant of virulence for duks, two viruses whose virulence differ a lot, but with higly similarity of their genome were selected as model viruses. DK/HB49 was highly pathogenic for ducks with its DLD50, 2.5lgEID50. All the infected duks were killed within 3-5 days p.i. with dosage of 106 EID50; On the contraty, GS/HB65 was low pathogenic for ducks with its DLD50, >8.5 lgEID50. All the infected ducks did not show any clinic signs. Comparing the virus titre level in different organs, it was found a distict titre differnce in brain of the ducks between incoluated with DK/HB49 and GS/HB65(107.6EID50/ml VS 102.5EID50/ml), when the ducks inoculated with dosage of 106 EID50. But no statistical titre difference present in lung, pancreas, and kidney. So we hypothesized both two type viruses (highly pathogenic and low pathogenic) could enter duck brain, whlie virulent virus could replicated efficiently in duck brain cells, but low pathogenic vrius cannot. That was main reason for causing infected ducks to death.
     Then we established reverse genetic system for DK/HB49 and GS/HB65, and rescued a series of reassortant and mutant viruses. Further these viruses were tested their virulence for ducks. At last we found PA gene contribute the virulence of these two viruses. The virulence of the reassortant bearing the PA gene from DK/HB49 in the GS/HB65 background was increased 105-fold relative to that of the GS/HB65 virus. Whlie at background of DK/HB49 only 65PA was substituted for 49PA, the pathogenicity of the reassortant virus was discreased by 102-fold. The virus titer in the brian of ducks infected with DK/HB49 was enhanced greatly compared with those ducks infected with GS/HB65. In order to pinpoint the key amino acids that affected virulence, we generated many PA mutant viruses and tested them on ducks. These results indicated the combination of the two amino acid mutations at positions 224 and 383 of PA protein determined the pathogenicity of GS/HB65 and DK/HB49.
     We have found the two amino acid mutations at positions 224 and 383 of PA involved in pathogenicity of these two viruses. What is the exact mechnism? With this question we performed mini-genome assay to detect the change of polymerase activity when mutant PA at positions 224 or /and 383 were introduced. It showed substitution of amino acid at position 383 changed the vrial polymerase dramatically both in 293T and in DF1 cells . The amino acid at position 383 in the PA protein also affects the transport of PA and PB1 into the nucleus of DF1 cells. Substitution of amino acid at position S224P of PA protein result in loss of an potential phsophorylation site . However, the mechanism underlying how the S224P mutation in the PA protein affects the virulence of the H5N1 virus in ducks remains to be determined. By the way substitution of amino acid at position 224 or/and 383 did not affect PA itself stablity and interation with DK-CLE.
     In summary, we compared two naturally isolated H5N1 avian influenza viruses that differ in their lethality in ducks, and demonstrated that the polymerase PA plays an important role in the increased virulence of the H5N1 DK/49 virus in ducks. We report for the first time that the two amino acids 224P and 383D in PA are critical and have cumulative effects on the highly lethal phenotype of the virus to ducks. The amino acid at position 338 in PA plays an important role in the activity of the polymerase and in the accumulation of the polymerase PA and PB1 subunits in the nucleus of virus-infected cells. Our results demonstrate that PA is a virulence factor of H5N1 avian influenza viruses.
引文
1.陈化兰(1999). "一株鹅源高致病性禽流感病毒分离株血凝素基因的分析."中国农业科学32(002): 87-92.
    2. CDC(1998). "Update: isolation of avian influenza A(H5N1) viruses from humans--Hong Kong, 1997-1998." MMWR Morb Mortal Wkly Rep 46(52-53): 1245-1247.
    3. Alonso-Caplen, F. V. and R. M. Krug (1991). "Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA." Mol Cell Biol 11(2): 1092-1098.
    4. Argos, P. (1988). "A sequence motif in many polymerases." Nucleic acids research 16(21): 9909.
    5. Barclay, W. S. and P. Palese (1995). "Influenza B viruses with site-specific mutations introduced into the HA gene." J Virol 69(2): 1275-1279.
    6. Barrett, T., A. J. Wolstenholme, et al. (1979). "Transcription and replication of influenza virus RNA." Virology 98(1): 211-225.
    7. Barry, J. (2005). The great influenza: the epic story of the deadliest plague in history, Penguin Group USA.
    8. Baudin, F., I. Petit, et al. (2001). "In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein." Virology 281(1): 102-108.
    9. Beaton, A. R. and R. M. Krug (1981). "Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo." Nucleic Acids Res 9(17): 4423-4436.
    10. Beaton, A. R. and R. M. Krug (1986). "Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5' capped end." Proc Natl Acad Sci U S A 83(17): 6282-6286.
    11. Biswas, S. K. and D. P. Nayak (1994). "Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1." J Virol 68(3): 1819-1826.
    12. Blaas, D., E. Patzelt, et al. (1982). "Cap-recognizing protein of influenza virus." Virology 116(1): 339-348.
    13. Blaas, D., E. Patzelt, et al. (1982). "Identification of the cap binding protein of influenza virus." Nucleic Acids Res 10(15): 4803-4812.
    14. Bouloy, M., M. A. Morgan, et al. (1979). "Cap and internal nucleotides of reovirus mRNA primers are incorporated into influenza viral complementary RNA during transcription in vitro." J Virol 32(3): 895-904.
    15. Bouloy, M., S. J. Plotch, et al. (1978). "Globin mRNAs are primers for the transcription of influenza viral RNA in vitro." Proc Natl Acad Sci U S A 75(10): 4886-4890.
    16. Bouloy, M., S. J. Plotch, et al. (1980). "Both the 7-methyl and the 2'-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription." Proc Natl Acad Sci U S A 77(7): 3952-3956.
    17. Braam, J., I. Ulmanen, et al. (1983). "Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription." Cell 34(2): 609-618.
    18. Brownlee, G. and J. Sharps (2002). "The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter." Journal of virology 76(14): 7103.
    19. Bullido, R., P. Gomez-Puertas, et al. (2001). "Influenza A virus NEP (NS2 protein) downregulates RNA synthesis of model template RNAs." The Journal of Virology 75(10): 4912.
    20. Burnet, F. and D. Lush (1937). "INFLUENZA VIRUS OF THE DEVELOPING EGG." The Australian journal of experimental biology and medical science: 369.
    21. Castrucci, M. R. and Y. Kawaoka (1995). "Reverse genetics system for generation of an influenza A virus mutant containing a deletion of the carboxyl-terminal residue of M2 protein." J Virol 69(5): 2725-2728.
    22. Caton, A. and S. Robertson (1980). "Structure of the host-derived sequences presentat the 5'ends of influenza virus mRNA." Nucleic acids research 8(12): 2591.
    23. Chen, H., G. Deng, et al. (2004). "The evolution of H5N1 influenza viruses in ducks in southern China." Proc Natl Acad Sci U S A 101(28): 10452-10457.
    24. Chen, H., Y. Li, et al. (2006). "Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China." J Virol 80(12): 5976-5983.
    25. Cianci, C., L. Tiley, et al. (1995). "Differential activation of the influenza virus polymerase via template RNA binding." J Virol 69(7): 3995-3999.
    26. Claas, E. C., A. D. Osterhaus, et al. (1998). "Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus." Lancet 351(9101): 472-477.
    27. Cohen, J. (2009). "Swine flu outbreak. Out of Mexico? Scientists ponder swine flu's origins." Science 324(5928): 700-702.
    28. Conenello, G. M., D. Zamarin, et al. (2007). "A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence." PLoS Pathog 3(10): 1414-1421.
    29. de la Luna, S., J. Martin, et al. (1993). "Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses." Journal of General Virology 74(3): 535.
    30. de Wit, E., M. Spronken, et al. (2007). "A reverse-genetics system for Influenza A virus using T7 RNA polymerase." Journal of General Virology 88(4): 1281.
    31. Deng, T., O. G. Engelhardt, et al. (2006). "Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex." J Virol 80(24): 11911-11919.
    32. Deng, T., F. Vreede, et al. (2006). "Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication." Journal of virology 80(5): 2337.
    33. Deshpande, K. L., V. A. Fried, et al. (1987). "Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence." Proc Natl Acad Sci U S A 84(1): 36-40.
    34. Dhar, R., R. M. Chanock, et al. (1980). "Nonviral oligonucleotides at the 5' terminus of cytoplasmic influenza viral mRNA deduced from cloned complete genomic sequences." Cell 21(2): 495-500.
    35. Enami, M., W. Luytjes, et al. (1990). "Introduction of site-specific mutations into the genome of influenza virus." Proceedings of the National Academy of Sciences of the United States of America 87(10): 3802.
    36. Enami, M. and P. Palese (1991). "High-efficiency formation of influenza virus transfectants." J Virol 65(5): 2711-2713.
    37. Enami, M., G. Sharma, et al. (1991). "An influenza virus containing nine different RNA segments." Virology 185(1): 291-298.
    38. Falcon, A. M., R. M. Marion, et al. (2004). "Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein." J Virol 78(8): 3880-3888.
    39. Ferko, B., J. Stasakova, et al. (2001). "Hyperattenuated recombinant influenza A virus nonstructural-protein-encoding vectors induce human immunodeficiency virus type 1 Nef-specific systemic and mucosal immune responses in mice." J Virol 75(19): 8899-8908.
    40. Fodor, E., M. Crow, et al. (2002). "A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs." J Virol 76(18): 8989-9001.
    41. Fodor, E., L. Devenish, et al. (1999). "Rescue of influenza A virus from recombinant DNA." J Virol 73(11): 9679-9682.
    42. Fodor, E., D. Pritlove, et al. (1994). "The influenza virus panhandle is involved in the initiation of transcription." Journal of virology 68(6): 4092.
    43. Fortes, P., A. Beloso, et al. (1994). "Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport." The EMBO Journal 13(3): 704.
    44. Fouchier, R. A., V. Munster, et al. (2005). "Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls." J Virol 79(5):2814-2822.
    45. Gabriel, G., A. Herwig, et al. (2008). "Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus." PLoS Pathog 4(2): e11.
    46. Garaigorta, U., A. M. Falcon, et al. (2005). "Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles." J Virol 79(24): 15246-15257.
    47. Garten, R., C. Davis, et al. (2009). "Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans." Science 325(5937): 197.
    48. Gastaminza, P., B. Perales, et al. (2003). "Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription." Journal of virology 77(9): 5098.
    49. Gomez-Puertas, P., I. Mena, et al. (1999). "Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins." J Gen Virol 80 ( Pt 7): 1635-1645.
    50. Hagen, M., T. Chung, et al. (1994). "Recombinant influenza virus polymerase: requirement of both 5'and 3'viral ends for endonuclease activity." Journal of virology
    68(3): 1509.
    51. Hara, K., F. I. Schmidt, et al. (2006). "Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding." J Virol 80(16): 7789-7798.
    52. Hatta, M., P. Gao, et al. (2001). "Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses." Science 293(5536): 1840-1842.
    53. Hatta, M. and Y. Kawaoka (2005). "[Clue to the molecular mechanism of virulence of highly pathogenic H5N1 avian influenza viruses isolated in 2004]." Uirusu 55(1):
    55-61.
    54. Hatta, M., G. Neumann, et al. (2001). "Reverse genetics approach towards understanding pathogenesis of H5N1 Hong Kong influenza A virus infection." Philos Trans R Soc Lond B Biol Sci 356(1416): 1841-1843.
    55. Hay, A. J., J. J. Skehel, et al. (1982). "Characterization of influenza virus RNA complete transcripts." Virology 116(2): 517-522.
    56. Herzberg, K., G. May, et al. (1958). "[Results of study of the influenza pandemic 1957-1958.]." Z Hyg Infektionskr 145(2): 111-122.
    57. Hirst, G. (1942). "The quantitative determination of influenza virus and antibodies by means of red cell agglutination." The Journal of Experimental Medicine 75(1): 49.
    58. Hoffmann, E., K. Mahmood, et al. (2002). "Rescue of influenza B virus from eight plasmids." Proc Natl Acad Sci U S A 99(17): 11411-11416.
    59. Hoffmann, E. and R. G. Webster (2000). "Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids." J Gen Virol 81(Pt 12): 2843-2847.
    60. Honda, A., J. Mukaigawa, et al. (1990). "Purification and molecular structure of RNA polymerase from influenza virus A/PR8." J Biochem 107(4): 624-628.
    61. Horimoto, T. and Y. Kawaoka (1994). "Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus." J Virol 68(5): 3120-3128.
    62. Horimoto, T. and Y. Kawaoka (2001). "Pandemic threat posed by avian influenza A viruses." Clin Microbiol Rev 14(1): 129-149.
    63. Horimoto, T., E. Rivera, et al. (1995). "Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico." Virology 213(1): 223-230.
    64. Huang, T. S., P. Palese, et al. (1990). "Determination of influenza virus proteins required for genome replication." J Virol 64(11): 5669-5673.
    65. Huarte, M., A. Falcon, et al. (2003). "Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses." J Virol 77(10): 6007-6013.
    66. Huarte, M., J. J. Sanz-Ezquerro, et al. (2001). "PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family oftranscriptional activators." J Virol 75(18): 8597-8604.
    67. Hulse-Post, D. J., K. M. Sturm-Ramirez, et al. (2005). "Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia." Proc Natl Acad Sci U S A 102(30): 10682-10687.
    68. Jiao, P., G. Tian, et al. (2008). "A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice." J Virol 82(3): 1146-1154.
    69. Johnson, N. P. and J. Mueller (2002). "Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic." Bull Hist Med 76(1): 105-115.
    70. Kawaguchi, A., T. Naito, et al. (2005). "Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes." J Virol 79(2): 732-744.
    71. Kawaoka, Y. and R. G. Webster (1988). "Molecular mechanism of acquisition of virulence in influenza virus in nature." Microb Pathog 5(5): 311-318.
    72. Khan, K., J. Arino, et al. (2009). "Spread of a novel influenza A (H1N1) virus via global airline transportation." N Engl J Med 361(2): 212-214.
    73. Kilbourne, E. D. (2006). "Influenza pandemics of the 20th century." Emerg Infect Dis
    12(1): 9-14.
    74. Kobayashi, M., T. Toyoda, et al. (1996). "Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase." Arch Virol 141(3-4): 525-539.
    75. Krug, R. M., B. A. Broni, et al. (1979). "Are the 5' ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs?" Cell 18(2): 329-334.
    76. Lafay, J., D. Bourgeois, et al. (1961). "[Some remarks on the clinical and serological aspects of the 1957-1958 pandemic of influenza (type A2) in the aged.]." Rev Prat 11: 2865-2870.
    77. Lala, S. and V. Chowb (2007). "Avian influenza H5N1 virus: an emerging global pandemic." Issues 4: 59-77.
    78. Lamb, R., R. Krug, et al. (1996). "Orthomyxoviridae: the viruses and their replication."
    79. Lee, M. T., K. Klumpp, et al. (2003). "Activation of influenza virus RNA polymerase by the 5' and 3' terminal duplex of genomic RNA." Nucleic Acids Res 31(6): 1624-1632.
    80. Li, M. L., P. Rao, et al. (2001). "The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits." EMBO J 20(8): 2078-2086.
    81. Li, S., M. Xu, et al. (1995). "Electroporation of influenza virus ribonucleoprotein complexes for rescue of the nucleoprotein and matrix genes." Virus Res 37(2):
    153-161.
    82. Li, S. Q., J. L. Schulman, et al. (1992). "Influenza A virus transfectants with chimeric hemagglutinins containing epitopes from different subtypes." J Virol 66(1):
    399-404.
    83. Li, Z., H. Chen, et al. (2005). "Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model." J Virol 79(18): 12058-12064.
    84. Li, Z., Y. Jiang, et al. (2006). "The NS1 gene contributes to the virulence of H5N1 avian influenza viruses." J Virol 80(22): 11115-11123.
    85. Liu, J., H. Xiao, et al. (2005). "Highly pathogenic H5N1 influenza virus infection in migratory birds." Science 309(5738): 1206.
    86. Louria, D. B., H. L. Blumenfeld, et al. (1959). "Studies on influenza in the pandemic of 1957-1958. II. Pulmonary complications of influenza." J Clin Invest 38(1 Part 2): 213-265.
    87. Luytjes, W., M. Krystal, et al. (1989). "Amplification, expression, and packaging of foreign gene by influenza virus." Cell 59(6): 1107-1113.
    88. Marion, R. M., T. Zurcher, et al. (1997). "Influenza virus NS1 protein interacts with viral transcription-replication complexes in vivo." J Gen Virol 78 ( Pt 10): 2447-2451.
    89. Mark, G. E., J. M. Taylor, et al. (1979). "Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and alpha-amanitin." J Virol 29(2): 744-752.
    90. Martin, K. and A. Helenius (1991). "Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import." Cell 67(1): 117-130.
    91. Massin, P., P. Rodrigues, et al. (2005). "Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells." J Virol 79(21): 13811-13816.
    92. McAuley, J. L., F. Hornung, et al. (2007). "Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia." Cell Host Microbe 2(4): 240-249.
    93. Mena, I., A. Vivo, et al. (1996). "Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids." J Virol 70(8): 5016-5024.
    94. Mukaigawa, J. and D. P. Nayak (1991). "Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2." J Virol 65(1): 245-253.
    95. Mullin, A., R. Dalton, et al. (2004). "Increased amounts of the influenza virus nucleoprotein do not promote higher levels of viral genome replication." Journal of General Virology 85(12): 3689.
    96. Muster, T., B. Ferko, et al. (1995). "Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus." J Virol 69(11): 6678-6686.
    97. Naffakh, N., P. Massin, et al. (2001). "The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit." Virology 285(2): 244-252.
    98. Naito, T., F. Momose, et al. (2007). "Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits." J Virol 81(3): 1339-1349.
    99. Nakajima, K., U. Desselberger, et al. (1978). "Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950." Nature 274(5669): 334-339.
    100. Nath, S. T. and D. P. Nayak (1990). "Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1)." Mol Cell Biol 10(8): 4139-4145.
    101. Neumann, G., K. Fujii, et al. (2005). "An improved reverse genetics system for influenza A virus generation and its implications for vaccine production." Proc Natl Acad Sci U S A 102(46): 16825-16829.
    102. Neumann, G. and G. Hobom (1995). "Mutational analysis of influenza virus promoter elements in vivo." J Gen Virol 76 ( Pt 7): 1709-1717.
    103. Neumann, G., T. Watanabe, et al. (1999). "Generation of influenza A viruses entirely from cloned cDNAs." Proc Natl Acad Sci U S A 96(16): 9345-9350.
    104. Neumann, G., T. Watanabe, et al. (2000). "Plasmid-driven formation of influenza virus-like particles." J Virol 74(1): 547-551.
    105. Neumann, G., A. Zobel, et al. (1994). "RNA polymerase I-mediated expression of influenza viral RNA molecules." Virology 202(1): 477-479.
    106. Nieto, A., S. de la Luna, et al. (1994). "Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit." J Gen Virol 75 ( Pt 1): 29-36.
    107. Ozawa, M., H. Goto, et al. (2007). "An adenovirus vector-mediated reverse genetics system for influenza A virus generation." J Virol 81(17): 9556-9559.
    108. Parvin, J. D., P. Palese, et al. (1989). "Promoter analysis of influenza virus RNA polymerase." J Virol 63(12): 5142-5152.
    109. Peiris, J. S., L. L. Poon, et al. (2009). "Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans." J Clin Virol 45(3): 169-173.
    110. Perales, B., J. J. Sanz-Ezquerro, et al. (2000). "The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis." J Virol 74(3): 1307-1312.
    111. Perez-Gonzalez, A., A. Rodriguez, et al. (2006). "hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator." J Mol Biol 362(5): 887-900.
    112. Perez, D. R. and R. O. Donis (1998). "The matrix 1 protein of influenza A virus inhibits the transcriptase activity of a model influenza reporter genome in vivo." Virology 249(1): 52-61.
    113. Pleschka, S., R. Jaskunas, et al. (1996). "A plasmid-based reverse genetics system for influenza A virus." J Virol 70(6): 4188-4192.
    114. Plotch, S. J., M. Bouloy, et al. (1981). "A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription." Cell 23(3): 847-858.
    115. Poch, O., I. Sauvaget, et al. (1989). "Identification of four conserved motifs among the RNA-dependent polymerase encoding elements." The EMBO Journal 8(12): 3867.
    116. Poon, L., D. Pritlove, et al. (1999). "Direct evidence that the poly (A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template." Journal of virology 73(4): 3473.
    117. Poon, L. L., E. Fodor, et al. (2000). "Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export." J Virol 74(1): 418-427.
    118. Portela, A., T. Zurcher, et al. (1999). "Replication of orthomyxoviruses." Adv Virus Res 54: 319-348.
    119. Rao, P., W. Yuan, et al. (2003). "Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis." EMBO J 22(5): 1188-1198.
    120. Regan, J. F., Y. Liang, et al. (2006). "Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA." J Virol 80(1): 252-261.
    121. Reid, A. H., T. G. Fanning, et al. (1999). "Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene." Proc Natl Acad Sci U S A 96(4): 1651-1656.
    122. Robertson, H. D., E. Dickson, et al. (1980). "Identification of the RNA region transferred from a representative primer, beta-globin mRNA, to influenza mRNA during in vitro transcription." Nucleic Acids Res 8(5): 925-942.
    123. Rolling, T., I. Koerner, et al. (2009). "Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice." J Virol 83(13): 6673-6680.
    124. Rowley, K. V., R. Harvey, et al. (1999). "Isolation and characterization of a transfectant influenza B virus altered in RNA segment 6." J Gen Virol 80 ( Pt 9): 2353-2359.
    125. Sanz-Ezquerro, J. J., J. Fernandez Santaren, et al. (1998). "The PA influenza virus polymerase subunit is a phosphorylated protein." J Gen Virol 79 ( Pt 3): 471-478.
    126. Scholtissek, C. and R. Rott (1970). "Synthesis in vivo of influenza virus plus and minus strand RNA and its preferential inhibition by antibiotics." Virology 40(4): 989-996.
    127. Scholtissek, C., V. Von Hoyningen, et al. (1978). "Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1)." Virology 89(2): 613-617.
    128. Seo, S. H., E. Hoffmann, et al. (2004). "The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses." Virus Res 103(1-2): 107-113.
    129. Shapiro, G. I. and R. M. Krug (1988). "Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer." J Virol 62(7): 2285-2290.
    130. Shaw, M. W. and R. A. Lamb (1984). "A specific sub-set of host-cell mRNAs prime influenza virus mRNA synthesis." Virus Res 1(6): 455-467.
    131. Shimizu, K., H. Handa, et al. (1994). "Regulation of influenza virus RNA polymerase activity by cellular and viral factors." Nucleic Acids Res 22(23): 5047-5053.
    132. Shimizu, K., A. Iguchi, et al. (1999). "Influenza virus inhibits cleavage of the HSP70 pre-mRNAs at the polyadenylation site." Virology 254(2): 213-219.
    133. Simonsen, L., M. J. Clarke, et al. (1998). "Pandemic versus epidemic influenza mortality: a pattern of changing age distribution." J Infect Dis 178(1): 53-60.
    134. Smeenk, C. A. and E. G. Brown (1994). "The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth." J Virol 68(1): 530-534.
    135. Song, M. S., P. N. Pascua, et al. (2009). "The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model." J Virol 83(23): 12325-12335.
    136. Sturm-Ramirez, K. M., T. Ellis, et al. (2004). "Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks." J Virol 78(9): 4892-4901.
    137. Sturm-Ramirez, K. M., D. J. Hulse-Post, et al. (2005). "Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia?" J Virol 79(17): 11269-11279.
    138. Subbarao, E. K., Y. Kawaoka, et al. (1993). "Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation." J Virol 67(12): 7223-7228.
    139. Subbarao, K., A. Klimov, et al. (1998). "Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness." Science 279(5349): 393-396.
    140. Taubenberger, J., D. Morens, et al. (2006). "1918 influenza: the mother of all pandemics." Rev Biomed 17: 69-79.
    141. Taylor, J. M., R. Illmensee, et al. (1977). "Use of specific radioactive probes to study transcription and replication of the influenza virus genome." J Virol 21(2): 530-540.
    145. Toyoda, T., M. Kobayashi, et al. (1996). "Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis." Virus Genes
    12(2): 155-163.
    146. Ulmanen, I., B. Broni, et al. (1981). "Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription." Proceedings of the National Academy of Sciences of the United States of America 78(12): 7355.
    147. Vreede, F., T. Jung, et al. (2004). "Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates." The Journal of Virology 78(17): 9568.
    148. Wakefield, L. and G. G. Brownlee (1989). "RNA-binding properties of influenza A virus matrix protein M1." Nucleic Acids Res 17(21): 8569-8580.
    149. Wang, Z. and G. M. Duke (2007). "Cloning of the canine RNA polymerase I promoter and establishment of reverse genetics for influenza A and B in MDCK cells." Virol J 4: 102.
    150. Webster, R. G., W. J. Bean, et al. (1992). "Evolution and ecology of influenza A viruses." Microbiol Rev 56(1): 152-179.
    151. Yasuda, J., D. J. Bucher, et al. (1994). "Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimeric M gene." J Virol 68(12): 8141-8146.
    152. Ye, Z., T. Liu, et al. (1999). "Association of influenza virus matrix protein with ribonucleoproteins." J Virol 73(9): 7467-7473.
    153. Yuan, P., M. Bartlam, et al. (2009). "Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site." Nature 458(7240): 909-913.
    154. Zvonarjev, A. Y. and Y. Z. Ghendon (1980). "Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine." J Virol 33(2): 583-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700