鸡传染性支气管炎病毒感染HeLa细胞的研究及其天然受体的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性支气管炎(Avian Infectious Bronchitis,IB)是由鸡传染性支气管炎病毒(Infectious Bronchitis Virus,IBV)引起的一种高度接触性的病毒性传染病。主要引起鸡的呼吸系统疾病、肾炎并伴随产蛋量和蛋品质的下降。IBV属于冠状病毒科(Coronaviridae),为单股正链RNA病毒。大部分冠状病毒具有宿主特异性和组织嗜性,只能侵染天然宿主和一些亲缘关系极其相近的宿主。以前的研究认为IBV只能感染鸡,但近两年相继在其他一些鸡形目的动物体内分离到IBV样病毒,如孔雀、几内亚鸡和鹧鸪等,这些分离的毒株在基因结构上与IBV很相似,基因序列的同源性甚至达到99%以上;而在非鸡形目动物如鸭、鸽子和灰雀等的体内分离到的病毒,通过基因组序列比对发现,虽然它们在氨基酸同源性上与IBV存在一定的差异,但依然属于第3群冠状病毒的范畴。
     IBV这种从感染单一宿主延伸到更多的其他动物的现象,让人联想到2002年爆发的“严重急性呼吸系统综合症”(Severe acute respiratory syndrome,SARS),它的病原是一种新的冠状病毒(严重急性呼吸系统综合症冠状病毒,SARS-CoV),而在多种动物体内分离到的SARS-CoV样冠状病毒说明SARS-CoV极有可能最初起源于动物。因此,研究动物冠状病毒与SARS-CoV的关系及冠状病毒跨越物种屏障的机制很有必要。
     基于此,本研究以IBV为模式病毒,将其跨种感染人源细胞HeLa,探讨动物冠状病毒跨种感染的机制,同时对IBV跨种感染过程中起到关键作用的因子进行了研究,另外也鉴定了IBV的天然受体。主要研究内容如下:
     1、不同IBV毒株跨种感染HeLa细胞的研究
     7个不同的IBV毒株,包括M41、H52、H120、Gray、Holte、Connecticut和M52-19(Beaudette52-19),分别接种单层和刚刚消化的HeLa细胞。结果显示这些毒株均不能在单层的HeLa细胞上增殖;而M41、H52、H120和Gray可以在刚刚新鲜消化的HeLa细胞上增殖,并会导致HeLa细胞发生明显的病变,剩余的3个毒株Holte、Connecticut和M52-19却不能。通过观察是否产生细胞病变及中和实验、S1基因的RT-PCR扩增、血凝及血凝抑制、病毒N蛋白的Westem blotting检测等方面来证实感染的真实性。
     2、S1基因的变异在IBV跨种感染过程中的作用
     M41毒株在新鲜消化的HeLa细胞上持续传26代,RT-PCR扩增第1代、第5代和第21代病毒的S1基因,结果显示第1代跟第5代S1基因的序列完全一致,而第21代与第1代相比也仅仅只有一个碱基(A728G)的改变,导致一个氨基酸的变异。然而这唯一的一个点突变对IBV的跨种感染似乎没有决定性的作用。
     3、病毒血凝价的改变与跨种感染的关系
     据报道IBV经胰酶或磷酸脂酶C处理后可以凝集0.5%的新鲜制备的鸡红细胞。本研究发现在上述7个IBV的毒株中,M41、H52、H120和Gray经磷酸脂酶处理后可以凝集鸡红细胞,而另外3个毒株Holte、Connecticut和M52-29则不能凝集;另一方面,M41在HeLa细胞上持续传代会导致M41的血凝价逐渐下降;但这些传代的细胞毒(低或无血凝性)接种鸡胚后,尿囊液中的病毒会重新获得较高的血凝价。可见具有血凝性的IBV毒株更易于适应异源细胞。
     4、唾液酸糖蛋白(脂)在IBV跨种感染过程中的作用
     某些冠状病毒可以利用细胞表面的唾液酸糖蛋白(脂)作为进入细胞的受体,而神经氨酸酶(NA)可以降解细胞表面的唾液酸糖蛋白(脂),这样就会降低病毒感染的几率。根据这一原理,将IBV感染经NA处理和未处理的HeLa细胞,对比发现IBV在NA处理过的HeLa细胞的感染滴度明显降低,说明唾液酸糖蛋白(脂)在IBV感染HeLa细胞的过程中起到重要的作用。
     5、氨基肽酶N、胰酶和EDAT对IBV跨种感染的作用
     氨基肽酶(APN)是很多冠状病毒的受体,通过封闭细胞表面APN的受体功能可以达到阻断病毒感染细胞的目的。用鼠抗人氨基肽酶(hAPN)的单克隆抗体(WM15)封闭HeLa细胞表面的氨基肽酶的活性,结果发现这种封闭并没有阻断IBV感染HeLa细胞,这说明hAPN不是IBV感染HeLa细胞的途径。
     以前的研究证实胰酶可以提高某些病毒的滴度。先确定胰酶的安全浓度,然后在IBV接种后将此安全浓度胰酶添加到的细胞培养液里,结果显示添加了胰酶的IBV的感染力与单独使用IBV是一样的;另外,IBV对经EDTA消化HeLa细胞与经胰酶消化的HeLa细胞的感染滴度是相同的。这说明胰酶、EDTA不是IBV跨种感染所必需的。
     6、鉴定IBV的天然受体
     研究证实IBV的一个毒株(Ark99)可以利用猫的氨基肽酶(fAPN)作为细胞受体。本研究通过克隆鸡的APN(gAPN),探讨gAPN作为IBV天然受体的可能性。
     RT-PCR扩增到全长的gAPN基因,分别在原核和真核表达载体中进行表达。将原核表达的gAPN蛋白进行的ELISA及Westem blotting试验证实原核表达的gAPN蛋白在体外可以与IBV结合,而且这种结合可以被针对gAPN的抗体阻断。
     将gAPN转染IBV的非敏感细胞(PK-15、HeLa),构建真核表达体系。通过间接免疫荧光、流式细胞术、半定量RT-PCR等试验证实IBV可以在这些转染后细胞上增殖。首次证明gAPN是IBV的天然受体之一。
Avian Infectious Bronchitis (IB) is a highly contacting viral infection of the domesticfowl (Gallus gallus; more commonly known as the chicken) by infectious bronchitis virus(IBV). It can cause respiratory disease, kidney inflammation with low production andpoor quality of eggs. IBV is a positive-stranded RNA virus, belonging to Coronaviridae.The previous researches indicated IBV replicated only in chicken, like most coronavirusesnaturally infecting only one animal species or, at most, a limited number of closely relatedspecies. In recent years, there is increasing evidence that IBV can infect species of birdother than the chicken. Coronaviruses have been isolated from peafowl (Pavo), guineafowl (Nurnida meleagris), partridage (Alectoris), all of which were being reared in thevicinity of domestic fowl. These viruses were closely related in genome organization toIBV, and the homology in gene sequences exceeded 99% in some strains. Moreover, somecoronaviruses have been isolated from non-gallinaceous birds, the teal (Anas) and greylaggoose. These coronaviruses are not closely related in terms of gene sequences to IBV. Andas a result, they are clearly not simply isolates of IBV, but represent new coronavirusspecies.
     The phenomenon of IBV is not limited to replicating in a single host species, whichwas highlighted by the spread of SARS-coronavirus from mammals, like civet cat andbat.
     Individual coronaviruses had often been described as infecting their hosts in aspecies-species manner. The emergence of SARS-CoV and fragments of somecoronaviruses cross-species infecting make it clear that we should not assume that a givencoronavirus species is limited to replication in a single host. It is necessary to probe intorelationship between animal coronaviruses and SARS-CoV, and the mechanism ofcoronavirus carrying out cross-species infection.
     Most IBV strains grow poorly in cell culture except in primary chicken kidney cells.Studies on IBV growth in cell culture would be essential to understand the interactionbetween the coronaviruses and cells, and mechanism of coronavirus cross-speciesinfection. In this thesis, the investigation was undertaken to elucidate the potential factorsthat involve in IBV infection of HeLa cells, and identify the natural receptor of IBV. Themain projects are:
     1: IBV propagation in HeLa cells
     Allantoic fluid of IBV strains including M41, H52, H120, Gray, Holte, Connecticutand M52-19 (a Beaudette52-19 strain) containing IBV 5×10~(304) EID50 was inoculated intoconfluent HeLa monolayers or freshly digested HeLa with 0.25% trypsin. All of them could not propagate in HeLa cell monolayers. However, the strains M41, H52, H120 andGray, but not Holte, Connecticut and M52-19, could propagate in freshly digested HeLacells. Cytopathic effect was characteristic of cell rounding, congregating and detachingfrom the cellular sheets, was produced in infected cells. The infection were verified fromneutralization test, alignment sequences of S1 gene from several IBV passages,haemagglutination and haemagglutination-inhibition test, detection of viral N protein byWestern blotting and so on.
     2: Mutation in S1 gene contributing to the infection of IBV
     Reverse transcription PCR (RT-PCR) was performed to amplify the spike (S1) gene(1025bp) of IBV after different passages. S1 sequences for AY561712 (GenBank), P0,and P5 remained the same. However, one nucleotide mutation was found in P21 S1leading to one amino acid replacement. In our test, the mutation in S1 gene seemed notthe major reasons responsible for IBV tropism switch.
     3: Relationship between HA activity and cross-species infection of IBV
     After treated with lecithinase C, the strains M41, H52, H120 and Gray, but notHolte, Connecticut and M52-19, could haemagglutinate 0.5% chicken erythrocytes.
     We also found the viral HA activity to chicken erythrocytes was significantlydecreased with increased passages in HeLa cells. When the HeLa adapted IBV wasinoculated back to the chicken embryo, IBV HA activity was restored. It seemed that thestrains, which have HA activity, were easier to be adapted in more species cells.
     4: Sialic acid was involved into IBV infecting HeLa cells
     Sialic acid can serve as a receptor for Group 2 coronavirus, e.g. BCoV andHCoV-OC43. Neuraminidase could remove sialic acid from cellular surface and thusblock the attachment of these viruses to host cells. Our results agreed with these findings.When the freshly dispersed HeLa cells were treated with NA, the virus TCID_(50) wasreduced by 13 fold compared with those untreated HeLa. Furthermore, the HA activity ofIBV is determined by the capability of the virus to attach to sialic acid on the surface ofred blood cells. These results denoted that binding to sialic acid may be useful for IBV toinfect cells.
     5: The function of Aminopeptidase N and trypsin in IBV cross-species infection
     A number of group 1 coronaviruses require the aminopeptidase N (APN) for entryinto their target cells, and trypsin was reported to be able to markedly enhance infectivityof various viruses in vitro. In our experiments, a monoclonal antibody, WM15, could notblock IBV infection of human HeLa ceil line. The trypsin also could not raise the titer ofIBV.
     6: Identify natural receptor of IBV
     Feline APN had been reported to serve as a receptor for Ark99 strain of IBV. Wecloned full length chicken (Gallus gallus) APN (gAPN) gene, and approached thepossibility of gAPN acting as a receptor for IBV.
     The gAPN were cloned into prokaryotic (pET-28a) and eukaryotic (PCI-neo)expression vectors. The recombinant protein were purled from prokaryotic bacteria hadactivity of binding to IBV in ELISA and Western blotting test, which could be blocked byantiserum against gAPN.
     HeLa and PK-15 cell monolayers that do not permit natural infection by IBV weretransfected with gAPN-neo plasmid. The transfected and non-transfected cells wereinoculated with IBV and viral binding and replication were determinded by indirectflurescent assay, flow cytometry and semi-quantity RT-PCR. The results indicated thatthe insensitive cells were permissive to IBV after transfection with a gAPN cDNA,suggesting the gAPN plays an essential role in IBV entry.
引文
1.J.萨姆布鲁克,EF 弗里奇,T 曼尼阿蒂斯著,金冬雁,黎孟枫等译.分子克隆实验指南.北京:科学出版社,1989.
    2.步志高,江国托,刘思国,等.鸡传染性支气管炎病毒我国地方分离株病原性和基因型的比较研究.畜牧兽医学报,1999,30(1):50-56.
    3.方宏清,陈惠鹏.冠状病毒S蛋白的结构和功能.生物技术通讯,2003,14(3):254-256
    4.江国托,刘思国,康丽娟等.我国鸡传染性支气管炎病毒地方流行毒S1基因的RT PCR扩增及其克隆与鉴定.中国兽医杂志,1999,25(4):325.
    5.兰喜,柳纪省.冠状病毒的分子生物学研究进展.基础医学与临床,2005,25(12):1095-1101.
    6.李文平.冠状病毒研究进展.中国兽药杂志,2003,37(6):31-35
    7.刘美丽,张兴晓,杨灵芝,王秀云.禽传染性支气管炎病毒S基因的研究进展.动物医学进展,2004,25(5):15-17
    8.刘思国,江国托,康丽娟等.鸡传染性支气管炎病毒中国分离株核蛋白基因的分子克隆.中国兽医学报,2000,20(3):216-218.
    9.吕桂霞,刁有祥,刘月林.鸡传染性支气管炎病毒的分子生物学研究进展.动物科学与动物医学,2002,19(2):40-42.
    10.潘欣,戚中田.SARS相关冠状病毒及其基因组.中国生物工程杂志,2003,23(5):1-5
    11.文心田主编.动物防疫检疫手册(第一版).成都:四川科学技术出版社,2004.
    12.吴延功等.鸡传染性支气管炎病毒血凝性的研究.南京农业大学学报,1995,18(1):75-78.
    13.许金俊,朱国强,许益民等.鸡传染性腺胃炎腺胃的初步调查.中国兽医杂志,1997,23(11):11-12.
    14.殷震,刘景华主编.动物病毒学(第二版).北京:科学出版社,1997.
    15.赵卫,龙北国,张文炳.SARS冠状病毒的起源研究进展.微生物通报,2006,33(3):138-141.
    16. Ambali A G and Jones R C. Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis, 1990, 34: 809-817.
    17. An S, Maeda A, Makino S. Coronavirus transcription early in infection. J Virol, 1998, 72: 8517-8524.
    18. Asanaka M and Lai MAC. Cell fusion studies identified multiple cellular factors involved in mouse hepatitis virus entry, Virology, 1993, 197: 732-741.
    19. Baker SC, Lai MM-C. An in vitro system for the leader-primed transcription of coronavirus mRNAs. EMBO J. 1990, 9: 4173-4179.
    20. Ballesteros ML, Sanchez CA, Enjuanes L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology, 1997, 227: 378-388.
    21. Ballesteros ML, Sanchez CM, Martin-Caballero J, Enjuanes L. Molecular bases of tropism in the PUR46 cluster of transmissible gastroenteritis coronaviruses. Adv Exp Med Biol, 1995, 380: 557-562.
    22. Banner LR and Lai MM. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology, 1991, 185:441-5.
    23. Banner LR, Keck JG, Lai MM-C. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology, 1990,175: 548-555.
    24. Barbezange C and Jestin V. Monitoring of pigeon paramyxovirus type-1 in organs of pigeons naturally infected with Salmonella Typhimurium. Avian Pathol, 2003, 32: 275-281.
    25. Barbezange C. and Jestin V. Molecular study of the quasispecies evolution of a typical pigeon paramyxovirus type 1 after serial passages in pigeons by contact. Avian Pathol, 2005, 34: 111-122.
    26. Baric RS and Yount B. Subgenomic negative-strand RNA function during mouse hepatitis virus infection. J Virol, 2000,74:4039-46.
    27. Baric RS, Fu K, Schaad MC, Stohlman SA. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology, 1990,177: 646-656.
    28. Baric RS, Fu K, Schaad MC, Stohlman SA. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology, 1990, 177:646-656.
    29. Baric RS, Shieh C-K, Stohlman SA, Lai MMC. Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription. Virology, 1987, 156:342-354.
    30. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999, 17: 657-700. Review.
    31. Bingham RW, Madge MH, Tyrrell DA. Haemagglutination by avian infectious bronchitis virus-a coronavirus. J Gen Virol, 1975,28:381-90.
    32. Bos ECW, Luytjes W, van der Meulen H, et al. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology, 1996,218: 52-60.
    33. Boursnell M, Brown T, Skinner M et al. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol, 1987,68: 57-77.
    34. Box P G, Beresford A W, Roberts B. Protection of laying hens against infectious bronchitis with inactivated emulsion vaccines. Vet. Rec, 1980, 106:264-268.
    35. Breslin JJ, Mork I, Smith MK, Vogel LK, Hemmila EM, Bonavia A, Talbot PJ, Sjostrom H, Noren O, Holmes KV. Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C. J Virol, 2003, 77: 4435-8.
    36. Brierley I, Jenner AJ, Inglis SC. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol, 1992,227:463-479.
    37. Britton P, Mawditt KL, Page KW. The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: Comparison with transmissible gastroenteritis virus genes. Virus Res, 1991,21: 181-198.
    38. Bui M, Whittaker G, Helenius A. Effect of Ml protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol, 1996,70: 8391-401.
    39. Calvo E, Escors D, Lopez JA, Gonzalez JM, Alvarez A, Arza E, Enjuanes L. Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J Gen Virol, 2005, 86: 2255-67.
    40. Capua I, Minta Z, Karpinska E, Mawditt K, Britton P, Cavanagh D, Gough R E. Cocirculation of four types of infectious bronchitis virus (793/B 624/I B1648 and Massachusetts). Avian Pathol. 1999,28:587-592.
    41. Capua I, Terregino C, Cattoli G Toffan A. Increased resistance of vaccinated turkeys to experimental infection with an H7N3 low-pathogenicity avian influenza virus. Avian Pathol, 2004, 33: 158-163.
    42. Carlos M,Sdnchez Ander lzeta, Jose M. SanchezMorgado,et al.Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus Is a Determinant of Its Enteric Tropism and Virutence. J Virol, 1999, 73: 7607-7618.
    43. Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol, 2003, 77: 9084-9.
    44. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol, 2001,75: 12359-69.
    45. Cavanagh D and Davis PJ. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol, 1988, 69: 621-9.
    46. Cavanagh D and Naqi S, Infectious bronchitis, in: Saif Y.M., Barnes H.J., Glisson J.R., Fadly A.M., McDougald L.R., Swayne D.E. (Eds.), Diseases of poultry, Iowa, 11th edition, Ames, Iowa State University Press, 2003, pp. 101-119.
    47. Cavanagh D, Davis P J, Cook J K A, Li D, Kant A, Koch G Location of the amino-acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious-bronchitis virus. Avian Pathol, 1992a, 21: 33-43.
    48. Cavanagh D, Davis P J,.Darbyshire J H, Peters R W. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody or induce chicken tracheal protection. J. Gen. Virol, 1986a, 67: 1435-1442.
    49. Cavanagh D, Davis P J, Pappin D J, Binns M M, Boursnell M E, Brown T D. Coronavirus IBV: Partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res, 1986b, 4: 133-143.
    50. Cavanagh D, Picault J R, Gough R, Hess M, Mawditt K, Britton P. Variation in the spike protein of the 793/B type of infectious bronchitis virus in the field and during alternate passage in chickens and embryonated eggs. Avian Pathol, 2005, 34: 20-25.
    51. Cavanagh D. Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997, 142: 629-233
    52. Cavanagh D. Recent advances in avian virology. Br Vet J, 1992b, 48: 199-222.
    53. Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology, 2000,269: 212-24.
    54. Chang RY, Hofman MA, Sethna PB, Brian DA. A cis-acting function for the coronavirus leader in defective-interfering RNA replication. J Virol, 1994, 68: 8223-8231.
    55. Chang RY, Krishnan R, Brian DA. The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. J Virol, 1996, 70: 2720-2729.
    56. Charley B, Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1.J Virol, 1988,62:8-11.
    57. Chen CJ, Sugiyama K, Kubo H, Huang C, Makino S. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. J Virol, 2004, 78: 10410-9.
    58. Chen DS, Asanaka M, Chen FS, Shively JE, Lai MM. Human carcinoembryonic antigen and biliary glycoprotein can serve as mouse hepatitis virus receptors. J Virol, 1997, 71:1688-91.
    59. Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, Dee M, Hiscox JA. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol, 2005,79: 1164-79.
    60. Choi, K. S., Huang, P., and Lai, M. M. C. Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA. Virology, 2002, 303: 58-68.
    61. Christine K, Graham D, Yolken R, et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of TGEV. J Viro, 1997, 7: 3285 - 3287.
    62. Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology, 1982,119:358-71.
    63. Collisson E W, Parr R L, Li W, Williams A K. An overview of the molecular characteristics of avian infectious bronchitis virus. Poultry Science Rev, 1992,4: 41-55.
    64. Collisson EW, Li JZ, Sneed LW, Peters ML, Wang L. Detection of avian infectious bronchitis viral infection using in situ hybridization and recombinant DNA. Vet Microbiol, 1990, 24: 261-71.
    65. Collisson EW, Pei J, Dzielawa J, Seo SH. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol, 2000,24: 187-200. Review.
    66. Cologna R, Spagnolo JF, Hogue BG Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology, 2000, 277:235-49.
    67. Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ. In vitro replication of mouse hepatitis virus strain A59.J Virol, 1987,61: 1814-20.
    68. Cook J K A, Orbell S J, Woods M A, Huggins M.B. Breadth of protection of the respiratory tract provided by different liveattenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous types. Avian Pathol, 1999, 28: 471-479.
    69. Cook J K, Smith H W, Huggins M B. Infectious bronchitis immunity: its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli. J. Gen. Virol, 1986,67:1427-1434.
    70. Cornelissen L, A Wierda C M, van der Meer, F J Herrewegh, A A Horzinek, M C Egberink, H F, de Groot, R J. Hemagglutinin-esterase, a novel structural protein of torovirus. J. Virol, 1997, 71: 5277-5286.
    71. Corse E, Machamer CE. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol, 2002, 76: 1273-84.
    72. Coutelier JP, Godfraind C, Dveksler GS, Wysocka M, Cardellichio CB, Noel H, Holmes KV. B lymphocyte and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus. Eur J Immunol, 1994,24: 1383-90.
    73. Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJ, Wege H, Talbot PJ. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure. J Virol, 1993,67: 1185-94.
    74. de Haan CA, Masters PS, Shen X, Weiss S. Rottier PJ. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology, 2002,296: 177-189.
    75. de Haan, C. A. M, de Wit, M., Kuo, L., Montalto-Morrison, C, Haagmans, B. L., Weiss, S. R., Masters, P. S., and Rottier, P. J. M. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology, 2003a, 312: 395-406.
    76. Delmas B, and Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol, 1990,64:5367-5375.
    77. Delmas B, Gelfi J, Kut E, Sjostrom H, Noren O, Laude H. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol, 1994, 68: 5216-24.
    78. Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature, 1992, 357: 417-20.
    79. Delmas B, Gelfi J, Sjostrom H, Noren O, Laude H. Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol, 1993,342: 293-8.
    80. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol, 1991, 65: 2910-20.
    81. Deng Y, Liu J, Zheng Q, Yong W, Lu M. Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Structure, 2006, 14: 889-99.
    82. Denison MR, Spaan WJM, van der Meer Y, et al. The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J Virol, 1999, 73: 6862-6871.
    83. Deregt D, Babiuk LA. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology, 1987, 61:410-20.
    84. Deregt D, Gifford GA, Ijaz MK, Watts TC, Gilchrist JE, Haines DM, Babiuk LA. Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: demonstration of in vivo virus-neutralizing activity. J Gen Virol, 1989, 70: 993-8.
    85. Dhinaker Raj G and Jones R C. Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol. 1997, 26: 677-706.
    86. Dubois-Dalcq ME, Doller EW, Haspel MV, Holmes KV. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology, 1982, 119: 317-331.
    87. Dveksler GS, Basile AA, Cardellichio CB, Beauchemin N, Dieffenbach CW, Holmes KV. Expression of MHV-A59 receptor glycoproteins in susceptible and resistant strains of mice. Adv Exp Med Biol, 1993a, 342: 267-72.
    88. Dveksler GS, Dieffenbach CW, Cardellichio CB, McCuaig K, Pensiero MN, Jiang GS, Beauchemin N, Holmes KV. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J Virol, 1993b, 67: 1-8.
    89. Eleouet J-F, Rasschaert D, Lambert P, et al. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology, 1995,206: 817-822.
    90. Erles K, Toomey C, Brooks HW, Brownlie J. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 2003, 310: 216-23.
    91. Fang SG, Shen S, Tay FP, Liu DX. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochem Biophys Res Commun, 2005, 336:417-23.
    92. Fischer F, Peng D, Hingley ST, et al. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J Virol, 1997,71:996-1003.
    93. Fischer F, Stegen CF, Masters PS, Samsonoff WA. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol, 1998, 72:7885-7894.
    94. Fu K and Baric RS. Evidence for variable rates of recombination in the MHV genome. Virology, 1992,189:88-102.
    95. Fu K and Baric RS. Map locations of mouse hepatitis virus temperature-sensitive mutants: confirmation of variable rates of recombination. J Virol, 1994, 68: 7458-66.
    96. Furuya T, Macnaughton TB, La Monica N, Lai MMC. Natural evolution of coronavirus defective-interfering RNA involves RNA recombination. Virology, 1993,194:408-413.
    97. Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol, 1995,69:889-95.
    98. Gallagher TM, Buchmeier MJ, Perlman S. Cell receptor-independent infection by a neurotropic murine coronavirus. Virology, 1992,191:517-22.
    99. Gallagher TM, Escarmis C, Buchmeier MJ. Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein. J Virol, 1991, 65: 1916-28.
    100. Gallagher, T. M., and Buchmeier, M. J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001,279:371-374.
    101. Ganapathy K, Cargill P W, Jones R C. A comparison of methods of inducing lachrymation and tear collection in chickens for detection of virus-specific immuoglobulins after infection with infectious bronchitis virus. Avian Pathol, 2005, 34: 248-251.
    102. Garwes DJ, Bountiff L, Millson GC, Elleman CJ. Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Adv Exp Med Biol, 1984,173: 79-93.
    103. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem, 1999, 68: 913-63.
    104. Godet G, Haridon RL, Vauterot JF, Laude H. TGEV ORF4 encodes a membrane protein that is incorporated into virus. J Virol, 1992,188: 666 - 675.
    105. Godet M, Grosclaude J, Delmas B, Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol, 1994, 68: 8008-8016.
    106. Godet, M., L'haridon, R., Vautherot, J.-F., and Laude, H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology, 1992, 188:666-675.
    107. Godfraind C, Holmes KV, Coutelier JP. Thymus involution induced by mouse hepatitis virus A59 in BALB/c mice. J Virol, 1995, 69: 6541-7.
    108. Gombold JL, Hingley ST, Weiss SR. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Viro, 1993,67:4504-4512.
    109. Gorbalenya AE, Snijder EJ, Spaan WJ. Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol, 2004, 78: 7863-6.
    110. Gough RE, Cox WJ, Gutierrez E, MacKenzie G, Wood AM, Dagless MD. Isolation of 'variant' strains of infectious bronchitis virus from vaccinated chickens in Great Britain. Vet Rec, 1996, 139: 552.
    111. Greber UF, Singh I, Helenius A. Mechanisms of virus uncoating. Trends Microbiol, 1994, 2: 52-6.
    112. Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on virus entry into cells. EMBO J, 1996, 15: 1766-77.
    113. Griffiths G, Rottier PJM. Cell biology of viruses that assemble along the biosynthetic pathway. Semin Cell Biol, 1992,3:367-381.
    114. Guy JS, Barnes HJ, Smith LG, Breslin J. Antigenic characterization of a turkey coronavirus identified in poult enteritis- and mortality syndrome-affected turkeys. Avian Dis, 1997, 41: 583-90.
    115. Haijema BJ, Volders H, Rottier PJ. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol, 2003,77:4528-38.
    116. Hansen GH, Delmas B, Besnardeau L, Vogel LK, Laude H, Sjostrom H, Noren O. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol, 1998, 72: 527-34.
    117. Hegyi A and Kolb AF. Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. J Gen Virol, 1998, 79: 1387-91.
    118. Hemmila E, Turbide C, Olson M, Jothy S, Holmes KV, Beauchemin N. Ceacamla-/- mice are completely resistant to infection by murine coronavirus mouse hepatitis virus A59. J Virol, 2004, 78: 10156-65.
    119. Herold J, Raabe T, Schelle-Prinz B, Siddell SG. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology, 1993, 195:680-691.
    120. Herrewegh AA, Smeenk I, Horzinek MC, et al. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type 1 and canine coronavirus. J Virol, 1998, 72:4508-4514.
    121. Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol, 1998, 72: 4508-14.
    122. Hess M, Scope A, Heincz U. Comparative sensitivity of polymerase chain reaction diagnosis of psittacine beak and feather disease on feather samples, cloacal swabs and blood from budgerigars (Melopsittacus undulates, Shaw 18005). Avian Pathol, 2004, 33: 477-481.
    123. Hodgson T, Casais R, Dove B, Britton P, Cavanagh D. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol, 2004, 78:13804-11.
    124. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA, 2005, 102: 7988-93.
    125. Hofmann MA, Brian DA. The 5'-end of coronavirus minus-strand RNAs contains a short poly(U) tract. J Virol, 1991, 65: 6331-6333.
    126. Hofmann MA, Sethna PB, Brian DA. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J Virol, 1990, 64: 4108-4114.
    127. Hofstad M S and Yoder H W Jr, Avian infectious bronchitis virus distribution in tissues of chicks. Avian Dis, 1966, 10:230-239.
    128. Hofstad MS. Cross-immunity in chickens using seven isolates of avian infectious bronchitis virus. Avian Dis, 1981, 25: 650-4.
    129. Hogue, B. G Bovine coronavirus nucleocapsid protein processing and assembly. Adv. Exp. Med. Biol, 1995,380:259-263.
    130. Holmes K V, Dollar E W, Sturman L S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology, 1981, 115: 334-344.
    131. Holmes KV, Behnke JN. Evolution of a coronavirus during persistent infection in vitro. Adv Exp Med, 1981,142: 287-299.
    132. Holmes KV, Doller EW, Sturman LS. Tunicamycin-resistant glycosylation of coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology, 1981, 115: 334-344.
    133. Ignjatovic J and Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch. Virol, 1994 138: 117-134.
    134. Ignjatovic J and McWaters P G Monoclonal antibodies to 3 structural proteins of avian infectious-bronchitis virus - characterization of epitopes and antigenic differentiation of Australian strains. J. Gen. Virol, 1991,72: 2915-2922.
    135. Ismail MM, Tang AY, Saif YM. Pathogenicity of turkey coronavirus in turkeys and chickens. Avian Dis, 2003,47: 515-22.
    136. Jackwood MW, Kwon HM, Hilt DA. Infectious bronchitis virus detection in allantoic fluid using the polymerase chain reaction and a DNA probe. Avian Dis, 1992, 36: 403-9.
    137. Jacobs L, van der Zeijst BA, Horzinek MC. Characterization and translation of transmissible gastroenteritis virus mRNAs. J Virol, 1986, 57: 1010-5.
    138. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr, Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A, 2004,101: 15748-53.
    139. Jeong YS, Makino S. Evidence for coronavirus discontinuous transcription. J Virol, 1994, 68: 2615-2623.
    140. Jia W, Karaca K, Parrish CR, Naqi SA. A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol, 1995, 140: 259-271.
    141. Joo M, Makino S. Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol, 1992,66:6330-6337.
    142. Kant A, Koch G, van Roozelaar DJ, Kusters JG Poelwijk FA, van der Zeijst BA. Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J Gen Virol, 1992, 73: 591-6.
    143. Keck JG Makino S, Soe LH, et al. RNA recombination of coronavirus. Adv Exp Med Biol, 1987,218:99-107.
    144. Keck JG Matsushima GK, Makino S, et al. In vivo RNA-RNA recombination of coronavirus in mouse brain. J Virol, 1988a, 62: 1810-1813.
    145. Keck JG Soe LH, Makino S, et al. RNA recombination of murine coronaviruses: recombination between fusion-positive MHV-A59 and fusion-negative MHV-2. J Virol, 1988b, 62: 1989-1998.
    146. Kim KH, Makino S. Two murine coronavirus genes suffice for viral RNA synthesis. J Virol, 1995,69:2313-2321.
    147. Kim Y-N, Lai MMC, Makino S. Generation and selection of coronavirus defective interfering RNA with large open reading frame by RNA recombination and possible editing. Virology, 1993, 194:244-253.
    148. King B and Brian DA. Bovine coronavirus structural proteins. J Virol, 1982,42: 700-7.
    149. Klumperman J, Locker JK, Meijer A, et al. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol, 1994,68: 6523-6534.
    150. Koetzner CA, Parker MM, Ricard CS, et al. Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J Virol, 1992, 66: 1841-1848.
    151. Kolb AF, Hegyi A, Maile J, Heister A, Hagemann M, Siddell SG Molecular analysis of the coronavirus-receptor function of aminopeptidase N. Adv Exp Med Biol, 1998,440: 61-7.
    152. Kolb AF, Hegyi A, Siddell SG. Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. J Gen Virol, 1997, 78: 2795-802.
    153. Kolb AF, Maile J, Heister A, Siddell SG Characterization of functional domains in the human coronavirus HCV 229E receptor. J Gen Virol, 1996, 77:2515-21.
    154. Kooi C, Cervin M, Anderson R. Differentiation of acid-pH-dependent and -nondependent entry pathways for mouse hepatitis virus. Virology, 1991, 180: 108-19.
    155. Koopmans M, Horzinek MC. Toroviruses of animals and humans: a review. Adv Virus Res, 1994, 43: 233-73.
    156. Kottier SA, Cavanagh D, Britton P. Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology, 1995,213: 569-580.
    157. Krempl C, Ballesteros ML, Zimmer G, Enjuanes L, Klenk HD, Herrler G Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J Gen Virol, 2000, 81: 489-96.
    158. Krempl C, Laude H, Herrler G Is the sialic acid binding activity of the S protein involved in the enteropathogenicity of transmissible gastroenteritis virus? Adv Exp Med Biol, 1998, 440: 557-61.
    159. Krempl C, Schultze B, Laude H, Herrler G Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol, 1997, 7: 3285-7.
    160. Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, Stroeher U, Bastien N, Dasuri K V, Cheng K, Simonsen J N, Perreault, H. et al. Mass spectrometric characterization of proteins from the SARS virus: A preliminary report. Mol. Cell Proteomics, 2003, 2: 346-356.
    161. Krueger DK, Kelly SM, Lewicki DN, Ruffolo R, Gallagher TM. Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion. J Virol, 2001, 75: 2792-802.
    162. Krzystyniak K, Dupuy JM. Entry of mouse hepatitis virus 3 into cells. J Gen Virol, 1984, 65: 227-31.
    163. Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol, 2000, 74: 1393-406.
    164. Kusters JG Jager EJ, Niesters HG van der Zeijst BA. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine, 1990, 8: 605-608.
    165. Kusters JG, Niesters HGM, Lenstra JA, et al. Phylogeny of antigenic variants of avian coronavirus IBV. Virology, 1989, 169: 217-221.
    166. Kwon H M and Jackwood M W. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Dis, 1991, 35:216-220
    167. Kyuwa S, Cohen M, Nelson G, et al. Modulation of cellular macromolecular synthesis by coronavirus: Implication for pathogenesis. J Virol, 1994, 68: 6815-6819.
    168. La Monica N, Yokomod K, Lai MMC. Coronavirus mRNA synthesis: Identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology, 1992, 188: 402-407.
    169. Lai MMC. RNA recombination in animal and plant viruses. Microbiol Rev, 1992, 56: 61-79.
    170. Lamb RA, Joshi SB, Dutch RE. The paramyxovirus fusion protein forms an extremely stable core trimer: structural parallels to influenza virus haemagglutinin and HIV-1 gp41. Mol Membr Biol, 1999, 16: 11-9.
    171. Lambert C, Leonard N, De Bolle X, Depiereux E, ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002, 18: 1250-1256.
    172. Lamontagne LM, Dupuy JM. Persistent infection with mouse hepatitis virus 3 in mouse lymphoid cell lines. Infect Immunol, 1984, 44: 716-723.
    173. Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi H-W, Wong BHL, Wong SSY, Leung SY, ChanKH, Yuen K-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA, 2005 102: 14040-14045.
    174. Laude H, Gelfi J, Lavenant L, Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J Virol, 1992, 66: 743-9.
    175. Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM. Influenza virus neuraminidase with hemagglutinin activity. Virology, 1984, 137: 314-23.
    176. Lee H-J, Shieh C-K, Gorbalenya AE, et al. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology, 1991, 180: 567-582.
    177. Leibowitz JL, DeVries JR, Haspel MV. Genetic analysis of murine hepatitis virus strain JHM. J Virol, 1982, 42: 1080-1087.
    178. Leong WF, Tan HC, Ooi EE, Koh DR, Chow VT. Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells. Microbes Infect, 2005, 7: 248-59.
    179. Leparc-Goffart I, Hingley ST, Chua MM, et al. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology, 1997, 239: 1-10.
    180. Li D, Cavanagh D. Coronavirus IBV-induced membrane fusion occurs at near-neutral pH. Arch Virol, 1992, 122: 307-16.
    181. Li H-P, Huang P, Park S, Lai MMC. Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J Virol, 1999, 73: 772-777.
    182. Li H-P, Zhang X, Duncan R, et al. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc Natl Acad Sci U S A, 1997, 94: 9544-9549.
    183. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426: 450-4.
    184. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H. et al. Bats are natural reservoirs of SARSlike coronaviruses. Science, 2005, 310: 676-679.
    185. Liao C-L, Lai MMC. A cis-acting viral protein is not required for the replication of a coronavirus defective-interfering RNA. Virology, 1995,209: 428-436.
    186. Liao C-L, Lai MMC. Requirement of the 5'-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J Virol, 1994,68:4727—4737.
    187. Lin Y-J, Liao C-L, Lai MMC. Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: Implications for the role of minus-strand RNA in RNA replication and transcription. J Virol, 1994,68: 8131-8140.
    188. Lin Y-J, Zhang X, Wu R-C, Lai MMC. The 3' untranslated region of coronavirus RNA is required for subgenomic mRNA transcription from a defective interfering RNA. J Virol, 1996, 70: 7236-7240.
    189. Liu C, Kokuho T, Kubota T, Watanabe S, Inumaru S, Yokomizo Y, Onodera T. A serodiagnostic ELISA using recombinant antigen of swine transmissible gastroenteritis virus nucleoprotein. J Vet Med Sci, 2001, 63: 1253-6.
    190. Liu DX, Inglis SC. Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus. Virology, 1992, 186: 342-347.
    191. Liu J, Okazaki K, Ozaki H, Sakoda Y, Wu Q, Chen F. & Kida H. H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/G 1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus. Avian Pathol, 2003, 32: 551-560.
    192. Liu S, Chen J, Chen J, Kong X, Shao Y, Han Z, Feng L, Cai X, Gu S, Liu M. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J. Gen. Virol, 2005, 86: 719-725.
    193. Liu, D. X., and Inglis, S. C. Association of the infectious bronchitis virus 3c protein with the virion envelope. Virology, 1991, 185:911-917.
    194. Luo ZL and Weiss SR. Mutational analysis of fusion peptide-like regions in the mouse hepatitis virus strain A59 spike protein. Adv Exp Med Biol, 1998,440: 17-23.
    195. Luytjes W, Bredenbeek PJ, Noten AF, Horzinek MC, Spaan WJ. Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology, 1988, 166: 415-22.
    196. Luytjes W, Sturman L S, Bredenbeek P J, Charite J, van der Zeijst B A, Horzinek M C, Spaan W J M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology, 1987, 161: 479-487.
    197. Mackenzie JM, Westaway EG. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol, 2001,75: 10787-99.
    198. Makino S, Fujioka N, Fujiwara K. Structure of the intracellular defective viral RNAs of defective interfering particles of mouse hepatitis virus. J Virol, 1985, 54: 329-336.
    199. Makino S, Joo M, Makino JK. A system for study of coronavirus mRNA synthesis: A regulated, expressed subgenomic defective-interfering RNA results from intergenic site insertion. J Virol, 1991,65:6031-6041.
    200. Makino S, Joo M. Effect of intergenic consensus sequence flanking sequences on coronavirus transcription. J Virol, 1993,67: 3304-3311.
    201. Makino S, Lai MMC. High-frequency leader sequence switching during coronavirus defective-interfering RNA replication. J Virol, 1989,63: 5285-5292.
    202. Makino S, Shieh C-K, Keck JG, Lai MMC. Defective interfering particles of murine coronavirus: Mechanism of synthesis of defective viral RNAs. Virology, 1988,163: 104-111.
    203. Makino S, Stohlman SA, Lai MMC. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription. Proc Natl Acad Sci U SA, 1986,83:4204-4208.
    204. Makino S, Taguchi F, Fujiwara K. Defective interfering particles of mouse hepatitis virus. Virology, 1984,133:9-17.
    205. Makino S, Yokomori K, Lai MMC. Analysis of efficiently packaged defective-interfering RNAs of murine coronavirus: Localization of a possible RNA-packaging signal. J Virol, 1990, 64: 6045-6053.
    206. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A. et al. The Genome sequence of the SARS-associated coronavirus. Science, 2003,300: 1399-404.
    207. Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 1991, 67:117-30.
    208. Martins N R, Mockett A P, Barrett A D, Cook J K. IgM responses in chicken serum to live and inactivated infectious bronchitis virus vaccines. Avian Dis, 1991,35: 470-475.
    209. Masters PS, Koetzner CA, Kerr CA, Heo Y. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. J Virol, 1994,68:328-337.
    210. Masters PS. The molecular biology of coronaviruses. Adv Virus Res, 2006,66: 193-292.
    211. Matsuyama S and Taguchi F. Communication between S1N330 and a region in S2 of murine coronavirus spike protein is important for virus entry into cells expressing CEACAM1b receptor. Virology, 2002b, 295: 160-71.
    212. Matsuyama S and Taguchi F. Receptor-induced conformational changes of murine coronavirus spike protein. J Virol, 2002a, 76: 11819-26.
    213. Matsuyama S, and Taguchi F. Receptor-induced conformational changes of murine coronavirus spike protein. J. Virol, 2002, 76: 11819-11826.
    214. Mendez A, Smerdou C, Izeta A, et al. Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: Packaging and heterogeneity. Virology, 1996, 217: 495-507.
    215. Meulemans G, Boschmans M., Decaesstecker M., van den Berg TP., Denis P., Cavanagh D., Epidemiology of infectious bronchitis virus in Belgian broilers: a retrospective study 1986 to 1995. Avian Pathol, 2001, 30: 411 -421.
    216. Miguel B, Pharr GT, Wang C. The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol, 2002, 147: 2047-56.
    217. Mizzen L, Hilton A, Cheley S, Anderson R. Attenuation of murine coronavirus infection by ammonium chloride. Virology, 1985, 142: 378-88.
    218. Mockett A P A and Cook J K A. The detection of specific IgM to infectious bronchitis virus in chicken serum using an ELISA, Avian Pathol, 1986, 15: 437-446.
    219. Mockett A P A. Envelope proteins of avian infectious bronchitis virus: purification and biological properties. J. Virol. Methods, 1985, 12: 271-278.
    220. Muneer M A, Newman J A, Halvorson D A, Sivanandan V, Coon C N. Effects of avian infectious bronchitis virus (Arkansas strain) on vaccinated laying chickens. Avian Dis, 1987, 31: 820-828.
    221. Nakamura K, Ohta Y, Abe Y, Imai K. Yamada M. Pathogenesis of conjunctivitis caused by Newcastle disease viruses inspecific-pathogen-free chickens. Avian Pathol, 2004, 33: 371-376.
    222. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, van der Werf S, Yuen KY, Altmeyer R. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol, 2005, 86: 1423-34.
    223. Nash TC, Buchmeier MJ. Spike glycoprotein-mediated fusion in biliary glycoprotein-independent cell-associated spread of mouse hepatitis virus infection. Virology, 1996,223:68-78.
    224. Navas S, Seo SH, Chua MM, Sarma JD, Lavi E, Hingley ST, Weiss SR. Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol, 2001, 75: 2452-7.
    225. Ndifuna A, Waters AK, Zhou M, Collisson EW. Recombinant nucleocapsid protein is potentially an inexpensive, effective serodiagnostic reagent for infectious bronchitis virus. J Virol Methods, 1998, 70: 37-44.
    226. Ng LF, Hibberd ML, Ooi EE, Tang KF, Neo SY, Tan J, Murthy KR, Vega VB, Chia JM, Liu ET, Ren EC. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect Dis, 2004, 4: 34.
    227. Nguyen V-P, Hogue BG. Protein interactions during coronavirus assembly. J Virol, 1997, 71: 9278-9284.
    228. Niemann H, Geyer R, Klenk HD, et al. The carbohydrates of mouse hepatitis virus (MHV) A59: Structures of the O-glycosidically linked oligosaccharides of glycoprotein El. EMBO J, 1984, 3: 665-670.
    229. Nix W A, Troeber D S, Kingham B F, Keeler C L Jr, Gelb J Jr. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis, 2000,44:568-581.
    230. Noda M, Koide F, Asagi M, Inaba Y. Physicochemical properties of transmissible gastroenteritis virus hemagglutinin. Arch Virol, 1988, 99: 163-72.
    231. Noda M, Yamashita H, Koide F, Kadoi K, Omori T, Asagi M, Inaba Y. Hemagglutination with transmissible gastroenteritis virus. Arch Virol, 1987,96: 109-15.
    232. Opstelten DJE, Raamsman MJB, Wolfs K, et al. Envelope glycoprotein interactions in coronavirus assembly.J Cell Biol, 1995, 131:339-349.
    233. Otsuki K, Nakamura T, Kubota N, Kawaoka Y, Tsubokura M. Comparison of two strains of avian infectious bronchitis virus for their interferon induction viral growth and development of virusneutralising antibody in experimentallyinfected chickens. Vet. Microbiol, 1987, 15: 31-40.
    234. Page KW, Mawditt KL, Britton P. Sequence comparison of the 5' end of mRNA 3 from transmissible gastroenteritis virus and porcine respiratory coronavirus. J Gen Virol, 1991, 72: 579-587.
    235. Parker MM, Masters PS. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 1990,179:463-8.
    236. Payne HR, Storz J. Analysis of cell fusion induced by bovine coronavirus infection. Arch Virol, 1988,103:27-33.
    237. Pedersen KW, van der Meer Y, Roos N, Snijder EJ. Open reading frame la-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol, 1999,73: 2016-26.
    238. Pedersen NC, Ward J, Mengeling WL. Antigenic relationship of the feline infections peritonitis virus to coronaviruses of other species. Arch Virol, 1978, 58:45-53.
    239. Pei J, Sekellick M J, Marcus P I, Choi I S, Collisson E W. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J. Interferon Cytokine Res,2001,21: 1071-1077.
    240. Peng Bo, Chen Hanyang, Tan Yadi, Jin Meilin, Chen Huanchun, Guo Aizhen. Identification of one peptide which inhibited infectivity of avian infectious bronchitis in vitro. Science in China. 15 Series C, Life sciences, 2006,49: 158-163.
    241. Peng D, Koetzner CA, Masters PS. Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination. J Virol, 1995,69: 3449-3457.
    242. Penzes Z, Tibbies K, Shaw K, et al. Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology, 1994, 203: 286-293.
    243. Penzes Z, Wroe C, Brown TDK, et al. Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. J Virol, 1996, 70: 8660-8668.
    244. Perlman S, Ries D, Bolger E, et al. MHV nucleocapsid synthesis in the presence of cyclohexamide and accumulation of negative-strand MHV RNA. Virus Res, 1986, 6:261-272.
    245. Phillips JJ, Chua MM, Lavi E, Weiss SR. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol, 1999,73: 7752-60.
    246. Picault J P, Drouin P, Guittet M, Bennejean G, Protais J, L'Hospitalier R, Gillet J P, Lamande J, Le Bachelier A. Isolation characterisation and preliminary cross-protection studies with a new pathogenic avian infectious bronchitis virus (strain PL-84084). Avian Pathol, 1986, 15: 367-383.
    247. Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem, 2004, 279: 10136-41.
    248. Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol, 2004,78: 9977-86.
    249. Rest J S, and Mindell D P. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect. Genet. Evol, 2003, 3:219-225.
    250. Risco C, Anton IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol, 1996,70: 4773-4777.
    251. Risco C, Muntion M, Enjuanes L, Carrascosa JL. Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis. J Virol, 1998, 72:4022-4031.
    252. Rossen JWA, Voorhout WF, Horzinek MC, et al. MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally. Virology, 1995, 210: 54-66.
    253. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300: 1394-9.
    254. Rottier P J M, Horzinek M C, van der Zeijst B A M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effects of tunicamycin. J. Virol, 1981,40:350-357.
    255. Rottier, P. J. M. (1995). In "The Coronaviridae" (S. G Siddell, ed.), pp. 115-139. Plenum,New York.
    256. Rowe CL, Baker SC, Nathan MJ, Fleming JO. Evolution of mouse hepatitis virus: Detection and characterization of spike deletion variants during persistent infection. J Virol, 1997b, 71: 2959-2969.
    257. Rowe CL, Fleming JO, Nathan MJ, Sgro JY, Palmenberg AC, Baker SC. Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure. J Virol, 1997a, 71: 6183-90.
    258. Salanueva IJ, Carrascosa JL, Risco C. Structural maturation of the transmissible gastroenteritis coronavirus. J Virol, 1999, 73: 7952-7964.
    259. Sanchez CM, Izeta A, Sanchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Duran J, Enjuanes L. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol, 1999, 73: 7607-18.
    260. Sapats SI, Ashton F, Wright PJ, Ignjatovic J. Novel variation in the N protein of avian infectious bronchitis virus. Virology, 1996, 226:412-7.
    261. Sawicki SG Lu JH, Holmes K.V. Persistent infection of cultured cells with mouse hepatitis virus (MHV) results from the epigenetic expression of the MHV receptor. J Virol, 1995, 69: 5535-43.
    262. Sawicki SG Sawicki DL. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J Virol, 1986, 57: 328-334.
    263. Sawicki SG Sawicki DL. Coronavirus transcription: Subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol, 1990, 64: 1050-1056.
    264. Schickli JH, Thackray LB, Sawicki SG Holmes KV. The N-terminal region of the murine coronavirus spike glycoprotein is associated with the extended host range of viruses from persistently infected murine cells. J Virol, 2004, 78: 9073-83.
    265. Schultze B, Gross HJ, Brossmer R, Herrler G The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol, 1991a, 65: 6232-7.
    266. Schultze B, Gross HJ, Klenk HD, Brossmer R, Herrler G Differential reactivity of bovine coronavirus (BCV) and influenza C virus with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2)-containing receptors. Adv Exp Med Biol, 1990,276: 115-9.
    267. Schultze B, Herder G Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol, 1992, 73: 901-6.
    268. Schultze B, Herder G Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinatingencephalomyelitis virus. Adv Exp Med Biol, 1993,342: 299-304.
    269. Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herder G Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol, 1996, 70: 5634-7.
    270. Schultze B, Wahn K, Klenk HD, Herder G Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology, 1991b, 180: 221-8.
    271. Schwarz B, Routledge E, Siddell SG Murine coronavirus nonstructural protein ns2 is not essential for virus replication in transformed cells. J Virol, 1990,64:4784-4791.
    272. Schwegmann-Wessels C, Herrler G Sialic acids as receptor determinants for coronaviruses. GlycoconjJ, 2006, 23: 51-58.
    273. Schwegmann-Wessels C, Zimmer G, Schroder B, Breves G, Herrler G Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins. J Virol, 2003, 77: 11846-8.
    274. Senanayake SD, Hofmann MA, Maki JL, Brian DA. The nucleocapsid protein gene of bovine coronavirus is bicistronic. J Virol, 1992,66: 5277-5283.
    275. Seo S H and Collisson E W. Specific cytotoxic T lymphocytes are involved in invivo clearance of infectious bronchitis virus, J. Virol, 1997,71: 5173-5177.
    276. Sethna PB, Hofmann MA, Brian DA. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol, 1991,65:320-325.
    277. Sethna PB, Hung SL, Brian DA. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci. USA 1989, 86: 5626-5630.
    278. Shen S, Law Y C, Liu D X. A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature. Virology, 2004, 326: 288-298.
    279. Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM. Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J Virol, 1999, 73: 5957-69.
    280. Shieh CK, Soe LH, Makino S, Chang MF, Stohlman SA, Lai MM. The 5'-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology, 1987, 156:321-30.
    281. Smyth J, Soike D, Moffett D, Weston J H, Todd D. Circovirus-infected geese studied by in situ hybridization. Avian Pathol, 2005,34: 227-232.
    282. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 2003, 331:991-1004.
    283. Snijder, E. J, Horzinek, M. C. Toroviruses: Replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol, 1993,74:2305-2316.
    284. Song H C, Seo M Y, Stadler K, Yoo B J, Choo Q L, Coates S R, Uematsu Y, Harada T, Greer C E, Polo J M, Pileri P Eickmann M. et al. Synthesis and characterization of a native, Oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J. Virol, 2004, 78: 10328-10335.
    285. Spaan WJM, Rottier PJM, Horzinek MC, van der Zeijst BAM. Isolation and identification of virus-specific mRNA in cells infected with mouse hepatitis virus (MHV-A59). Virology, 1981, 108: 424-434.
    286. Stanhope MJ, Brown JR, Amrine-Madsen H. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect Genet Evol, 2004, 4: 15-9.
    287. Stavrinides J and Guttman DS. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol, 2004, 78: 76-82.
    288. Steinhauer DA, Holland JJ. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol, 1986, 57: 219-228.
    289. Stern DF and Sefton BM. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J Virol, 1982, 44: 804-12.
    290. Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol, 1988, 62: 4288-95.
    291. Stohlman SA, Sakaguchi AY, Weiner LP. Characterization of the cold-sensitive murine hepatitis vims mutants rescued from latently infected cells by cell fusion. Virology, 1979,98: 448-455.
    292. Stohlman SA, Wisseman CL Jr, Eylar OR. Dengue viral antigens in host cell membranes. Acta Virol, 1978,22:31-6.
    293. Sturman LS, Ricard CS, Holmes KV. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion. J Virol, 1990, 64: 3042-50.
    294. Sturman, L. S. Characterization of a coronavirus: I. Structural proteins: Effect of preparative conditions on the migration of protein in polyacrylamide gels. Virology, 1977, 77: 637-649.
    295. Sturman, L. S., Holmes, K. V., and Behnke, J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol, 1980,33: 449-462.
    296. Tahara SM, Dietlin TA, Bergmann CC, et al. Coronavirus translational regulation: Leader affects mRNA efficiency. Virology, 1994,202:621-630.
    297. Tang BS, Chan KH, Cheng VC, Woo PC, Lau SK, Lam CC, Chan TL, Wu AK, Hung IF, Leung SY, Yuen KY. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J Viro, 2005, 79: 6180-93.
    298. Thackray LB and Holmes KV. Amino acid substitutions and an insertion in the spike glycoprotein extend the host range of the murine coronavirus MHV-A59. Virology, 2004, 324: 510-24.
    299. Thiel V, Herold J, Schelle B, Siddell SG Viral replicase gene products suffice for coronavirus discontinuous transcription. J. Virol, 2001, 75: 6676-6681.
    300. Thiel V, Siddell SG, Herold J. Replication and transcription of HCV 229E replicons. p6. Adv Exp Med Biol, 1998,440: 109-13.
    301. Todd D, Creelan J L, Connor T J, Ball N W, Scott A N J, Meehan B M, Mckenna, G F, Mcnulty M S. Investigation of the unstable attenuation exhibited by a chicken anaemia virus isolate. Avian Pathol, 2003, 32: 375-382.
    302. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac-cells: Determination of the first site of budding of progeny virions. Eur J Cell Biol, 1984, 33: 281-293.
    303. Tooze J, Tooze SA, Fuller SD. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J Cell Biol 1987, 105: 1215-26.
    304. Tooze J, Tooze SA. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: Virus budding is restricted to the Golgi region. Eur J Cell Biol, 1985, 37: 203-212.
    305. Tresnan DB, Holmes KV. Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol, 1998, 440: 69-75.
    306. Tresnan DB, Levis R, Holmes KV. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol, 1996, 70: 8669-74.
    307. Tsai CW, Chang SC, Chang MF. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus. J Biol Chem, 1999, 274: 26085-90.
    308. Tsunemitsu H, el-Kanawati ZR, Smith DR, Reed HH, Saif LJ. Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. J Clin Microbiol, 1995,33: 3264-9.
    309. Tusell SM, Schittone SA, Holmes K.V. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol, 2007, 81: 1261-73.
    310. van der Meer Y, Snijder EJ, Dobbe JC, et al. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol, 1999, 73: 7641-7657.
    311. van der Most RG, Bredenbeek PJ, Spaan WJM. A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J Virol, 1991, 65: 219-3226.
    312. van der Most RG, de Groot RJ, Spaan WJM. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: A study of coronavirus transcription initiation. J Virol, 1994, 68:3656-3666.
    313. van der Most RG, Heijnen L, Spaan WJM, de Groot RJ. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res, 1992,20: 3375-3381.
    314. Vandekerchove D, De Herdt P, Laevens H, Butaye P, Meulemans G, Pasmans F. Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis-associated mortality. Avian Pathol, 2004, 33: 298-302.
    315. Vennema H, Godeke GJ, Rossen JWA, et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J, 1996, 15: 2020-2028.
    316. Vennema H, Heijnen L, Zijderveld A, Horzinek M C, Spaan W J M. Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J. Virol, 1990, 64: 339-346.
    317. Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology, 1998,243: 150-157.
    318. Victor C Chu, Lisa J McElroy, Jed M Aronson, Trisha J Oura, Carole E Harbison, Beverley E Bauman, Gary R Whittaker. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus. Viorl. J, 2007,4: 20.
    319. Vlasak R, Luytjes W, Leider J, Spaan W, Palese P.The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol, 1988a, 62:4686-90.
    320. Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A, 1988b, 85:4526-9.
    321. Wang L, Junker D, Collison EW. Evidence of natural recombination within the S1 gene of the infectious bronchitis virus. Virology, 1993, 192:710-716.
    322. Wang L, Xu Y, Collisson EW. Experimental confirmation of recombination upstream of the S1 hypervariable region of infectious bronchitis virus. Virus Res, 1997, 49: 139-45.
    323. Weismiller DG, Sturman LS, Buchmeier MJ, Fleming JO, Holmes KV. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identity two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J Virol, 1990, 64: 3051-5.
    324. Weiss S R and Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev, 2005, 69: 635-664.
    325. Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC. Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol, 1999, 16: 3-9. Review.
    326. Wentworth DE, Holmes KV. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol, 2001, 75: 9741-52.
    327. Wentworth DE, Tresnan DB, Turner BC, Lerman IR, Bullis B, Hemmila EM, Levis R, Shapiro LH, Holmes KV. Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology, 2005, 335: 185-97.
    328. Wesley RD, Woods RD, Cheung AK. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol, 1991,65: 3369-3373.
    329. Williams RK, Jiang GS, Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A, 1991, 88: 5533-6.
    330. Winter C, Schwegmann-Wessels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by. avian Infectious bronchitis virus. J Gen Virol, 2006, 87: 1209-1216.
    331. Wong S K, Li W, Moore M J, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem, 2004, 279: 3197-3201.
    332. Woods RD and Wesley RD. Seroconversion of pigs in contact with dogs exposed to canine coronavirus. Can J Vet Res, 1992, 56: 78-80.
    333. Woods RD, Cheville NF, Gallagher JE. Lesions in the small intestine of newborn pigs inoculated with porcine, feline and canine coronaviruses. Am J Vet Res, 1981, 42: 1163-1169.
    334. Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol, 2001, 75: 9345-56.
    335. Xu Y, Zhu J, Liu Y, Lou Z, Yuan F, Liu Y, Cole DK, Ni L, Su N, Qin L, Li X, Bai Z, Bell JI, Pang H, Tien P, Gao GF, Rao Z. Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus. Biochemistry, 2004, 43: 14064-71.
    336. Yamada YK, Yabe M, Ohtsuki T, Taguchi F. Unique N-linked glycosylation of murine coronavirus MHV-2 membrane protein at the conserved O-linked glycosylation site. Virus Res, 2000, 66: 149-54.
    337. Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, Rabenau H, Doerr HW, Hunsmann G, Otaka A, Tamamura H, Fujii N, Yamamoto N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun, 2004, 318: 719-25.
    338. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357: 420-2.
    339. Yokomori K, Banner LR, Lai MM. Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology, 1991, 183: 647-57.
    340. Yokomori K, Lai MM. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol, 1992, 66: 6194-9.
    341. Yu, X., Bi, W., Weiss, S. R., and Leibowitz, J. L. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology, 1994, 202: 1018-1023.
    342. Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, Zhao Z, Wang S, Chen J, Cong Y. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology, 2006, 346: 74-85.
    343. Zakhartchouk AN, Viswanathan S, Mahony JB, Gauldie J, Babiuk LA. Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol, 2005, 86: 211-5.
    344. Zelus BD, Schickli JH, Blau DM, Weiss SR, Holmes KV. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J Virol, 2003, 77: 830-40.
    345. Zhang X, Lai MMC. A 5'-proximal RNA sequence of routine coronavirus as a potential initiation site for genomic-length mRNA transcription, J Virol, 1996, 70: 705-711.
    346. Zhang X, Liao C-L, Lai MMC. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription, both in trans and in cis. J Virol, 1994, 68: 4738-4746.
    347. Zhang XM, Herbst W, Kousoulas KG, Storz J. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J Med Virol, 1994, 44:152-61.
    348. Zhao X, Shaw K, Cavanagh D. Presence of subgenomic mRNAs in virions of coronavirus IBV. Virology, 1993, 196: 172-178.
    349. Zhou, M., and Collisson, E. W. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 30 genomic RNA. Virus Res, 2000, 67:31-39.
    350. Campadelli-Fiume G, F. Cocchi L Menotti, M Lopez. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol, 2000, 10: 305-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700