伪狂犬病毒间质蛋白UL14功能研究及TK~-/gG~-株感染性克隆构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伪狂犬病毒(Pseudorabies virus,PRV)可引起多种家畜和野生动物的伪狂犬病,尤其是猪伪狂犬病,给世界养猪业造成了巨大的经济损失。伪狂犬病毒基因组全长约150kb,可编码70-100种蛋白,与α-疱疹病毒亚科的其它成员一样,PRV具有潜伏感染和神经嗜性等α-疱疹病毒的典型特征。尽管早在上个世纪80年代中期就有学者开始了PRV重要功能基因的克隆与功能研究,但由于PRV基因组的G+C含量极高(平均G+C含量约为74%),迄今仍有相当一部分基因的功能特性不清楚,如UL4、UL7、UL14、UL24、US2等。毫无疑问,对这些未知基因的研究与分析将对整体上阐明PRV基因组的结构与功能具有重要意义。
     长期以来,基因缺失突变株的构建是研究疱疹病毒功能基因的主要策略,但在哺乳动物细胞中通过同源重组的方法构建基因缺失突变株是一项极为繁琐的工作。1997年,德国学者Messerle等首次以细菌人工染色体(Bacterial Artificial Chromosomes,BAC)为基础构建了鼠巨细胞病毒的感染性克隆。该技术允许病毒基因组以BAC质粒的形式在大肠杆菌中保存、增殖和遗传修饰,并且操作简便、快速,极大地促进了疱疹病毒的功能基因研究,并为疱疹病毒高效载体系统的开发提供了新的途径。
     鉴于上述研究背景,本研究探讨了PRV间质蛋白UL14的功能,并构建了PRVTK~-/gG~-的感染性克隆,主要研究内容如下:
     1.PRV Ea株BamHI第3片段的克隆与序列分析
     BamHI酶切PRV Ea株基因组DNA,回收长约17kb的BamHI第3片段并将其克隆到pBR322载体中,获得重组质粒pBRB_3。进一步对pBRB_3进行亚克隆,获得含7.5kb的SphI-KpnI片段的重组质粒pUCB_3,并进行序列分析,证实该片段包含UL13、UL14、UL16和UL17基因的完整编码区以及UL15的部分编码区。UL14基因全长480bp,编码159个氨基酸,与其它几种α-疱疹病毒的UL14进行比较,发现其N端的氨基酸序列高度保守,与HSV-1、HSV-2、BHV-1的同源性分别为62%、62%、72%,但C端同源性很小。
     2.PRV UL14基因的克隆及其在大肠杆菌和IBRS-2细胞中的表达
     PCR扩增UL14基因并将其克隆到pMD18-T载体中,获得重组质粒pT-UL14。进一步以pGEX-KG为载体,构建了UL14完整编码区与GST融合的表达质粒pGEX-UL14,经IPTG诱导在大肠杆菌BL21(DE3)plysS中获得高效表达,表达蛋白的分子量约为44kDa,主要以包涵体形式存在。将纯化的融合蛋白免疫新西兰兔,获得了针对UL14的多克隆抗体。将UL14基因插入真核表达载体pcDNA3.1(+)中,构建的表达质粒pcDNA-UL14转染IBRS-2细胞,G418筛选获得了克隆细胞系,Western blotting检测证实该细胞系能稳定表达UL14。
     3.PRV UL14的亚细胞定位及结构域分析
     将UL14基因插入pEGFP-C1中,构建了EGFP-UL14融合的表达质粒pC1-UL14。将pC1-UL14转染Hela细胞,并与对照质粒pEGFP-C1进行比较,发现EGFP-UL14融合蛋白在转染后24 h荧光主要分布在胞浆,但随时间延长,荧光逐渐向细胞核中转移,在转染后48 h完全定位于核中,并呈点状分布,而对照质粒pEGFP-C1表达的EGFP荧光始终呈弥散状分布。为了进一步分析UL14亚细胞定位的结构域,构建了UL14 C-端不同区域缺失的5个突变体(1-146aa、1-124aa、1-88aa、1-77aa、1-65aa)以及N-端不同区域缺失的6个突变体(14-159aa、37-159aa、63-159aa、85-159aa、106-159aa、121-159aa)。将上述突变体分别与EGFP融合,构建了UL14基因不同区域与EGFP融合的重组表达质粒,在脂质体介导下分别转染Hela细胞,通过荧光检测并与对照质粒pC1-UL14进行比较,发现缺失UL14 C-端94个氨基酸和N-端37个氨基酸均不影响UL14在细胞中定位,但缺失N-端62个氨基酸则导致荧光完全呈弥散性分布,推测UL14的37-65位氨基酸区域对其亚细胞定位具有重要作用。
     4.PRV感染细胞后UL14的表达时相分析
     在PRV-Ea感染IBRS-2细胞后不同时间收集细胞,RT-PCR检测UL14基因和晚期基因gD的cDNA,发现与gD基因一样,UL14在病毒感染后9 h才开始转录。Western blotting检测显示UL14在PRV感染后12 h才开始表达,表明PRV UL14为晚期表达蛋白。
     5.UL14缺失的PRV突变株的构建
     对pUCB3质粒进行亚克隆,获得含有UL14、UL16全基因和部分UL13、UL15基因的重组质粒pUC3.0。PCR扩增CMV启动子驱动的EGFP表达盒并将其插入pUC3.0中位于UL14基因编码区的StuI位点上,获得EGFP表达盒插入UL14基因失活的重组转移质粒pUC3.0-14/EGFP。将该转移质粒与PRV-Ea株基因组共转染IBRS-2细胞,通过EGFP荧光标志和噬斑纯化,获得了UL14缺失的重组病毒PRV-UL14D。PCR、Western blotting、荧光显微镜观察和流式细胞术检测证实重组病毒构建正确,并能稳定表达EGFP。
     6.PRV UL14的功能分析
     通过比较UL14缺失突变株PRV-UL14D与亲本株(PRV Ea)的多种体外生物学特性,包括侵入细胞的能力、形成噬斑的大小、一步增殖曲线及感染细胞后病毒粒子的形态,发现UL14的缺失不影响PRV侵入细胞和病毒的释放,但延缓了PRV在IBRS-2细胞上的增殖并导致形成的噬斑明显减小。同时,UL14缺失导致感染细胞中无囊膜化的核衣壳增多,说明UL14缺失影响了核衣壳的有效囊膜化,从而对病毒粒子的成熟造成影响。上述体外生物学缺陷在稳定表达UL14的细胞系中均能完全恢复,表明这些缺陷是由UL14的缺失所致。进一步的体内感染试验还发现:小鼠感染PRV-UL14D突变株的平均死亡时间明显长于亲本株(PRV Ea),说明UL14的缺失也影响了PRV在体内的增殖。此外,通过细胞凋亡检测和电子显微镜分析,发现PRV-UL14D和PRV-Ea均能诱导IBRS-2细胞发生凋亡,呈现染色质形态改变等早期凋亡的典型特征,而且稳定表达UL14的细胞系也不能抑制山梨醇诱导的细胞凋亡,说明UL14不具有抗凋亡活性,这与报道的HSV-1、HSV-2和BHV-1 UL14具有抗凋亡活性存在差异。
     7.PRV TK~-/gG~-突变株感染性克隆的构建
     将含大肠杆菌F因子的BAC载体骨架序列插入到质粒pgG-Uni中,得到重组转移质粒pSB301。将该质粒与PRV TK~-/gG~-/LacZ~+基因组共转染PK-15细胞,获得在gG基因中插入BAC载体序列的重组病毒PRV TK~-/gG~-/BAC。提取重组病毒复制早期的坏状病毒基因组DNA并转化DH10B细胞,筛选含有PRV全长基因组的BAC细菌克隆,大量培养后,提取超纯的PRV BAC质粒DNA再转染PK-15细胞,可观察到典型的伪狂犬病毒所致的细胞病变,证实获得的BAC质粒DNA具有感染性。一步增殖曲线测定发现BAC质粒DNA转染所获得的病毒与亲本株TK~-/gG~-/LacZ~+具有相似的增值特性,表明BAC载体序列的插入不影响病毒在细胞上的增殖。
     8.PRV TK~-/gG~-突变株BAC质粒DNA对小鼠的免疫原性
     将PRV BAC质粒DNA、转移质粒pSB301、重组病毒PRV TK~-/gG~-/BAC及亲本株PRV TK~-/gG~-/LacZ~+分别免疫小鼠,检测PRV BAC质粒DNA的免疫原性。结果表明,PRV BAC质粒DNA诱导的PRV中和抗体水平与重组病毒TK~-/gG~-/BAC、亲本株TK~-/gG~-/LacZ~+相当,且都能完全抵抗致死剂量PRV强毒的攻击,表明构建的感染性克隆具有良好的免疫原性,为进一步开展PRV免疫学基础研究和高效载体系统的开发奠定了基础。
Pseudorabies virus (PRV) is the causative agent of Pseudorabies (Aujeszky's disease)of many domestic and wild animals. Especially, porcine Pseudorabies has become one ofthe most economically important diseases in worldwide swine industry. PRV genome is adouble-stranded DNA of approximately 150 kb and encodes 70-100 proteins. Like otheralpha herpesvirus, PRV has some typical characteristics of alpha herpesvirus such aslatent infection and neurotropism. Although cloning and sequencing of some importantfunctional genes of PRV were carried out in the middle of 1980s, full-length sequence ofPRV genome has not been reported because of high content of G+C of PRV genome (themean content of G+C is 74%). Functions of some genes still remain unclear, such as UL4,UL7, UL14, UL24 and US2. It is significant to study and analyze unknown genes, whichcontributes to clarify entirely the structure and function of PRV genome.
     For a long time, the main method studying on the functional genes of herpesviruswas to construct genetic-deleting mutants. However, it was tedious to producerecombinant mutants using homologous recombinant in infected cells. In 1997, Messerleet al., German researchers, firstly constructed infectious clone of MCMV based onbacterial artificial chromosomes (BACs). This technique actualized that the genomes ofinfectious virus could be stored, propagated or modificated by BAC-plasmid pattern in E.coli, and it was convenient and rapid to manipulate the technique. This technique lead toadvancement in studying on gene functions of herpesvirus, and provided new ways todevelope high-performance herpesviral-vetor system.
     Based on the above mentioned researchs background, the present study investigatedthe functions of PRV tegument protein UL14, and constructed PRV TK~-/gG~- straininfectious clone. The main projects are as following:
     1. Cloning and sequence analysis of PRV Ea strain BamHI-3 fragment
     The BamHI-3 fragment was isolated from PRV genome DNA digested with BamHI,and cloned into pBR322 to generate the recombinant plasmid pBRB_3. A 7.5kb unknownfragment was isolated from the plsmid pBRB_3 digested with BamHI and KpnI to generatethe plasmid pUCB_3. Sequences analysis showed that the UL13-UL17 fragment containedcomplete coding-region of UL13, UL14, UL16 and UL17 and partial coding-region ofUL15. UL14 gene with 480bp encodes 159 amino acid residues. Compared with aminoacid residues of UL14 gene of other Alphaherpesviruses, it was found that N-terminalamino acid residues sequence of UL14 of PRV is highly conservative and there was 62%,62%, 72% homology with HSV-1, HSV-2, BHV-1, respectively, but the homology ofC-terminal is low.
     2. Cloning and expression of PRV UL14 gene in E.coli and IBRS-2 cells
     PRV UL14 gene was amplified by PCR and cloned into pMD18-T vector to obtainthe recombinant plasmid pT-UL14. The UL14 gene was removed from pT-UL14 andcloned into prokaryotic expression vector pGEX-KG resulting in the recombinant plasmidpGEX-UL14, which expressed GST-UL14 fused protein. After induction by IPTG, therecombinant fused protein with about 44kDa was highly expressed in E.coliBL21(DE3)plysS and expressing mainly in the form of inclusion body. The GST-UL14fused protein was used to immunize rabbits to generate polyclonal antibodies againstUL14. UL14 gene was inserted into vector pcDNA3.1(+) resulting in the eukaryoticexpression plasmid pcDNA-UL14. After transfection, UL14-expressing IBRS-2 cell linewas obtained by G418 screening. Western blotting analysis demonstrated that this IBRS-2cell line could stably express UL14.
     3. Construction of PRV UL14 mutants and analysis of function domains
     UL14 gene was inserted into vector pEGFP-C1 resulting in the eukaryoticexpressing plasmid pC1-UL14 expressing EGFP-UL14 fused protein, pC1-UL14 wastransfected into Hela cells, and the fluorescence mainly distributed in cytoplasm at 24 hposttransfection, but as time went on, the fluorescence imaging occured to transfer andaggregated in nucleus at 48h posttransfection. In order to analyze UL14 function domains,a series of C- (1-146aa, 1-124aa, 1-88aa, 1-77aa, 1-65aa) or N-(14-159aa, 37-159aa,63-159aa, 85-159aa, 106-159aa, 121-159aa) terminal truncated mutants were obtained,and EGFP-fused expressing plasmids were constructed. When transfected into Hela cells,different fluorescence imaging in cells transfected with pC1-UL14 at various timesposttransfection were observed. The deletion of the C-terminal 94aa or N-terminal 37aasequences did not affect the intracellular localization of UL14, whereas, 62aa-deletion atthe N-terminal sequences resulted in the diffusedly cytoplasmic distribution. The resultssuggested that the 37aa to 65aa sequence of UL14 played an important role onintracellular localization.
     4. Expression analysis of UL14 after infecting cells with PRV
     Cells were collected at various time after PRV-Ea infection, RT-PCR was performedto amplify cDNA of UL14 and late gene gD of PRV. Like gD gene, the transcriptionproduct of UL14 was observed at 9 h postinfection. Meanwhile, Western blottingdemonstrated that UL14 protein was expressed at 12 h postinfection. The resultsconfirmed that PRV UL14 protein was expressed with late kinetics.
     5. Construction of PRV UL14 mutant strain
     EGFP expression cassette drived by CMV promoter was amplified by PCR, andinserted into StuI site of UL14 gene of plasmid pUC3.0 containing entire UL14, UL16 gene and partial UL13, UL15 gene to generate transfer plasmid pUC3.0-14/EGFP. Thenthis plasmid was co-transfected into IBRS-2 cells with PRV-Ea genome. After cytopathiceffect occurred in cells, recombinant virus PRV-UL14D expressing EGFP was screenedfrom the cytopathic cells by EGFP fluorescence marker and plaque purification. Therecombinant virus was verified by PCR, Western blotting and Flow Cytometry (FCM),and can stably express EGFP protein.
     6. Function analysis of PRV UL14
     The penetration kinetics, plaque size, one step growth curves, and morphogonesis ofPRV-UL14D mutant were investigated and compared with the parent virus, PRV Ea ininfected cells. The results showed that the penetration and release of PRV wereindependent of UL41, but the UL41 deleted mutant exhibited a delayed growth andsignificantly small plaque size. Meanwhile, electron microscopic examination indicatedthat the nonenveloped particles obviourly increased in the PRV-UL14D-infected cells.The results illuminated that UL 14-deletion affected the virus's enveloping, and furtherlyinfluence the mature of PRV particles. But these defects above in vitro can be completelyrecovered in UL14-expressing IBRS-2 cells, which indicated that the UL 14-deletion maybe responsible for these changes. In further researches, we found that the average deathtime of BALB/c mice inoculated with PRV-UL14D was obviously delayed, comparedwith the same dose of PRV-Ea. The results suggested that the UL14-deletion also affectedthe replication of PRV in vivo. In additional, anti-apoptotic activity of UL14 wasinvestigated by cell apoptosis detection and electron microscopic examination. The resultsindicated that UL14 expressing cell lines could not be resistant to apoptosis induced bysorbitol treatment. Electron microscopy showed that there were no obviously differencesof apoptotic phenomenon between cells infected with PRV-Ea and PRV-UL14D, whichsuggested that UL14 protein did not share anti-apoptotic function, contrast to HSV-1,HSV-2 and BHV-1 UL14 as reported previously.
     7. Construction of PRV TK~-/gG~- infectious clone
     BAC vector sequence containing F-factor was cloned into plasmid pgG-Uni togenerate transfer plasmid pSB301. And then, this plasmid was co-transfected into IBRS-2cells with PRV TK~-/gG~-/LacZ~+ genome. When eytopathie effect occurred in cells,recombinant virus PRV TK~-/gG~-/BAC was screened from the cytopathic cells by plaquepurification. Replieative intermediate (covalently closed circular) viral DNA extractedfrom cells infected with the recombinant virus was electroporated into E.coli DH10B cells.The BAC plasmid DNA isolated from E.coli harboring PRV full-length BAC DNA wastransfected into PK-15 cells, and cytopathic effect was visible, suggested that PRV BACDNA possess infection. Furthermore, the results of one step growth curves of PRV TK~-/gG~- infectious clone showed that the insertion of BAC vector sequence had noinfluence on the propagation of recombinant viruses in cells.
     8. Immunogenicity of PRV TK~-/IgG~- BAC plasmid DNA in mice
     Immunogenicity of PRV BAC plasmid DNA was detected in mice, and comparedwith transfer plasmid pSB301, recombinant PRV TK~-/gG~-/BAC and parent strain PRVTK~-/gG~-/LacZ~+. The results showed that PRV neutralization antibodies induced by PRVBAC plasmid DNA corresponded with that induced by TK~-/gG~-/BAC, TK~-/gG~-/LacZ~+.Moreover, mice immunized with BAC plasmid DNA could resist the challenge of lethalPRV and displayed the same protective efficacy with that vaccinated with TK~-/gG~-/BACor TK~-/gG~-/LacZ~+. The results indicated that PRV TK~-/gG~- infectious clone had favourableimmunogenicity, and lay foundation for further research on immunology and thedevelopment of perfect viral-vector system of PRV.
引文
1.方六荣.猪繁殖与呼吸综合征“自杀性”DNA疫苗与活病毒载体疫苗研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    2. Adams R, Cunningham C, Davison M D, MacLean C A, Davison A J. Characterization of the protein encoded by gene UL49A of herpes simplex virus type 1. J Gen Virol, 1998, 79: 813-823
    3. Adelman K, Salmon B, Baines J D. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci USA, 2001, 98:3086-3091
    4. Adler H. Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol, 2000, 74: 6964-6974
    5. Adler H. Virus reconstituted from infectious bacterial artificial chromosome (BAC)cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol, 2001, 75: 5692-5696
    6. Aleman N, Quiroga M I, Lopez-Pena M, Vazquez S, Guerrero F H. L-particle production during primary replication of pseudorabies virus in the nasal mucosa of swine. J Virol, 2003, 77: 5657-5667
    7. Ambagala A P, Gopinath R S, Srikumaran S. Inhibition of TAP by pseudorabies virus is independent of its vhs activity. Virus Res, 2003, 96:37-48
    8. Angelucci A, Clasca F, Sur M. Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods, 1996, 65: 101-112
    9. Angulo A. Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol, 1998, 72: 47Angulo A. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J Virol, 2000, 74: 2826-2839
    10. Angulo A. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol, 2000, 74:11129-11136
    11. Avitabile E, Lombardi G, Gianni T, Capri M, Campadelli-Fiume G. Coexpression of UL20p and gK inhibits cell-cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J Virol, 2004, 78:8015-8025
    12. Baines J D, Cunningham C, Nalwanga D, Davison A. The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product. J Virol, 1997, 71: 2666-2673
    13. Banfield B W, Yap G S, Knapp A C, Enquist L W. A chicken embryo eye model for the analysis of alphaherpesvirus neuronal spread and virulence. J Virol, 1998, 72: 4580-4588
    14. Barbara G K, Harald G, Robert K. Functional Analysis of the Pseudorabies Virus UL51 Protein. J Virol, 2005, 79: 3831-3840
    15. Benetti L, Roizman B. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci USA, 2004,101:9411-9416
    16. Berg C M. Transposable elements and the genetic engineering of bacteria. In Mobile DNA Berg, D.E. and Howe, M.(eds), pp. 1989,879-925, ASM Press
    17. Berthomme H, Jacquemont B, Epstein A. The pseudorabies virus host-shutoff homolog gene: nucleotide sequence and comparison with alphaherpesvirus protein counterparts. Virology, 1993,193: 1028-1032
    18. Berthomme H, Monahan S J, Parris D S, Jacquemont B, Epstein A L. Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction. J Virol, 1995,69:2811-2818
    19. Blomfield I C. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol, 1991, 5: 1447-1457
    20. Boehmer P E, Lehman I R. Herpes simplex virus DNA replication. Annu Rev Biochem, 1997,66: 347-384
    21. Boldogkoi Z, Braun A, Fodor I. Replication and virulence of early protein 0 and long latency transcript deficient mutants of the Aujeszky's disease (pseudorabies) virus. Microbes Infect, 2000,2: 1321-1328
    22. Boldogkoi Z, Nogradi A. Gene and cancer therapy-pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther, 2003,3: 155-182
    23. Booy F P, Trus B L, Newcomb W W, Brown J C, Conway J F. Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci USA, 1994, 91: 5652-5656
    24. Borst E M. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol, 1999, 73: 8320-8329
    25. Borst E M. Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J Virol, 2001, 75: 1450-1458
    26. Brack A R, Dijkstra J M, Granzow H, Klupp B G, Metten leiter T C. Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. J Virol, 1999, 73: 5364-5372
    27. Bras F, Dezelee S, Simonet B, Nguyen X, Vende P. The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res, 1999, 60: 29-40
    28. Britt W J. Infectious clones of herpesviruses: a new approach for understanding viral gene function. Trends Microbiol, 2000, 8(6): 262-265
    29. Brittle E E, Reynolds A E, Enquist L W. Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol, 2004, 78: 12951-12963
    30. Browne E P, Wing B, Coleman D, Shenk T. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J Virol, 2001, 75: 12319-12330
    31. Brune W. Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis see comments. Nat Biotechnol, 1999, 17: 360-364
    32. Brune W. A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science, 2001, 291: 303-305
    33. Brune W. Secreted virus-encoded proteins reflect murine cytomegalovirus productivity in organs. J Infect Dis, 2001,184: 1320-1324
    34. Bubeck A. The glycoprotein gp48 of murine cytomegalovirus. Proteasome-dependent cytosolic dislocation and degradation. J Biol Chem, 2002, 277: 2216-2224
    35. Calton C M, Randall J A, Adkins M W, Banfield B W. The pseudorabies virus serine/threonine kinase Us3 contains mitochondrial, nuclear and membrane localization signals. Virus Genes, 2004, 29: 131-145
    36. Catalano C E. The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci, 2000, 57: 128-148
    37. Chang Y Y, Lin H W, Wong M L, Chang T J. Regulation of the vhs gene promoter of pseudorabies virus by IE 180 and EP0, and the requirement of a Sp1 Site for the promoter function. Virus Genes, 2004,28: 247-258
    38. Chen X, Schmidt M C, Goins W F, Glorioso J C. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J Virol, 1995, 69: 7899-7908
    39. Charles C, Andrew J D, Alasdair R M. Herpes Simplex Virus Type 1 Gene UL14: Phenotype of a Null Mutant and Identification of the Encoded Protein. J Virol, 2000, 74: 33-41
    40. Cherepanov P P and Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 1995, 158: 9-14
    41. Cheung A K. Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol, 1991,65: 5260-5271
    42. Cheung A K, Fang J, Wesley R D. Characterization of a pseudorabies virus that is defective in the early protein 0 and latency genes. Am J Vet Res, 1994, 55: 1710-1716
    43. Cheung A K. Latency characteristics of an EPO and LLT mutant of pseudorabies virus. J Vet Diagn Investig, 1996, 8: 112-115
    44. Cheung A K, Smith T A. Analysis of the latency-associated transcript/UL1-3.5 gene cluster promoter complex of pseudorabies virus. Arch Virol, 1999,144: 381-391
    45. Cheung P, Ellison K S, Verity R, Smiley J R. Herpes simplex virus ICP27 induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cells. J Virol, 2000,74: 2913-2919
    46. Ciernik I F, Berzofsky J A, Carbone D P. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol, 1996,156:2369-2375
    47. Cihlar T. Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol, 1998,72: 5927-5936
    48. Cocchi F, Menotti L, Mirandola P, Lopez M, Campadelli-Fiume G. The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol, 1998, 72: 9992-10002
    49. Coe N E, Mengeling W L. Mapping and characterization of neutralizing epitopes of glycoproteins gIII and gp50 of the Indiana-Funkhauser strain of pseudorabies virus. Arch Virol, 1990,110: 137-142
    50. Cohen J I and Seidel, K E. Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs:VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci USA, 1993,90: 7376-7380
    51. Crump C M, Bruun B, Bell S, Pomeranz L E, Minson T. Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol, 2004,85:3517-3527
    52. Cunningham, C and Davison, A J. A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology, 1993, 197: 116-124
    53. Datsenko K A and Wanner B L.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 2000, 97: 6640-6645
    54. Davison A J. Evolution of the herpesviruses. Vet Microbiol, 2002, 86: 69-88
    55. de Wind N, Berns A, Gielkens A, Kimman T. Ribonucleotide reductase- deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol, 1993, 74: 351-359
    56. de Wind N, Peeters B P, Zuderveld A, Gielkens A L, Berns A J. Mutagenesis and characterization of a 41-kilobasepair region of the pseudorabies virus genome: transcription map, search for virulence genes, and comparison with homologs of herpes simplex virus type 1. Virology, 1994,200: 784-790
    57. Dean H J, Cheung A K. A 3'coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. J Virol, 1993,67: 5955-5961
    58. Delecluse H J. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci USA, 1998,95: 8245-8250
    59. Delecluse H J. Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma-associated virus. J Virol, 2001, 75: 2921-2928
    60. DelRio T, Werner H C, Enquist L W. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J Virol, 2002,76: 774-782
    61. DelRio T, Ch'ng T H, Flood E A, Gross S P, Enquist L W. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J Virol, 2005, 79: 3903-3919
    62. DelRio T, Decoste C J, Enquist L W. Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein VP22. J Virol, 2005,79: 8614-8619
    63. DeLuca N A and Schaffer P A. Activation of immediate-early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol Cell Biol, 1985,5: 1997-2208
    64. De'ze'le'e S, Bras F, Vende P, Simonet B, Nguyen X. The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res, 1996,42: 27-39
    65. Dietz P, Klupp B G, Fuchs W, Kollner B, T C Mettenleiter. Pseudorabies virus glycoprotein K. requires the UL20 gene product for processing. J Virol, 2000, 74: 5083-5090
    66. Dijkstra J M, Fuchs W, Mettenleiter T C, Klupp B G. Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol, 1997, 142: 17-35
    67. Do¨hner K, Wolfstein A, Prank U, Echeverri C, B Sodeik. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell, 2002, 13: 2795-2809
    68. Dorange F. Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22,is indispensable for virus growth. J Virol, 2002, 76: 1959-1970
    69. Ehsani M E. Generation of mutant murine cytomegalovirus strains from overlapping cosmid and plasmid clones. J Virol, 2000, 74: 8972-8979
    70. Elgadi M M, E Hayes C, Smiley J R. The herpes simplex virus vhs protein induces endoribonucleolytic cleavage of target RNAs in cell extracts. J Virol, 1999, 73: 7153 -7164
    71. Enquist L W. Infection of the mammalian nervous system by pseudorabies virus (PRV). Semin Virol, 1994, 5: 221-231
    72. Enquist L W. Life beyond eradication: veterinary viruses in basic science. Arch Virol Suppl, 1999,15:87-109
    73. Enquist L W, Husak P J, Banfield B W, Smith G A. Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res, 1999, 51: 237-347
    74. Farnsworth A, Goldsmith K, Johnson D C. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm. J Virol, 2003, 77: 8481-8494
    75. Farrell M J, Dobson A T, Feldman L T. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci USA, 1991, 88: 790-794
    76. Favoreel H W, Van Minnebruggen G , Nauwynck H J, Enquist L W. A tyrosine-based motif in the cytoplasmic tail of pseudorabies virus glycoprotein B is important for both antibody-induced internalization of viral glycoproteins and efficient cell-to-cell spread. J Virol, 2002,76: 6845-6851
    77. Fuchs W, Klupp B G, Granzow H, Mettenleiter T C. Identification and characterization of the pseudorabies virus UL3.5 protein, which is involved in virus egress. J Virol, 1996, 70: 3517-3527
    78. Fuchs W, Ehrlich C, Klupp B G, Mettenleiter T C. Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol, 2000, 81: 1539-1543
    79. Fuchs W, Klupp B G, Granzow H, Mettenleiter T C. The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the hostcell nucleus and represent components of primary enveloped but not mature virions. J Virol, 2002, 76: 364-378
    80. Fuchs W, Granzow H, Klupp B G, Kopp M, Mettenleiter T C. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions. J Virol, 2002, 76: 6729-6742
    81. Fuchs W, Klupp B G, Granzow H, L W Enquist, Mettenleiter T C. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49. J Virol, 2002,76: 8208-8217
    82. Fuchs W, Granzow H, Mettenleiter T C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48, and UL49 genes is viable in cultured cells. J Virol, 2003, 77: 12891-12900
    83. Fuchs W, Klupp B G, Granzow H, Mettenleite T C. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol, 2004, 78: 11879-11889
    84. Fujisawa H, Morita M. 1 Phage DNA packaging. Genes Cells, 1997, 2: 537-545
    85. Geenen K, Favoreel H W, Nauwynck H J. Higher resistance of porcine trigeminal ganglion neurons towards pseudorabies virus-induced cell death compared with other porcine cell types in vitro. J Gen Virol, 2005, 86: 1251-1260
    86. Geenen K, Favoreel H W, Olsen L, Enquist L W, Nauwynck H J. The pseudorabies virus US3 protein kinase possesses anti-apoptotic activity that protects cells from apoptosis during infection and after treatment with sorbitol or staurosporine. Virology, 2005,331:144-150
    87. Geraghty R J, Krummenacher C, Cohen G H, Spear P G. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science, 1998,280:1618-1620
    88. Gerdts V, Jo¨ns A, Makoschey B, Mettenleiter T C. Protection of pigs against Aujeszky's disease by DNA vaccination. J Gen Virol, 1997, 78: 2139-2146
    89. Gerdts V, Jo'ns A, Mettenleiter T C. Potency of an experimental DNA vaccine against Aujeszky's disease in pigs. Vet Microbiol, 1999,66: 1-13
    90. Glazenburg K L, Peeters B P, M Pol J, Moormann R J. Construction and properties of pseudorabies virus recombinants with altered control of immediate-early gene expression. J Virol, 1995,69: 189-197
    91. Granzow H, Weiland F, Jo¨ns A, Mettenleiter T C. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J Virol, 1997, 71:2072-2082
    92. Granzow H, Klupp B G, Fuchs W, Veits J, Mettenleiter T C. Egress of alphaherpesviruses: comparative ultrastructural study. J Virol, 2001, 75: 3675-3684
    93. Granzow H, Klupp B G, Mettenleiter T C. The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol, 2004, 78: 1314-1323
    94. Granzow H, Klupp B G, Mettenleiter T C. Entry of pseudorabies virus: an immunogold-labeling study. J Virol, 2005, 79: 3200-3205
    95. Grunewald K, Desai P, Steven A C. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science, 2003,302:1396-1398
    96. Hagglund R, Roizman B. Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus \.J Virol, 2004, 78: 2169-2178
    97. Hardwicke M A, Sandri-Goldin R M. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol, 1994,68:4797-4810
    98. Hardy W R, Sandri-Goldin R M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol, 1994,68: 7790-7799
    99. Harley C A, Dasgupta A, Wilson D W. Characterization of herpes simplex virus-containing organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles. J Virol, 2001, 75: 1236-1251
    100.Hill A B, Barnett B C, McMichael A J, McGeoch D J. HLA class I molecules are not transported to the cell surface in cells infected with herpes simplex virus types 1 and 2. J Immunol, 1994,152: 2736-2741
    101.Hobom U. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol, 2000,74:7720-7729
    102.Ho T Y, Wu S L, Hsiang C Y. Pseudorabies virus early protein 0 trans-activates the TATA-associated promoter by stimulating the transcription initiation. Virus Res, 1999,61:77-86
    103.Homa F L, Brown J C. Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol, 1997, 7: 107-122
    104.Horsburgh B C. Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther, 1999,6: 922-930
    105 .Hsiang C Y, Ho T Y, Chang T J. Identification of a pseudorabies virus UL12 (deoxyribonuclease) gene. Gene, 1996,177: 109-113
    106.Hsiang C Y. Pseudorabies virus DNA-binding protein stimulates the exonuclease activity and regulates the processivity of pseudorabies virus DNase. Biochem Biophys Res Commun,2002,293: 1301-1308
    
    107.Huang C, Wu C Y. Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods, 2004,119: 129-136
    108.Ioannou P A. A new bacteriophage PI-derived vector for the propagation of large human DNA fragments. Nat Genet, 1994, 6: 84-89
    109.Jin L, G Scherba. Expression of the pseudorabies virus latency-associated transcript gene during productive infection of cultured cells. J Virol, 1999, 73: 9781-9788
    110.Jones C. Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev, 2003,16: 79-95
    111. Jones J O, Arvin A M. Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J Virol, 2003, 77: 1268-1280
    112.Jo¨ns A, Mettenleiter T C. Identification and characterization of pseudorabies virus dUTPase. J Virol, 1996, 70: 1242-1245
    113.Jo¨ns A, Gerdts V, Lange E, Mettenleiter T C. Attenuation of dUTPase-deficient pseudorabies virus for the natural host. Vet Microbiol, 1997, 56:47-54
    114.Jo¨ns A, Dijkstra J M, Mettenleiter T C. Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol, 1998, 72: 550-557
    115.Kaelin K, Dezelee S, Masse M J, Flamand A. The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules. J Virol, 2000, 74:474-482
    116.Kaliman A V, Boldogkoi Z, Fodor I. Large and small subunits of the Aujeszky's disease virus ribonucleotide reductase: nucleotide sequence and putative structure. Biochim Biophys Acta, 1994,1219: 151-156
    117.Kavanagh D G. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med, 2001,194: 967-978
    118.Kemble G. Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J Virol, 1996, 70: 2044-2048
    119.Kempkes B. Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA. J Virol, 1995,69: 231-238
    120.Kiang J G, Tsokos G C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther, 1998, 80(2): 183-201
    121.Kim U J. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res, 1992,20: 1083-1085
    122.Klopfleisch R, Teifke J P, Mettenleiter T C. Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol, 2004, 78: 2956-2966
    123.Klupp B G, Nixdorf R, Mettenleiter T C. Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol, 2000, 74: 6760-6768
    124.Klupp B G, Granzow H, Mettenleiter T C. Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol, 2000, 74: 10063-10073
    125. Klupp B G, Granzow H, Mettenleiter T C. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol, 2001, 82: 2363-2371
    126.Klupp B G, Granzow H, Mundt E, Mettenleite T C. Pseudorabies virus UL37 gene product is involved in secondary envelopment. J Virol, 2001, 75: 8927-8936
    127.Klupp B G, Fuchs W, Granzow H, Mettenleiter T C. Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol, 2002, 76: 3065- 3071
    128.Klupp B G, Hengartner C J, Mettenleiter T C, Enquist L W. Complete, annotated sequence of the pseudorabies virus genome. J Virol, 2004, 78: 424-440
    129.Klupp B G, Altenschmidt J, Metten leiter T C. Identification and characterization of the pseudorabies virus UL43 protein. Virology, 2005,334: 224-233
    130.Klupp B G, Granzow H, Klopfleisch R, Mettenleiter T C. Functional analysis of the pseudorabies virus UL51 protein. J Virol, 2005, 79: 3831-3840
    131.Koffa M D, Clements J B, Izaurralde E, Kuersten S. Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J, 2001,20: 5769-5778
    132.Kopp M, Granzow H, Mettenleiter T C. The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J Virol, 2003, 77:5339-5351
    133.Kopp M, Granzow H, Mettenleiter T C. Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment. J Virol, 2004,78: 3024-3034
    134.Kopp M, Klupp B G, Mettenleiter T C. Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47: role for UL47 in virion morphogenesis in the cytoplasm. J Virol, 2002, 76: 8820-8833
    135.Koppers-Lalic D, Reits E A, Ressing M E, Wiertz E J. Varicelloviruses avoid T cell recognition by UL49.5mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci USA, 2005, 102: 5144-5149
    136.Koslowski K M, Shaver P R, Wang X Y, Pederson N E. The pseudorabies virus UL28 protein enters the nucleus after coexpression with the herpes simplex virus UL15 protein. J Virol, 1997, 71: 9118-9123
    137.Koyano S, Mar E C, Stamey F R, Inoue N. Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J Gen Virol, 2003, 84: 1485-1491
    138.Kozmik Z, Arnold L, Paces V. Multiple sets of adjacent mu El and oct-1 binding sites upstream of the pseudorabies virus immediate-early gene promoter. Virology, 1991,182:239-249
    139.Lake C M, Molesworth S J, Hutt-Fletcher L M. The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J Virol, 1998, 72: 5559-5564
    140.Lam Q, Smibert C A, Smiley J R. Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function. EMBOJ, 1996, 15: 2575-2581
    141.Lehman I R, Boehmer P E. Replication of herpes simplex virus DNA. J Biol Chem, 1999,274:28059-28062
    142.Lenk M, Visser N, Mettenleiter T C. The pseudorabies virus UL51 gene product is a 30-kilodalton virion component. J Virol, 1997, 71: 5635-5638
    143.Lin H W, Chang Y Y, Chang T J. Functional analysis of virion host shutoff protein of pseudorabies virus. Virology, 2004, 324: 412-418
    144.Lindberg A, Kreivi J P. Splicing inhibition at the level of spliceosome assembly in the presence of herpes simplex virus protein ICP27. Virology, 2002,294: 189-198
    145.Luxton G W, Haverlock S, Smith G A. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci USA, 2005,102: 5832-5837
    146.Lyman M G, Demmin G L, Banfield B W. The attenuated pseudorabies virus strain Bartha fails to package the tegument proteins Us3 and VP22. J Virol, 2003, 77: 1403-1414
    147.Mach M, Kropff B, Dal Monte P, Britt W. Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol, 2000, 74: 11881-11892
    148.Manning W C. Mocarski, E S. Insertional mutagenesis of the murine cytomegalovirus genome: one prominent alpha gene (ie2) is dispensable for growth. Virology, 1988,167: 477-484
    149.Marchini A. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol, 2001, 75: 1870-1878
    150.Marfe G, De Martino L, Filomeni G Degenerate PCR method for identification of an antiapoptotic gene in BHV-1. J Cell Biochem, 2006,97(4): 813-823
    151.Martin K J, W Lillie J, Green M R. Transcriptional activation by the pseudorabies virus immediate early protein. Genes Dev, 1990, 4: 2376-2382
    152.McGeoch D J, Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol, 1994,238: 9-22
    153.McGregor A, Schleiss M R. Molecular cloning of the guinea pig cytomegalovirus (GPCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coll Mol Genet Metab, 2001, 72: 15-26
    154.McGregor F, Phelan A, Clements J B. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol, 1996,70:1931-1940
    155.McNabb D S, Courtney R J. Characterization of the large tegument protein (ICP1/2) of herpes simplex virus type 1. Virology, 1992, 190: 221-232
    156.Mears W E, Rice S A. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J Virol, 1996, 70: 445-7453
    157.Messerle M. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA, 1997,94: 14759-14763
    158.Mettenleiter T C. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis-state of the art, June 1999. Vet Res, 2000, 31: 99-115
    159.Mettenleiter T C. Immunobiology of pseudorabies (Aujeszky's disease). Vet Immunol Immunopathol, 1996, 54:221-229
    160.Milne R S, Connolly S A, Cohen G H. Porcine HveC, a member of the highly conserved HveC/nectin 1 family, is a functional alphaherpesvirus receptor. Virology, 2001,281:315-328
    161.Misra V, Bratanich A C, Carpenter D, O'Hare P. Protein and DNA elements involved in transactivation of the promoter of the bovine herpesvirus (BHV) 1 IE-1 transcription unit by the BHV alpha gene trans-inducing factor. J Virol, 1994, 68: 4898-4909
    162.Mocarski E S. Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell, 1980,22: 243-255
    163.Moriuchi H, Moriuchi M, Dean H, Cohen J I. Pseudorabies virus EPO is functionally homologous to varicella-zoster virus ORF61 protein and herpes simplexvirus type 1 ICPO. Virology, 1995,209: 281-283
    164.Moriuchi H, Moriuchi M, Straus S E, Cohen J I. Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol, 1993,67: 2739-2746
    165.Morrison E E, Wang Y F, Meredith D M. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol, 1998, 72: 7108-7114
    166.Mossman K L, Macgregor P F, Rozmus J J, Goryachev A B, Smiley J R. Herpes simplex virus triggers and then disarms a host antiviral response. J Virol, 2001, 75: 750-758
    167.Mossman K L, Sherburne R, Lavery C, Smiley J R. Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopmentevent. J Virol, 2000, 74: 6287-6299
    168.Mukamoto M, Watanabe I, Kobayashi Y, Kodama Y. Immunogenicity in Aujeszky's disease virus structural glycoprotein gVI (gp50) in swine. Vet Microbiol, 1991, 29: 109-121
    
    169.Muyrers J P. ET-cloning: think recombination first. Genet Eng, 2000, 22: 77-98
    170.Newcomb W W, Brown J C. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol, 1991,65: 613-620
    171.Newcomb W W, Trus B L, Brown J C. Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol, 1993, 232: 499 -511
    172.Newcomb W W, Homa F L, Thomsen D R, Brown J C. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol, 1999, 73: 4239-4250
    173.Newcomb W W, Juhas R M, Thomsen D R, Brown J C. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol, 2001, 75: 10923-10932
    174.Ng T I, Ogle W O, Roizman B. UL13 protein kinase of herpes simplex virus 1 complexes with glycoprotein E and mediates the phosphorylation of the viral Fc receptor: glycoproteins E and I. Virology, 1998, 241: 37-48
    175.Nishiyama Y, Murata T. Anti-apoptotic protein kinase of herpes simplex virus. Trends Microbiol, 2002,10: 105-107
    176.Nixdorf R, Schmidt J, Karger A, Mettenleiter T C. Infection of Chinese hamster ovary cells by pseudorabies virus. J Virol, 1999,73: 8019-8026
    177.Nixdorf R, Klupp B G, Karger A, Mettenleiter T C. Effects of truncation of the carboxy terminus of pseudorabies virus glycoprotein B on infectivity. J Virol, 2000, 74: 7137-7145
    178.Nixdorf R, Klupp B G, Mettenleiter T C. Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J Gen Virol, 2001, 82: 215-226
    179.Nozawa N, Daikoku T, Koshizuka T, Yamauchi Y, Nishiyama Y. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol, 2003, 77: 3204-3216
    180.O'Connor M. Construction of large DNA segments in Escherichia coli. Science, 1989, 244: 1307-1312
    181.Ogg P D, McDonell P J, Ryckman B J, Roller R J. The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology, 2004, 319: 212-224
    182.Ono E, Taharaguchi S, Watanabe S, Kida H. Suppression of pseudorabies virus replication by a mutant form of immediate-early protein IE180 repressing the viral gene transcription. Vet Microbiol, 1998,60: 107-117
    183.Ono E, Watanabe S, Nikami H, Tasaki T, Kida H. Pseudorabies virus (PRV) early protein 0 activates PRV gene transcription in combination with the immediate-early protein IE180 and enhances the infectivity of PRV genomic DNA. Vet Microbiol, 1998,63:99-107
    184.Ou C J, Wong M L, Chang T J. Suppression of promoter activity of the LAT gene by IE180 of pseudorabies virus. Virus Genes, 2002,25: 227-239
    185.Ou C J, Wong M L, Chang T J. A TEF-1-element is required for activation of the promoter of pseudorabies virus glycoprotein X gene by IE180. Virus Genes, 2002,25: 241-253
    186.Parkinson J, Everett R D. Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol, 2000, 74: 10006-10017
    187.Parkinson J, Everett R D. Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 induce the formation of colocalizing, conjugated ubiquitin. J Virol, 2001, 75: 5357-5362
    188.Peeters B, de Wind N, Hooisma M, Moormann R. Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol, 1992,66: 894-905
    189.Pertmer T M, Eisenbraun M D, McCabe D, Haynes J R. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine, 1995, 13: 1427-1430
    190.Petherbridge L, Howes K, Baigent S J, Nair V. Replication-competent bacterial artificial chromosomes of Marek's disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J Virol, 2003, 77: 8712-8718
    191.Porter I M, Stow N D. Virus particles produced by the herpes simplex virus type 1 alkaline nuclease null mutant ambUL12 contain abnormal genomes. J Gen Virol, 2004, 85:583-591
    192.Post LE and Roizman,B. A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell, 1981,25:227-232
    193.Priola S A, Gustafson D P, Wagner E K, Stevens J G. A major portion of the latent pseudorabies virus genome is transcribed in trigeminal ganglia of pigs. J Virol, 1990, 64: 4755-4760
    194.Pyles R B, Thompson R L. Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J Virol, 1994,68: 4963-4972
    195.Rajcani J, Andrea V, Ingeborg R. Peculiarities of herpes simplex virus (HSV) transcription: an overview. Virus Genes, 2004,28: 293-310
    
    196.Ramsay M. Yeast artificial chromosomecloning. Mol. Biotechnol. 1994,1:181-201
    197.Ray N, Enquist L W. Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol, 2004, 78: 3489-3501
    198.Ray N, Bisher M E, Enquist L W. Cyclooxygenase-1 and -2 are required for production of infectious pseudorabies virus. J Virol, 2004, 78: 12964-12974
    199.Raz E, Carson D A, Parker S E, Yankauckas M A. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA, 1994,91: 9519-9523
    200.Register R B and Shafer J A. Afacile system for construction of HSV-1 variants: site-directed mutation of the UL26 protease gene in HSV-1. J Virol, 1996, 57: 181-193
    201.Rice S A, Knipe D M. Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27. J Virol, 1990,64: 1704-1715
    202.Richart S M, Simpson S A, Krummenacher C, Wilco C L. Entry of herpes simplex virus type 1 into primary sensory neurons in vitro is mediated by Nectin-1/HveC. J Virol, 2003, 77: 3307-3311
    203.Rixon F J, Addison C, McLauchlan J. Assembly of enveloped tegument structures (L particles) can occur independently of virion maturation in herpes simplex virus type 1-infected cells. J Gen Virol, 1992, 73: 277-284
    
    204.Robinson H L, Torres C A T. DNA vaccines. Semin Immunol, 1997,9: 271-283
    205.Romero C H, Meade P, Santagata J, Gibbs E P. Genital infection and transmission of pseudorabies virus in feral swine in Florida, USA. Vet Microbiol, 1997, 55: 131-139
    206.Rudolph J. Cloning of the genomes of equine herpesvirus type l(EHV-l) strains KyA and racL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health, 2002,49: 31-36
    207.Rudolph J, Osterrieder N. Equine herpesvirus type 1 devoid of gM and gp2 is severely impaired in virus egress but not direct cell-to-cell spread. Virology, 2002, 293: 356-367
    208.Saeki Y. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther, 1998,9: 2787-2794
    209.Salmon B, Cunningham C, Davison A J, Baines J D. The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol, 1998, 72: 3779-3788
    210.Sanchez V. Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J Virol, 2002, 76: 2973-2989
    211.Sandri-Goldin R M. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev, 1998,12: 868-879
    212.Sato H, Callanan L D, Pesnicak L, Cohen J I. Varicella-zoster virus (VZV) ORF17 protein induces RNA cleavage and is critical for replication of VZV at 37 degrees C but not 33 degrees C. J Virol, 2002, 76: 11012-11023
    213.Schaffer P A. Temperature-sensitive mutants of herpesviruses. Curr Top Microbiol Immunol, 1975,70:51-100
    214.Schaffer P A. Genetics of herpes simplex virus. J Invest Dermatol, 1984, 83: S42-S47
    215.Schalkwyk L C. Techniques inmammalian genome mapping. Curr Opin Biotechnol, 1995, 6: 37-43
    216.Schumacher D. Reconstitution of Marek's disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J Virol, 2000, 74: 11088-11098
    217.Schumacher D. Glycoproteins E and I of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Virol, 2001, 75: 11307-11318
    218.Shizuya H. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factorbased vector. Proc Natl Acad Sci USA, 1992, 89: 8794-8797
    219.Smibert C A, Popova B, Smiley J R. Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs. J Virol, 1994, 68: 2339-2346
    220.Smiley J R Construction in vitro and rescue of a thymidine kinase-deficient deletion mutation of herpes simplex virus. Nature, 1980, 285: 333-335
    221.Smith G A, Enquist L W. Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol, 1999,73:6405-6414
    222.Smith G A, Enquist L W. A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci USA, 2000, 97: 4873-4878
    223.Sodeik B, Ebersold M W, Helenius A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol, 1997, 136: 1007-1021
    224.Spaete R R and Mocarski, E S. Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci USA, 1987, 84: 7213-7217
    225.Stavropoulos T A and Strathdee C A. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol, 1998, 72: 7137-7143
    226.Stegeman A, de Jong M C, van Nes A, Bouma A. Dynamics of pseudorabies virus infections in vaccinated pig populations: a review. Vet Q, 1997, 19: 117-122
    227.Steinmetz M. Genetic analysis of sacB, the structural gene of a secreted enzyme levansucrase of Bacillus subtilis Marburg. Mol Gen Genet, 1983,191: 138-144
    228.Strive T. Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture-/ Virol, 2002, 76: 1252-1264
    229.Suter M, Lew A M, Grob P, Fraefel C. BAC-VAC, a novel generation of (DNA) vaccines: a bacterial artificial chromosome (BAC) containing a replication-competent, packaging-defective virus genome induces protective immunity against herpes simplex virus 1. Proc Natl Acad Sci USA, 1999, 96: 12697-12702
    230.Szilagyi J F, Cunningham C. Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol, 1991,72: 661-668
    231.Taddeo B, Esclatine A, Roizman B. The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci USA, 2002, 99: 17031-17036
    232.Taharaguchi S, Inoue H, Shimizu Y. Mapping of transcriptional regulatory domains of pseudorabies virus immediate-early protein. Arch Virol, 1994,137: 289-302
    233.Taharaguchi S, Ono E, Yamada S, Shimizu Y, Kida H. Mapping of a functional region conferring nuclear localization of pseudorabies virus immediate-early protein. Arch Virol, 1995, 140: 1737-1746
    234.Taharaguchi S, Kobayashi T, Yoshino S, Ono E. Analysis of regulatory functions for the region located upstream from the latency-associated transcript (LAT) promoter of pseudorabies virus in cultured cells. Vet Microbiol, 2002, 85: 197-208
    235.Taharaguchi S, Yoshino S, Amagai K, Ono E. The latency-associated transcript promoter of pseudorabies virus directs neuron-specific expression in trigeminal ganglia of transgenic mice. J Gen Virol, 2003, 84: 2015-2022
    236.Takashima Y, Tamura H, Xuan X, Otsuka H. Identification of the US3 gene product of BHV-1 as a protein kinase and characterization of BHV-1 mutants of the US3 gene. Virus Res, 1999, 59: 23-34
    237.Tao Q and Zhang H B. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res, 1998,26:4901-4909
    238.Thomas J T, Oh S T, Terhune S S, Laimins L A. Cellular changes induced by low-risk human papillomavirus type 11 in keratinocytes that stably maintain viral episomes. J Virol, 2001,75: 7564-7571
    239.Tirabassi R S, Enquist L W. Role of envelope protein gE endocytosis in the pseudorabies virus life cycle. J Virol, 1998,72:4571-4579
    240.Tischer B K. Schumacher D, Beer M, Beyer J, Osterrieder N. The products of the UL10 (gM) and the UL49.5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol, 2002, 83: 997-1003
    241.Tischer B K, Schumacher D, Beer M, Beyer J, Osterrieder N. A DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. J Gen Virol, 2002, 83: 2367-2376
    242.Tomkinson B,Epstein-Barr virus recombinants from overlapping cosmid fragments. J Virol, 1993,67:7298-7306
    243.Trus B L, Homa F L, Booy F P, Steven A C. Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J Virol, 1995,69: 7362-7366
    244.Tsuda T, Onodera T, Sugimura T, Murakami Y. Induction of protective immunity and neutralizing antibodies to pseudorabies virus by immunization of anti-idiotypic antibodies. Arch Virol, 1992,124: 291-300
    245.Turner A, Bruun B, Minson T, Browne H. Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol, 1998, 72: 873-875
    246.Van de Walle G R, Favoreel H W, Nauwynck H J, Pensaert M B. Antibody-induced internalization of viral glycoproteins and gE-gI Fc receptor activity protect pseudorabies virus-infected monocytes from efficient complement-mediated lysis. J Gen Virol, 2003, 84: 939-948
    247.Van Minnebruggen G, Favoreel H W, Jacobs L, Nauwynck H J. Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown. J Virol, 2003, 77: 9074- 9080
    248. Van Minnebruggen G, Favoreel H W, Nauwynck H J. Internalization of pseudorabies virus glycoprotein B is mediated by an interaction between the YQRL motif in its cytoplasmic domain and the clathrinassociated AP-2 adaptor complex. J Virol, 2004, 78: 8852-8859
    249.Van Zijl M Regeneration of herpesviruses from molecularly cloned subgenomic fragments. J Virol, 1988, 62: 2191-2195
    250.Van Zijl M, van der Gulden H, de Wind N, Gielkens A, Berns A. Identification of two genes in the unique short region of pseudorabies virus; comparison with herpes simplex virus and varicella-zoster virus. J Gen Virol, 1990, 71: 1747-1755
    251.Vlcek C, Kozmik Z, Paces V, Schirm S, Schwyzer M. Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology, 1990, 179: 365-377
    252.Wagenaar F, Pol J M, Peeters B, Kimman T G. The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J Gen Virol, 1995, 76: 1851-1859
    253.Wagner M Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol, 1999, 73: 7056-7060
    254.Wagner M. Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol, 2000, 74:10729-10736
    255.Wang J, Irnaten M, Neff R A, Mettenleiter T C, Mendelowitz D. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci, 2001,940: 237-246
    256.Watanabe S, Ono E, Shimizu Y, Kida H. Mapping of trans-regulatory domains of pseudorabies virus early protein 0 and identification of its dominant-negative mutant. Arch Virol, 1996, 141: 1001-1009
    257.Watanabe S, Ono E, Shimizu Y, Kida H. Pseudorabies virus early protein 0 transactivates the viral gene promoters. J Gen Virol, 1995, 76 (Pt 11): 2881-2885
    258.Wesley R D, Cheung. A pseudorabies virus mutant with deletions in the latency and early protein O genes: replication, virulence, and immunity in neonatal piglets. J Vet Diagn Investig, A K, 1996, 8: 21-24
    259. White A K, Ciacci-Zanella J, Galeota J, Osorio F A. Comparison of the abilities of serologic tests to detect pseudorabies-infected pigs during the latent phase of infection. Am J Vet Res, 1996, 57: 608-611
    260.Wilkinson D E, Weller S K. The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life, 2003, 55: 451-458
    261.Wong M L, Ho T Y, Huang J H, Chang T J. Stimulation of type I DNA topoisomerase gene expression by pseudorabies virus. Arch Virol, 1997, 142: 2099-2105
    262.Wong M L, Chen C H. Evidence for the internal location of actin in the pseudorabies virion. Virus Res, 1998,56: 191-197
    263.Wu C L, Wilcox K W. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J Virol, 1991, 65:1149-1159
    264.Wu S L, Hsiang C Y, Ho T Y, Chang T J. Identification, expression, and characterization of the pseudorabies virus DNA-binding protein gene and gene product. Virus Res, 1998, 56: 1-9
    265.Wu S X, Zhu X P, Letchworth G J. Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the U(L)49.5 protein. J Virol, 1998, 72: 3029-3036
    266.Yamada S, Shimizu M. Isolation and characterization of mutants of pseudorabies virus with deletion in the immediate-early regulatory gene. Virology, 1994, 199: 366-375
    267.Yamada S, Shimizu M. Pseudorabies virus immediate-early regulatory protein IE 180 expressed by recombinant baculovirus is functional. Virology, 1994,202: 491-495
    268.Yang X W. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol, 1997,15: 859-865
    269.Yohei Y, Kaoru W, Fumi G The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J Gen Virol, 2001, 82: 321-330
    270.Yohei Y, Kaoru W, Fumi G Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Sci, 2002,115:2517-2527
    271.York I A, Roop C, Andrews D W, Riddell S R, D C Johnson. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8-T lymphocytes. Cell, 1994, 77: 525-535
    272.Yu D. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA, 2000, 97: 5978-5983
    273. Yu D. Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol, 2002, 76: 2316-2328
    274.Zhang Y. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 1998,20:123-128
    275.Zhou Z H, Chen D H, Jakana J, Chiu W. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol, 1999, 73: 3210-3218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700