高双折射光子晶体光纤的结构设计与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1996年被首次制备成功以来,光子晶体光纤(PCF)就以其传统光纤无法实现的独特且优越的性质受到国内外广大学者的普遍关注。目前,光子晶体光纤的应用研究已经扩展到光通讯、光传感、光电检测、光纤激光器及光学医疗器件等众多重要的领域。随着应用领域不断扩展,高新技术的进展使研发各种高性能的光子晶体光纤以及新型光子晶体光纤器件已经成为一种迫切的需要,因此,开展PCF的特性及应用的理论研究具有重要的学术价值和广阔的应用前景。
     本文以折射率导光型高双折射光子晶体光纤为重点,利用多极法建立理论模型,对几种新结构高双折射PCF的传输特性进行了细致的理论研究;提出了两种新型双芯PCF偏振分束器,采用全矢量有限元方法建立模型并进行了深入的理论分析,主要的研究内容如下:
     首先,提出了六边形包层椭圆纤芯的光纤结构,分析了空气孔径和纤芯的椭圆率对双折射的影响,结果表明这类结构的包层对称性很高,双折射主要是由椭圆形的纤芯引起的。孔径对双折射的作用并不明显但椭圆率产生的影响很显著,当椭圆率分别为3:2和2:1时,双折射可以达到10-3量级;提出了空气孔椭圆形分布的光纤结构,分析了孔径、孔层数和椭圆率对双折射的影响,结果表明这种结构的不对称性要高于六边形包层椭圆纤芯的结构,在椭圆率同为4:3时,这种结构的双折射达到了10-3量级。同时,椭圆包层结构的不对称性主要由孔分布的椭圆率决定,椭圆率越大,结构的不对称性越强,则双折射越高;提出了三种压缩的六边形光纤结构,分析了孔径和孔间距对双折射的影响,结果表明孔间距的影响效果更显著,间距越小则双折射越高。增大孔径或缩小孔间距可以提高结构的不对称性,从而增强双折射。这类结构通过选择合适的结构参数可以在1.55μm波长处实现1.544102的高双折射
     其次,利用多极法对椭圆包层结构、压缩六边形结构和类熊猫型压缩六边形结构的色散、等效模式面积和非线性系数进行了模拟分析,重点分析了结构参数对这些特性参量的影响。对于椭圆包层结构,改变孔层数、孔径和椭圆率来分析传输特性的变化过程;对于压缩的六边形结构,分析了孔径和孔间距对三个特性参量的影响,并对比了不同孔间距时的模拟结果。分析结果表明,结构参数对色散和非线性都有明显作用,调节结构参数可以产生振荡形式的色散和较高的负色散,且结构的不对称性越高,非线性效应越强。类熊猫型压缩结构在1.55μm波长处的非线性系数可达到69.54W-1km-1。
     最后,基于模式干涉原理提出了两种新型的双芯PCF偏振分束器,一种是包层为八边形和矩形相结合的结构,利用全矢量有限元法分析了基模场的分布和结构参数对双折射、耦合长度的影响,经过优化后模拟了归一化传输功率和消光比,得到了长度为314μm的分束器结构,在1.55μm波长处的消光比约为-50.5dB,消光比为-10dB的带宽约为170nm,消光比为-20dB的带宽为60nm;另一种是由软玻璃SF6构成的矩形结构双芯PCF偏振分束器,利用全矢量有限元法分析了基模场的分布和结构参数对双折射、耦合长度的影响,选择合适的结构参数可以得到长度为281μm的偏振分束器,在波长1.55μm处的消光比可达到-45.42dB,消光比为-10dB的带宽为90nm,消光比为-20dB的带宽为32nm。
Since successfully fabricated in1996for the first time, photonic crystal fibers (PCF)have received wodespread attentions from a lot of researchers all over the world due tothose unique and excellent properties that can’t be realized in conventional fibers. Atpresent, applications of PCFs have expanded into many important research domains, suchas optical communications, optical sensing, photoelectric detection, optical fiber lasers andmedical devices, etc. With application fields gradually extending, to develop highperformance PCFs and novel devices based on PCFs has become an urgent demand.Therefore, carrying out theoretical studies on PCF characteristics and applications is ofgreat academic values and wide application prospects.
     Focusing on index-guiding highly birefringent PCFs, propagation properties of severealnovel PCF designs are thoroughly investigated theoretically by employing multipolemethod. Two novel dual core PCF polarization splitters are presented and the full-vectorfinite element method is adopted to analyze and optimize the structures, and main researchcontents are listed below:
     Firstly, PCF structures with the hexagonal cladding and elliptical cores are proposedand impacts of air hole sizes and the core’s ellipticity on birefringence are analyzed, andresults indicate claddings of these designs are highly symmetrical so birefringence ismainly caused by elliptical cores. Effects of hole sizes on birefringence are trivial butellipticity of the core has great impacts. With ellipticity of3:2or2:1, birefringence is onthe order of magnitude of10-3; Structures with air holes in elliptical configuration arepresented and effects of air hole sizes, the number of air holes and ellipticity onbirefringence are investigated, and results show that symmetry of these structures is higherthan that of structures with triangular lattice and elliptical cores. With ellipticity of4:3,birefringence of these structures is on the order of10-3. Meanwhile, asymmetry ofelliptical claddings is mostly determined by ellipticity of air holes’ distribution, the largerthe ellipticity is, the more asymmetrical these structures are and the higher birefringence is;Three squeezed hexagonal PCF designs are proposed and impacts of air hole sizes andhole pitch on birefringence are analyzed. Results indicate hole pitch plays a moreimportant role on birefringence than hole sizes, and decreasing the hole pitch can enhancethe asymmetry of the ocre and cladding, which leads to higher birefringence. By selecting proper structural parameters, the highest birefringence of1.544102can be realized atthe wavelength of1.55μm.
     Secondly, using multipole method, numerical analysis on dispersion, effective modalarea and nonlinear coefficient of PCFs with elliptical claddings, squeezed hexagonalcladdings and panda-like squeezed hexagonal claddings is carried out. As for the ellipticalcladding structres, impacts of the number of air hole rings, hole sizes and ellipticity ondispersion, effective modal area and nonlinear coefficient are analyzed; As for thesqueezed hexagonal structures, hole size and hole pitch both affect those transmissionproperties, and results with different hole pitches are compared. Results show thatstructural parameters affect all those properties, leading to normal and oscillatingdistributions, zero dispersion points in multiple communication wavebands and largenegative dispersion values. Moreover, structures with higher asymmetry have strongernonlinearity, for example, the nonlinear coefficient of panda-like squeezed hexagonaldesign is around69.54W-1km-1at the wavelength of1.55μm.
     Finally, based on the modal interference principle, two novel dual core PCF polarizationsplitters are proposed. The first one’s structure is a combination of octagonal andrectangular claddings, and its fundamental modes’ distribution and impacts of parameterson birefringence and coupling length are analyzed by using full vector finite elementmethod. After optimization the normalized power and extinction ratio of this design arenumerically investigated, moreover, the extinction ratio at1.55μm is around-50.5dB, andthe bandwidth at the extinction ratio of-10dB is170nm,60nm at the extinction ratio of-20dB. The second one is made of soft glass SF6with circular and elliptical air holesarranged in rectangular lattice, and by selecting proper structural parameters a281μm longpolarization splitter is realized. The extinction ratio at1.55μm is around-45.42dB, andthe bandwidth at the extinction ratio of-10dB is90nm,32nm at the extinction ratio of-20dB.
引文
[1] Zhang H F, Liu S B, Kong X K, et al. Photonic band gap of three dimensional magnetizedphotonic crystal with Voigt configuration[J]. Eur. Phys. J. D,2013,67:169-181.
    [2] Man W N, Florescu M, Matsuyama K, et al. Photonic band gap in isotropic hyperuniformdisordered solids with low dielectric contrast[J]. Optics Express,2013,21(17):19972-19981.
    [3] Yan M B, Fu Z T, Wang H L. Study on complete band gap of two-dimensional photonic crystalwith quadrangular rods[J]. Optik,2012,123(22):2017-2020
    [4] Armenise M N, Campanella C E, Ciminelli C, et al. Phononic and photonic band gapstructures: modelling and applications[J]. Physics Procedia,2010,3,(1):357-364.
    [5] John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices[J]. Phys.Rev. Lett.1987,58(23):2486-2489.
    [6] Yablonovitch E. Inhibited Spontaneous Emission in Solid State Physics and Electronics[J].Phys. Rev. Lett.1987,58:2059-2061.
    [7] Arata S, Yuji Tanaka, Fujio Minami, et al. Photon localization and tunneling in a disorderednanostructure[J]. Journal of Luminescence,2009,129(12):1718-1721.
    [8] Saari P, Menert M, Valtna H. Photon localization barrier can be overcome[J]. Opt. Commun.,2005,246,(4–6):445-450.
    [9] Keller O. On the theory of spatial localization of photons[J]. Physics Reports,2005,411,(1–3):1-232
    [10] Kao K C, Hockham G A. Dielectric fiber wave guides for light communications[J].Proceedings of the Institution of Electrical Engineers,1966,113:1151-1158.
    [11] Russell P S. Photonic band gaps[J]. Physics World,1992,5(8):37-42.
    [12] Knight J C, Birks T A, Russell P S, et al. All silica single mode optical fiber withphotoniccrystal cladding[J]. Opt. Lett.,1996,21(19):1547-1549.
    [13] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett.1997,22:961-963.
    [14] Wei L, Jia Z. Based on total internal refection multi-mode interference photonic crystalwaveguide[J]. Opt. Communications,2013,291:169-172.
    [15] Kanungo V, Metya S K, Janyani V, et al. Segmented cladding index guiding photonic crystalfiber[J]. Opt. Communications,2013,297:147-153.
    [16] Bhattacharya R, Konar S. Extremely large birefringence and shifting of zero dispersionwavelength of photonic crystal fibers[J]. Optics and Laser Technology,2012,44:2210-2216.
    [17] Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fiber[J]. Science,1998,282:1476-1478.
    [18] Cregan R F, Mangan B J, Knight J C, et al. Singlemode photonic band gap guidance of light inair[J]. Science,1999,285:1537-1539.
    [19] Armenise M N, Campanella C E, Ciminelli C, et al. Phononic and photonic band gapstructures: modelling and applications[J]. Physics Procedia,2010,3:357-364.
    [20] Zhu N, Wang J, Cheng C, et al. Research of band gap properties based on two-dimensionalphotonic crystal with mixed shapes of rods[J]. Optik,2013,124(4):309-312.
    [21] Yan M B, Fu Z T, Wang H L. Study on complete of two dimensional photonic crystal withquadrangular rods[J]. Optik,2012,123(22):2017-2020.
    [22] Liu D, Gao Y H, Gao D S, et al. Photonic band gaps in two-dimensional photonic crystals ofcore-shell-type dielectric nanorod heterostructures[J]. Optics Communications,2012,285(7):1988–1992.
    [23] Naoki Karasawa. Dispersion properties of liquid core photonic crystal fibers[J]. Appl. Opt.,2012,51(21):5259-5265.
    [24] Li J H, Wang J Y, Yan C, et al. Novel large mode area photonic crystal fibers with selectivelymaterial filled structure[J]. Optics and Laser Technology,2013,48:375-380.
    [25] Wang J L, Yao J Q, Chen H M, et al. Ultrahigh birefringence polymer terahertz fiber based on anear tie unit[J]. J. Opt.,2011,13:055402.
    [26] Ertman S, Todriguez A H, Tefelska M, et al. Index guiding photonic liquid crystal fibers forpractical applications[J]. Journal of Lightwave Technology,2012,30(8):1208-1214.
    [27] Hameed M F, Obayya S A. Modal analysis of a novel soft glass photonic crystal fiber withliquid crystal core[J]. Journal of Lightwave Technology,2012,30(1):96-102.
    [28] Jiang X, Euser T G, Abdolvand A, et al. Single mode hollow core photonic crystal fiber madefrom soft glass[J]. Opt. Express,2011,19(16):15438-15445.
    [29] Bhawana D, Sinha R K. Design of highly birefringent chalcogenide glass PCF: A simplestdesign[J]. Optics Communications,2011,284:1186-1191.
    [30] Mishra S S, Singh V K. Highly birefringent photonic crystal fiber with low confinement loss atwavelength1.55μm[J]. Optik,2011,122:1975-1977.
    [31] Liang J, Yun M J, Kong W J, et al. Highly birefringent photonic crystal fibers with flatteneddispersion and low effective mode area[J]. Optik,2011,122:2151-2154.
    [32] Park M, Arabi H E, Lee S J, et al. Independent control of birefringence and chromaticdispersion in a photonic crystal fiber using two hollow ring defects[J]. Optics Communications,2011,284:4914-4919.
    [33] Lin A, Zheng Z, Zheng L, et al. Ultra wideband single polarization single mode, highnonlinearity photonic crystal fiber[J]. Optics Communications,2009,282:3266-3269.
    [34] Mejia F B, Chesini G, Silvestre E, et al. Ultrahigh birefringence squeezed lattice photoniccrystal fiber with rotated elliptical air holes[J]. Opt. Lett.,2010,35(4):544-546.
    [35] Razzak S M, Namihira Y, Miyagi K, et al. Dispersion and confinement loss control in modifiedhexagonal photonic crystal fibers[J]. Optical Review,2007,14(1):14-16.
    [36] Dong L, Hugh A M, Fu L B. All glass endless single mode photonic crystal fibers[J]. Opt. Lett.2008,33:2440-2442.
    [37] Ademgil H, Haxha S. Endlessly single mode photonic crystal fiber with improved effectivemode area[J]. Optics Communications,2012,285(6):1514-1518.
    [38] Kishor K, Sinha R K, Varshney A D. Experimental verification of improved effective indexmethod for endlessly single mode photonic crystal fiber[J]. Optics and Lasers in Engineering,2012,50(2):182-186.
    [39] Uranus H P. Theoretical study on the multimodeness of a commercial endlessly single-modePCF [J]. Optics Communications,2010,283(23):4649-4654.
    [40] Chen Z L, Hou J, Xi X M, et al. Endlessly single-mode operation of highly nonlinear photoniccrystal fibers by controlled hole collapse[J]. Optics Communications,2010,283(23):4645-4648.
    [41] Ká ik D, Tvaro ek P, Schuster K, et al. Refractive index measurement based on core-claddingmode interferometry in endlessly single mode fiber[J]. Optik,2012,123(19):1746–1749.
    [42] Grassi A M, Casagrande F, M, Marinoni S. Single-modeness of short large mode area fibers:An experimental study[J]. Optics Communications,2007,273(1):127-132.
    [43] Tzong J, Shen L F, Chau Y F, et al. High birefringence and low loss circular air-holes photoniccrystal fiber using complex unit cells in cladding[J]. Opt. Communications,2008,281:4334-4338.
    [44] Bhattacharya R, Konar S. Extremely large birefringence and shifting of zero dispersionwavelength of photonic crystal fibers[J]. Optics and Laser Technology,2012,44:2210-2216.
    [45] Razzak S M, Namihira Y, Hossain M A, et al. Designing birefringence of index-guidingnon-hexagonal photonic crystal fibers[J]. Journal of Optics,2011,40(2):56-64.
    [46] Hu D J, Shum P, Lu C, et al. Dispersion-flattened polarization-maintaining photonic crystalfiber for nonlinear application[J]. Opt. Communications,2009,282:4072-4076.
    [47] Sun Z M, Song N F, Jing J, et al. Low loss fusion splicing polarization maintaining photoniccrystal fiber and conventional polarization-maintaining fiber[J]. Optical Fiber Technology,2012,18:452-456.
    [48] Hu B, Lu M, Li W N, et al. High birefringent rhombic hole photonic crystal fibers[J]. Appl.Opt.,2010,49:6098-6101.
    [49] Liou J H, Huang S S, Yu C P. Loss reduced highly birefringent selectively liquid-filled photoniccrystal fibers[J]. Opt. Communications,2010,283:971-974.
    [50] Eguchi M, Tsuji Y. Single-mode single-polarization holey fiber using anisotropic fundamentalspace-filling mode[J]. Opt. Lett.,2007,32:2112–2114.
    [51] Lee S G, Lim S D, Lee K, et al. Single-polarization single-mode photonic crystal fiber based onindex-matching coupling with a single silica material[J]. Optical Fiber Technology,2011,17(1):36-40.
    [52] Lu D, Zhang X D, Chang M, Abel et al. Single-polarization single-mode photonic crystal fiberswith rectangular-lattice and elliptical-hole arranged perpendicular to each other[J]. Optik,2013,124(17):3026-3028.
    [53] Chen H B, Wang H, Hou H L, et al. A terahertz single-polarization single-mode photoniccrystal fiber with a rectangular array of micro-holes in the core region[J]. OpticsCommunications,2012,285(18):3726-3729.
    [54] Feng S C, Lu S H, Peng W J, et al. Tunable single-polarization single-longitudinal-modeerbium-doped fiber ring laser employing a CMFBG filter and saturable absorber[J]. Optics andLaser Technology,2013,47:102-106.
    [55] Lu S, Li W, Guo H, et al. Analysis of birefringent and dispersive properties of photonic crystalfibers[J]. Appl. Opt.,2011,50(30):5798-5802.
    [56] Saitoh K, Koshiba M. Chromatic dispersion control in photnic crystal fibers: application toultra flattened dispersion[J]. Opt. Express,2003,11(8):843-853.
    [57] Gong T X, Luan F, Hu D J, et al. Photonic crystal fibers with high and flattened dispersion[J].Opt. Communications,2011,284:4176-4179.
    [58] Liao J F, Sun J Q, Qin Y, et al. Ultra-flattened chromatic dispersion and highly nonlinearphotonic crystal fibers with ultralow confinement loss employing hybrid cladding[J]. OpticalFiber Technology,2013,19:468-475.
    [59] Wang W, Hou L T, Song J J, et al. Design of double cladding dispersion flattened photoniccrystal fiber with deformation insensitive outer cladding air-holes[J]. Optics Communications,2009,282:3468-3472.
    [60] Hu D J, Shum P, Lu C, et al. Dispersion-flattened polarization-maintaining photonic crystalfiber for nonlinear applications[J]. Optics Communications,2009,282:4072-4076.
    [61] Liu Y, Wang J Y, Li Y Q, et al. A novel hybrid photonic crystal dispersion compensating fiberwith multiple windows[J]. Optics and Laser Technology,2012,44(7):2076-2079.
    [62] Aliramezani M, Nejad M S. Numerical analysis and optimization of a dual concentric corephotonic crystal fiber for broadband dispersion compensation[J]. Optics and Laser Technology,2010,42:1209-1217.
    [63] Jin J, Wang S, Song J M, et al. Novel dispersion compensation method for cross-couplingmeasurement in PM-PCF based on OCDP[J]. Optical Fiber Technology,2013,19(5):495-500.
    [64] Mori T, Sakamoto T, Yamamoto S, et al. Modal dispersion compensation by using digitalcoherent receiver with adaptive equalization in multi-mode fiber transmission[J]. Optical FiberTechnology,2013,19(2):132-138.
    [65] Habib M S, Samiul M H, Razzak S M, et al. Broadband dispersion compensation ofconventional single mode fibers using microstructure optical fibers[J]. Optik,2013,124(19):3851-3855.
    [66] Begum F, Namihira Y, Razzak S M, et al. Design and analysis of novel highly nonlinearphotonic crystal fibers with ultra flattened chromatic dispersion[J]. Opt. Communications,2009,282:1416-1421.
    [67] Xu Q, Miao R C, Zhang Y N. Highly nonlinear low-dispersion photonic crystal fiber with highbirefringence for four-wave mixing[J]. Optical Materials,2012,35(2):217-221.
    [68] Zhang Y N. Design and optimization of high birefringence low loss photonic crystal fiber withtwo zero dispersion wavelengths for nonlinear effects[J]. Appl. Opt.,2011,50: E125-E130.
    [69] Kim J. Design of nonlinear photonic crystal fibers with a double cladded coaxial core for zerochromatic dispersion[J]. Appl. Opt.,2012,51:6896-6900.
    [70] Xu H Z, Wu J, Xu K, et al. Highly nonlinear all solid photonic crystal fibers with low dispersinslope[J]. Appl. Opt.,2012,51:1021-1027.
    [71] Jonathan H V, Feng X, Alexander M H, et al. Supercontinuum generation in non-silicafibers[J]. Optical Fiber Technology,2012,18(5):327-344.
    [72] Vinay V. A, Ojas P K, Malay K, et al. Modulation instability initiated high power all-fibersupercontinuum lasers and their applications[J]. Optical Fiber Technology,2012,18(5):349-374.
    [73] Gro P, Haarlammert N, Kues M, et al. Effects of optical feedback on femtosecondsupercontinuum generation[J]. Optical Fiber Technology,2012,18(5):290-303.
    [74] Kudlinski A, Mussot A. Optimization of continuous-wave supercontinuum generation[J].Optical Fiber Technology,2012,18(5):322-326.
    [75] Ma H F, Zhang X, Jing Q, et al. Broadband and low amplitude noise supercontinuum generatedby using compressed pulse[J]. Optics and Laser Technology,2012,44(5):1333-1337.
    [76] Chen M Y, Sun B, Zhang Y K, et al. Desing of al solid large mode area microstructured coreoptical fibers[J]. Opt. Communications,2010,283:3153-3157.
    [77] Halime D, Sedat O. Comparative study of large-solid-core photonic crystal fibers: Dispersionand effective mode area[J]. Optik,2012,123(8):739-743.
    [78] Marek N, Tomasz N, Pawel M, et al. Large mode area photonic crystal fiber with double latticeconstant structure and low bending loss[J]. Opt. Express,2011,19(23):22628-22637.
    [79] Saitoh K, Murao T, Lorenzo R, et al. Effective area limit of large-mode-area solid-corephotonic bandgap fibers for fiber laser applications[J]. Optical Fiber Technology,2010,16(6):409-418.
    [80] Zheng S W, Ren G B, Lin Z, et al. A novel four-air-hole multicore dual-mode large-mode-areafiber: Proposal and design[J]. Optical Fiber Technology,2013,19(5):419-427.
    [81] Ilyes A, Huseyin A, Fathi A M, et al. Design of a large effective mode area photonic crystalfiber with modified rings[J]. Optics Communications,2010,283(24):5218-5223.
    [82] Faramarz E, Seraji, S F, Anzabi L C, et al. Optimization of long-period grating inscribed inlarge mode area photonic crystal fiber for design of bandstop filter[J]. Optik,2011,122(1):58-62.
    [83] Hosaka T, Okamoto K, Sasaki Y, et al. Single mode fibers with asymmetrical refractive indexpits on both sides of the core[J]. Electron. Lett.,1981,17(5):191-193.
    [84] Okoshi T, Oyamada K, Nishiruma M, et al, Side tunnel fiber: An approach to polarizationmaintaining optical waveguiding scheme[J]. Electron. Lett.,1982,18(19):824-826.
    [85] Dyott R B, Cozens J R, Morris D G. Preservation of polarization in optical fiber waveguideswith elliptical cores[J]. Electron. Lett.,1979,15(13):380-382.
    [86] Noda J, Okamoto K, Sasaki Y. Polarization maintaining fibers and their applications[J]. J.Lightwave Technol.,1986,4(8):1071-1089.
    [87] Varnham M P, Payne D N, Birch R D, et al. Single polarization operation of highly birefringentbow tie optical fibers[J]. Electron. Lett.,1983,19(7):246-247.
    [88] Zhang X J, Zhao J L. High birefringence photonic crystal fiber with low loss and a broadsingle-mode range[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,637(1): S123-S126.
    [89] Ademgil H, Haxha S. Ultrahigh birefringent bending insensitive nonlinear photonic crystalfiber with low losses[J]. IEEE Journal of quantum electronics,2009,45(4):351-358.
    [90] Chen,M Y, Yu R J. Design of defect-core in highly birefringent photonic crystal fibers withanisotropic claddings[J]. Opt. Communications,2006,258:164-169.
    [91] Steel M J, Osgood R M. Elliptical hole photonic crystal fibers[J]. Opt. Lett.,2001,26:229-231.
    [92] Blanch A, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystal fiber [J]. Opt.Lett.,2000,25:1325-1327.
    [93] Hansen T P, Broeng J, Libori E B, et al. Hihgly birefringent index guiding photonic crystalfibers [J]. IEEE Photon. Tech. Lett.,2001,13(5):588-590.
    [94] Suzuki K, Kubota H, Kawanishi S, et al. High speed-directional Polarization divisionmultiplexed optical transmission in ultralow loss polarization maintaining fiber[J]. Electron.Let.,2001,37:1399-1401.
    [95] Bock W J, Urbanczyk W. Measurements of sensitivity of birefringent holey fiber totemperature, Elongation, and Hydrostatic Pressure[J]. IMTC,2004,2:1228-1232.
    [96] Antkowiak M, Kotynski R, Nasilowski T, et al. Phase and group model birefringence of tripledefect photonic crystal fibers[J]. J. of Opt. A: Pure and Applied Opt.,2005,7:763-766.
    [97]娄淑琴,简伟,任国斌,简水生.一种新结构的高双折射光子晶体光纤[J].光电子激光,2005,16(11):1266-1269.
    [98] Chen M Y, Yu R J. Design of defect-core in highly birefringent photonic crystal fibers withanisotropic claddings[J]. Optics Communications,2006,258(2):164-169.
    [99] Zografopoulos D C, Kriezis E E, Tsiboukis T D. Photonic crystal-liquid crystal fibers for singlepolarization or high birefringence guidance[J]. Opt. Express,2006,14(20):914-925.
    [100] Yue Y, Kai G Y, Wang Z, et al. Hihgly birefringent elliptical hole photonic crystal fiber withsqueezed hexagonal lattice[J]. Opt. Lett.,2007,32(5):469-471.
    [101] Ademgil H, Haxha S. Highly Birefringent Photonic Crystal Fibers With Ultralow ChromaticDispersion and Low Confinement Losses[J]. Journal of Lightwave Technology,2008,26(4):441-448.
    [102]龚桃荣,延凤平,王琳,等.高双折射光子晶体光纤特性分析[J].中国激光,2008,35(4):559-562.
    [103] Fu B, Li S G, Yao Y Y, et al. Design of two kinds of dual-core high birefringence and highcoupling degree photonic crystal fibers[J]. Opt. Communications,2010,283(20):4064-4068.
    [104] Zhou H S, Li S G, Fu B, et al. A kind of double cladding photonic crystal fiber with highbirefringence and two zero dispersion wavelength[J]. Chin. Phys. Lett.,2010,27(1):014208.
    [105] Hameed M F, Obayya S A. Modal analysis of a novel soft glass photonic crystal fiberwithliquid crystal core[J]. Journal of Lightwave Technology,2012,30(1):96-102.
    [106] Knight J C, Birks T A, Russell P S J, et al. Properties of photonic crystal fiber and the effectiveindex model[J]. J. Opt. Soc. Am. A,1998,15(3):748-752.
    [107] Yablonovitch E. Photonic band gap structure[J]. J. Opt. Soc. Am. B,1993,10(2):283-295.
    [108] Yablonovitch E. Photonic band gap crystals[J]. J. Phys.: Condens. Matter.,1993,5:2443-2460.
    [109] Hu D J, Shum P, Lu C, et al. Three-dimensional FDTD method for optical pulse propagationanalysis in microstructured optical fibers[J]. Opt. Communications,2009,282:1123-1128.
    [110] Jung P, Miroslaw A K. Beam propagation method in rectangular structures with a high stepindex[J]. Opt. Communications,2012,285:4184-4189.
    [111] White T P, Kuhlmey B T, McPhedran R C, et al. Multipole Method for Microstucrured OpticalFibers. I. Formulation[J]. J. Opt. Soc. Am. B,2002,19(10):2322-2330.
    [112] Kuhlmey B T, White T P, Renversez G, et al. Multipole Method for Microstructured OpticalFibers. II. Implementation and results[J]. J. Opt. So. Am. B,2002,19(10):2331-2340.
    [113] Wijingaard A. Guided normal modes of two parallel circular dielectric rods[J]. J. Opt. Soc.Am.,1973,63:944-949.
    [114] Courant R. Variation methods for the solutions of problems of equilibrium and vibration[J].Bulletin of the American Mathematical Society,1943,1(49):1-23.
    [115] Koshiba M, Saitoh K. Numerical verification of degeneracy in hexagonal photonic crystalfiber[J]. IEEE Photonics Technology Letters,2001,13:1313-1315.
    [116] Rahman B M, Namassivayane K, Uthman M, et al. Mode degeneration in bent photonic crystalfiber study by using the finite element method[J]. Appl. Optics,2009,48(31): G131-G138.
    [117] Mishra S S, Singh V K. Designing of index-guiding photonic crystal fibre by finite elementmethod simulation[J]. J. Advanced Networking and Applications,2010,2(3):666-670.
    [118] Najafi A, Jalalkamali M, Moghadamzadeh S, et al. Finite element method analysis of photoniccrystal fiber band structure[C]. Photonics and Optoelectronic,2010:1-4.
    [119] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. J.Computational Phys.,1994,114:185-200.
    [120] Smirnov S V, Castanon J D. Optical spectral broadening and supercontinuum telecomapplications[J]. Optical Fiber Technology,2006,12:122-147.
    [121] Liao J F, Sun J Q. High birefringent rectangular-lattice photonic crystal fibers with lowconfinement loss employing different sizes of elliptical air holes in the cladding and the core[J].Optical Fiber Technology,2012,18(6):457-461.
    [122] Ireneusz K, Ryszard B, Tadeusz M, et al. Multiple defect core photonic crystal fiber with highbirefringence induced by squeezed lattice with elliptical holes in soft glass[J]. Optical FiberTechnology,2012,18(4):220-225.
    [123] Wang J Y, Jiang C, Hu W S, et al. Dispersion and polarization properties of elliptical air holecontaining photonic crystal fibers[J]. Optics&Laser Technology,2007,39(5):913-917.
    [124] Lu D K, Zhang X D, Chang M, et al. Single-polarization single-mode photonic crystal fiberswithrectangular-lattice and elliptical-hole arranged perpendicular to each other[J]. Optik2013,124(17):3026-3028.
    [125] Xu Q. Polarization properties of rectangular lattice photonic crystal fiber[J]. Optik,2013,24(20):4435-4438.
    [126]吴重庆.光波导理论[M].北京,清华大学出版社,2000:69-70.
    [127] Chen M Y, Sun B, Zhang Y K. Broadband single polarization operation in square latticephotonic crystal fibers[J]. Journal of Lightwave Technonlgy,2010,28(10):1443-1446.
    [128] Rosa L, Poli F, Foroni M, et al. Polarization splitter based on a square lattice photonic crystalfiber[J]. Opt. Lett.,2006,31(4):441-443.
    [129] Li J, Mao Y, Lu C, et al. Polarization splitting of photonic crystal fiber with hybrid guidancemechanisms[J]. Photonics Technology Letters, IEEE,2011,23(8):1358-1360.
    [130] Chen M Y, Sun B, Zhang Y K, et al. Design of broadband polarization splitter based on partialcoupling in square lattice photonic crystal fiber[J]. Appl. Opt.,2010,49(16):3042-3048.
    [131] Zhang S S, Zhang W G, Geng P C, et al. Design of single polarization wavelength splitter basedon photonic crystal fiber[J]. Appl. Opt.,2011,50(36):6576-6582.
    [132] Mao D, Guan C Y, Yuan L B. Polarization splitter based on interference effects in all solidphotonic crystal fibers[J]. Appl. Opt.,2010,49(19):3748-3752.
    [133] Li J H, Wang J Y, Wang R, et al. A novel polarization splitter based on dual core hybridphotonic crystal fibers[J]. Optics and Laser Technology,2011,43:795-800.
    [134] Liu S, Li S G, Zhu X P. A novel polarization splitter based on dual core elliptical holes hybridphotonic crystal fiber[J]. Optik,2012,123:1858-1861.
    [135] Liu S, Li S G, Yin G B, et al. A novel polarization splitter in ZnTe tellurite glass three corephotonic crystal fiber[J]. Opt. Commun.,2012,285:1097-1102.
    [136] Liu S, Li S G, Du Y. Analysis of the characteristics of the polarization splitter based on telluriteglass dual core photonic crystal fiber[J]. Optics and Laser Technology,2012,44:1813-1817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700