Zr基和Fe基非晶合金液/固态微观结构理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金由于其短程有序而长程无序的原子堆垛结构而呈现出优异的性能。非晶合金微观结构的研究对理解其优异的性能有重要的意义。分子动力学方法可以模拟所研究体系在微观尺度以及短时间内微观结构的变化,因而被广泛地应用于非晶合金微观结构的研究中。本文采用经典分子动力学方法和第一性原理分子动力学方法系统地研究了Zr基和Fe基非晶合金在熔体状态、过冷液态和玻璃态的微观结构;将微观结构与微观动力学关联;深入研究了两种合金体系中微观结构对合金的玻璃形成能力的影响。
     Zr53Cu18.7Ni12Al16.3(Zr53)和Zr50.7Cu28Ni9Al12.3(Zr50.7)合金熔体中的短程序可用Al原子的配位团簇来表示。Al原子的配位团簇主要包括Kasper多面体团簇和不规则多面体团簇。Kasper多面体团簇的中心原子处于局域势能面上势垒较深的局域势能极小值处,其运动速率较小,有利于提高体系的玻璃形成能力。Zr53中Al含量比Zr50.7更高,导致Zr53中二十面体团簇的数量较Zr50.7低,同时Zr53配位团簇中化学组成更加丰富,进一步造成Zr53中二十面体团簇的畸变程度更大。这两方面微观结构因素决定了Zr50.7比Zr53的玻璃形成能力更高。Fe79C21合金熔体的原子结构可以用C原子配位团簇来表示。Fe79C21合金熔体中C原子周围的Kasper多面体配位团簇可以降低C原子的运动速率,有利于体系中非晶合金的形成。随后,本文提出了短程序对称性参数(Short range order Symmetry Parameter,SSP)来描述体系中团簇的畸变程度。用SSP研究Zr50.7和Zr53合金熔体时发现,Zr50.7中二十面体团簇的对称性更高。
     Cu50Zr50过冷液态合金的短程序可用Cu原子配位团簇表示。在Cu50Zr50过冷液态合金中,Zr5和Zr4二十面体团簇存在着空间关联作用。这种作用阻碍了过冷液态合金中原子的运动,有利于非晶合金的形成。Zr50.7和Zr53过冷液态合金的微观结构在绝大多数情况下可用Al原子的配位团簇表示。但是,在1000K左右,Zr50.7中出现了不含Al的Ni原子配位团簇。这种团簇相对于其他Ni原子配位团簇具有较低的移动速率,提高了Zr50.7合金的玻璃形成能力。Fe70Mo10B20过冷液态合金的原子结构可以用B原子配位团簇来表示。Kasper多面体团簇((0,3,6,0)、(0,2,8,0)、(0,2,8,1)和(0,4,4,0))在B原子配位团簇中占绝大多数。这些Kasper多面体团簇具有较长的寿命,有利于非晶合金中动力学延缓以及非晶合金的形成。应用SSP研究Cu50Zr50过冷液态合金中配位团簇的畸变程度时发现,过冷液态合金中SSP表现为宽分布谱,证明具有相同Voroni因子和化学成分的团簇,其结构差异仍然很大。进一步,将SSP与原子尺度剪切应力相关联,可以得出大SSP团簇的中心原子受到的原子尺度剪切应力也更大。随着体系温度的降低,配位团簇的SSP以及配位团簇中心原子受到的原子尺度剪切应力都减小。微观动力学分析的结果表明,对于具有相同Voronoi因子和化学成分的团簇,SSP越小其中心原子的活动能力越弱。从局域势能图景的角度看,配位团簇的SSP越小,团簇的中心原子处于势能面上具有更深势垒的局域能量极小值处,也因此具有更缓慢的移动速度。因此,含有更多小SSP配位团簇的体系具有更大的GFA。
     采用经典分子动力学方法模拟了温度为1000K的Cu50Zr50和Cu46Zr46Al8过冷液态合金的形核过程;采用第一性原理分子动力学方法研究Fe79C21过冷液态合金中微观结构对形核过程的影响。通过CCE方法识别出系统中的类晶体序结构。在形核过程中,三种过冷液态合金都首先析出类BCC结构。过冷液态合金中Kasper多面体团簇抑制类BCC结构的析出,阻碍晶核的形成。过冷液态合金中类BCC结构自发地聚集以降低原子的平均能量。当聚集体中原子总数接近500时,聚集体可以稳定地存在于过冷液态合金中。Al原子的加入使得Cu46Zr46Al8过冷液态合金中的Kasper多面体团簇更加稳定,更进一步地抑制类BCC结构的析出。因此Cu46Zr46Al8合金的玻璃形成能力大于Cu50Zr50合金。Fe79C21过冷液态合金于液相线以下100K处开始析出类BCC结构。
     用经典分子动力学方法和第一性原理分子动力学方法研究了几种二元、三元以及四元Zr基和Fe基非晶合金的微观结构。通过对SSP的分析,我们发现了Cu50Zr50非晶合金中局域化学成分对团簇畸变程度的影响。发现Cu-Zr二元非晶合金的玻璃形成能力与合金中团簇的SSP密切相关。团簇的对称度越高,合金的玻璃形成能力越强。通过分析Fe65Mo14C15B6的SSP,发现体系中共价键的存在可以显著地降低团簇的SSP,增加体系的玻璃形成能力。结合计算机模拟与拉曼光谱,证明了Fe65Mo14C15B6、Zr53和Zr50.7非晶合金中存在中程序,这种中程序进一步降低了原子的移动速率,增加了体系的玻璃形成能力。最后对Fe65Mo14C15B6非晶合金的微观结构与弹性性质关系的研究发现,合金的弹性变形主要对应以Fe原子为中心的类二十面体中程序的收缩。
Metallic glass possesses distinguished properties due to its unique atomic packing structure, owning short range order but lacking of long range order. In order to understand its excellent end-properties, it is of great importance to study the microscopic structure of metallic glasses (MGs). Molecular dynamics simulation, which characteriaze the structural changes particularly at microscopic length scale and short time scale, has been extensively implemented to investigate the microscopic structure of MGs. In this dissertation, both of the classical molecular dynamic (CMD) simulation and ab initio molecular dynamic (AIMD) simulation are conducted to systematically study the structure of Zr-based, Fe-based metallic glasses in the melting, supercooled and amorphous states. The microscopic structure has been correlated with the microscopic dynamics. The influence of microscopic structure on the glass forming ability (GFA) of MGs is explored.
     The short range order in Zr53Cu18.7Ni12Al16.3(Zr53) and Zr50.7Cu28Ni9Al12.3(Zr50.7) melts can be described by the Al-centered coordination cluster (CC). These Al-centered CCs consist of Kasper polyhedral cluster and irregular polyhedral cluster. The central atoms enclosed in Kasper polyhedral cluster are located at the local energy minima with deeper energy barrier which constrains the movement of central atoms. This dynamical slowing down contribute to the GFA of the alloy system. The higher Al-content in Zr53than in Zr50.7makes the icosahedra population of Zr53much less than that of Zr50.7and the distortion of icosahedra in Zr53even stronger than in Zr50.7. Both of the two former factors account for the higher GFA of Zr50.7than Zr53. The atomic structure of Fe79C21melt can be described by the C-centered CC. The Kasper polyhedral cluster around C reduces the velocity of these C atoms, and is propitious to the glass formation. A new parameter, short range order symmetry parameter (SSP), is proposed in order to quantify the degree of distortion for the CC in the system. With the help of SSP, it is found that the CC in Zr50.7possesses larger degree of symmetry.
     The short range order in Cu50Zr50supercooled alloy can be described by the Cu-centered CC. In Cu50Zr50supercooled alloy, there exists a spatial correlation between the Zr5and Zr4icosahedra. This correlation causes the slowing down of the dynamics in the system and contributes to the glass formation. The atomic structure of Zr50.7and Zr53supercooled alloys can be generally described by Al-centered CC. However, at about1000K, Al-free Ni-centered CC emerges in Zr50.7. This kind of CC corresponds to small velocity, and is good for the improvement of GFA in Zr50.7. The atomic structure of Fe70Mo10B20supercooled alloy can be described by the B-centered CC. Kasper polyhedral cluster ((0,3,6,0),(0,2,8,0),(0,2,8,1) and (0,4,4,0)) accounts for a dorminant part in these B-centered CC. These Kasper polyhedral clusters possess long lifetime, and thus are favored by the dynamical slowing down and glass formation in the system. By means of SSP, the degree of distortion for the CC in Cu50Zr50supercooled alloy is studied. There exist broad SSP distribution-spectra demonstrating that large distinction exists between the CC with identical Voronoi index and chemistry. Moreover, SSP can be used to quantify this distinction. By further analysis, SSP is correlated with the atomic level shear stress. The central atom of large-SSP CC bears large atomic level shear stress. With cooling, both the SSP and atomic level shear stress decreases in the CC. Analysis of the microscopic dynamics show that, for the CC with identical Voronoi index and chemistry, a small SSP is associated with a low mobility of the atom. From the perspective of potential energy landscape, the central atoms of small-SSP clusters are located at the local energy minima with deeper potential barrier. These atoms have slow dynamics. Consequently, alloys with more small-SSP cluster have large GFA.
     The nucleation process in Cu50Zr50and Cu46Zr46Al8supercooled alloys are simulated by CMD method, the influence of microscopic structure on nucleation in Fe79C21supercooled alloys is studied by AIMD simulation. By means of the characteristic crystallographic element method, the crystalline order is identified from the liquid alloys. Buring the nucleation process, BCC-like structure first precipitates in these three liquid alloys. The Kasper polyhedral clusters inhibit the precipitation of BCC-like structure and the formation of crystal nucleus. The BCC-like structures spontaneously aggregate with each other in order to reduce the enery per atom, forming an aggregation of atoms in the supercooled alloy. When the total number of atoms in the aggregation approaches500, the aggregation can stably exist in the supercooled alloy. By introducing Al atoms, the Kasper polyhedral clusters in Cu46Zr46Al8supercooled alloy are more stable which further inhibit the precipitation of BCC-like structure. Therefore, the GFA of Cu46Zr46Al8alloy is larger than that of Cu50Zr50alloy. The BCC-like structures start to precipitate at about100K below liquidus temperature in Fe79C21supercooled alloy.
     CMD and AIMD simulations are implemented to study the microscopic structure of binary, ternary and quaternary Zr-based and Fe-based metallic glasses. Through the analysis of SSP, the influence of local chemistry on SSP is presented for Cu50Zr50MG. The intimate relationship between SSP and GFA has been found in Cu-Zr binary alloys. Large GFA corresponds to small SSP of the clusters. Study on the SSP in Fe65Mo14C15B6metallic glasses shows that the existence of the covalent bonds in metallic glass can significantly reduce the SSP of CCs. This reduction improves the GFA of the system. By combination of the computer simulations and Raman spectrum, the evidence of the existence of the medium range order is found in Fe65Mo14C15B6, Zr53and Zr50.7MGs. This kind of medium range order further slows down the mobility of atoms and enhances the GFA. Finally, the correlation between the elastic properties and the microscopic structure in Fe65Mo14C15B6metallic glass is studied. It is found that the elastic deformation in Fe65Mo14C15B6MG originates from the shrink of the icosahedral type medium range order centered at Fe atoms.
引文
[1] Turnbull D, Cech R E. Microscopic Observation of the Solidification ofSmall Metal Droplets[J]. Journal of Applied Physics,1950,21(8):804-810.
    [2] Klement W, Willens R H, Duwez P. Non-Crystalline Structure in SolidifiedGold-Silicon Alloys[J]. Nature,1960,187(4740):869-870.
    [3] Anantharaman T R, Suryanarayana C. Review: A Decade of Quenchingfrom the Melt[J]. Journal of Materials Science,1971,6(8):1111-1135.
    [4] Jones H, Suryanarayana C. Rapid Quenching from Melt-AnnotatedBibliography1958-72[J]. Journal of Materials Science,1973,8(5):705-753.
    [5] Chen H S. Glassy Metals[J]. Reports on Progress in Physics,1980,43(4):353-432.
    [6] Chen H S. Thermodynamic Considerations on the Formation and Stabilityof Metallic Glasses[J]. Acta Metallurgica,1974,22(12):1505-1511.
    [7] Chen H S, Krause J T, Coleman E. Elastic-Constants, Hardness and TheirImplications to Flow Properties of Metallic Glasses[J]. Journal ofNon-Crystalline Solids,1975,18(2):157-171.
    [8] Drehman A J, Greer A L, Turnbull D. Bulk Formation of a Metallic-Glass:Pd40Ni40P20[J]. Applied Physics Letters,1982,41(8):716-717.
    [9] Kui H W, Greer A L, Turnbull D. Formation of Bulk Metallic-Glass byFluxing[J]. Applied Physics Letters,1984,45(6):615-616.
    [10] Inoue A, Kohinata M, Tsai A P, et al. Mg-Ni-La Amorphous-Alloys with aWide Supercooled Liquid Region[J]. Materials Transactions Jim,1989,30(5):378-381.
    [11] Inoue A, Zhang T, Masumoto T. Al-La-Ni Amorphous-Alloys with a WideSupercooled Liquid Region[J]. Materials Transactions Jim,1989,30(12):965-972.
    [12] Kataoka N, Inoue A, Masumoto T, et al. Effect of Additional Cu Elementon Structure and Crystallization Behavior of Amorphous Fe-Nb-Si-BAlloys[J]. Japanese Journal of Applied Physics Part2-Letters,1989,28(10): L1820-L1823.
    [13] Koshiba H, Inoue A. Preparation and Magnetic Properties of Co-BasedBulk Glassy Alloys[J]. Materials Transactions,2001,42(12):2572-2575.
    [14] Inoue A, Zhang W, Zhang T, et al. High-Strength Cu-Based Bulk GlassyAlloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems[J]. Acta Materialia,2001,49(14):2645-2652.
    [15] Inoue A, Gook J S. Fe-Based Ferromagnetic Glassy Alloys with WideSupercooled Liquid Region[J]. Materials Transactions Jim,1995,36(9):1180-1183.
    [16] Zhang T, Inoue A. New Bulk Glassy Ni-Based Alloys with High Strengthof3000Mpa[J]. Materials Transactions,2002,43(4):708-711.
    [17] Inoue A, Nishiyama N, Matsuda T. Preparation of Bulk GlassyPd40Ni10Cu30P20Alloy of40Mm in Diameter by Water Quenching[J].Materials Transactions Jim,1996,37(2):181-184.
    [18] Zhang T, Inoue A. Bulk Glassy Alloys with Low Liquidus Temperature inPt-Cu-P System[J]. Materials Transactions,2003,44(6):1143-1146.
    [19] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni Amorphous-Alloys with HighGlass-Transition Temperature and Significant Supercooled LiquidRegion[J]. Materials Transactions Jim,1990,31(3):177-183.
    [20] Peker A, Johnson W L. A Highly Processable Metallic-Glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters,1993,63(17):2342-2344.
    [21] Johnson W L. Bulk Glass-Forming Metallic Alloys: Science andTechnology[J]. MRS Bulletin,1999,24(10):42-56.
    [22] Conner R D, Dandliker R B, Johnson W L. Mechanical Properties ofTungsten and Steel Fiber Reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5MetallicGlass Matrix Composites[J]. Acta Materialia,1998,46(17):6089-6102.
    [23] Inoue A, Fan C, Saida J, et al. High-Strength Zr-Based Bulk AmorphousAlloys Containing Nanocrystalline and Nanoquasicrystalline Particles[J].Science and Technology of Advanced Materials,2000,1(2):73-86.
    [24] Schroers J, Lohwongwatana B, Johnson W L, et al. Gold Based BulkMetallic Glass[J]. Applied Physics Letters,2005,87(6):061912.
    [25] Guo F Q, Poon S J, Shiflet G J. Caal-Based Bulk Metallic Glasses withHigh Thermal Stability[J]. Applied Physics Letters,2004,84(1):37-39.
    [26] Zhang B, Pan M X, Zhao D Q, et al."Soft" Bulk Metallic Glasses Based onCerium[J]. Applied Physics Letters,2004,85(1):61-63.
    [27] Gu X, Xing L Q, Hufnagel T C. Glass-Forming Ability and Crystallizationof Bulk Metallic Glass (HfXZr1-X)52.5Cu17.9Ni14.6Al10Ti5[J]. Journal ofNon-Crystalline Solids,2002,311(1):77-82.
    [28] He Y, Price C E, Poon S J, et al. Formation of Bulk Metallic Glasses inNeodymium-Based Alloys[J]. Philosophical Magazine Letters,1994,70(6):371-377.
    [29] Zhao Z F, Zhang Z, Wen P, et al. A Highly Glass-Forming Alloy with LowGlass Transition Temperature[J]. Applied Physics Letters,2003,82(26):4699-4701.
    [30] Wu J, Wang Q, Qiang J B, et al. Sm-Based Sm-Al-Ni Ternary BulkMetallic Glasses[J]. Journal of Materials Research,2007,22(3):573-577.
    [31] Guo F Q, Poon S J, Shiflet G J. Metallic Glass Ingots Based on Yttrium[J].Applied Physics Letters,2003,83(13):2575-2577.
    [32] Zhang W, Inoue A. Formation and Mechanical Strength of New Cu-BasedBulk Glassy Alloys with Large Supercooled Liquid Region[J]. MaterialsTransactions,2004,45(4):1210-1213.
    [33] Li R, Pang S, Ma C, et al. Influence of Similar Atom Substitution on GlassFormation in (La-Ce)-Al-Co Bulk Metallic Glasses[J]. Acta Materialia,2007,55(11):3719-3726.
    [34] Zheng Q, Xu J, Ma E. High Glass-Forming Ability Correlated withFragility of Mg–Cu(Ag)–Gd Alloys[J]. Journal of Applied Physics,2007,102(11):113519.
    [35] Zeng Y, Nishiyama N, Yamamoto T, et al. Ni-Rich Bulk Metallic Glasseswith High Glass-Forming Ability and Good Metallic Properties[J].Materials Transactions,2009,50(10):2441-2445.
    [36] Inoue A, Nishiyama N, Kimura H. Preparation and Thermal Stability ofBulk Amorphous Pd40Cu30Ni10P20Alloy Cylinder of72Mm in Diameter[J].Materials Transactions Jim,1997,38(2):179-183.
    [37] Schroers J, Johnson W L. Highly Processable Bulk Metallic Glass-FormingAlloys in the Pt-Co-Ni-Cu-P System[J]. Applied Physics Letters,2004,84(18):3666-3668.
    [38] Inoue A, Zhang T. Fabrication of Bulk Glassy Zr55Al10Ni5Cu30Alloy of30mm in Diameter by a Suction Casting Method[J]. Materials TransactionsJim,1996,37(2):185-187.
    [39] Inoue A. Stabilization of Metallic Supercooled Liquid and BulkAmorphous Alloys[J]. Acta Materialia,2000,48(1):279-306.
    [40] Inoue A, Takeuchi A. Recent Progress in Bulk Glassy Alloys[J]. MaterialsTransactions,2002,43(8):1892-1906.
    [41] Mattern N, Sch ps A, Kühn U, et al. Structural Behavior of CuXZr100XMetallic Glass[J]. Journal of Non-Crystalline Solids,2008,354(10-11):1054-1060.
    [42] Wang W H. Bulk Metallic Glasses with Functional Physical Properties[J].Advanced Materials,2009,21(45):4524-4544.
    [43] Trexler M M, Thadhani N N. Mechanical Properties of Bulk MetallicGlasses[J]. Progress in Materials Science,2010,55(8):759-839.
    [44] Ishida M, Takeda H, Nishiyama N, et al. Wear Resistivity ofSuper-Precision Microgear Made of Ni-Based Metallic Glass[J]. MaterialsScience and Engineering a-Structural Materials Properties Microstructureand Processing,2007,449149-154.
    [45] Greer A L. Metallic Glasses[J]. Science,1995,267(5206):1947-1953.
    [46] Inoue A, Park R E. Soft Magnetic Properties and Wide Supercooled LiquidRegion of Fe-P-B-Si Base Amorphous Alloys[J]. Materials TransactionsJim,1996,37(11):1715-1721.
    [47] Inoue A, Takeuchi A, Makino A, et al. Soft and Hard Magnetic Propertiesof Nanocrystalline Fe-M-B (M=Zr,Nd) Base Alloys ContainingIntergranular Amorphous Phase[J]. Science Reports of the ResearchInstitutes Tohoku University Series a-Physics Chemistry and Metallurgy,1996,42(1):143-156.
    [48] Inoue A, Takeuchi A, Zhang T, et al. Soft Magnetic Properties of BulkFe-Based Amorphous Alloys Prepared by Copper Mold Casting[J]. IeeeTransactions on Magnetics,1996,32(5):4866-4871.
    [49] Inoue A, Zhang T, Zhang W, et al. Bulk Nd-Fe-Al Amorphous Alloys withHard Magnetic Properties[J]. Materials Transactions Jim,1996,37(2):99-108.
    [50] Inoue A, Koshiba H, Zhang T, et al. Thermal and Magnetic Properties ofFe56Co7Ni7Zr10-XNbXB20Amorphous Alloys with Wide Supercooled LiquidRange[J]. Materials Transactions Jim,1997,38(7):577-582.
    [51] Shen T D, Schwarz R B. Bulk Ferromagnetic Glasses in the Fe-Ni-P-BSystem[J]. Acta Materialia,2001,49(5):837-847.
    [52] Loffler J F. Bulk Metallic Glasses[J]. Intermetallics,2003,11(6):529-540.
    [53] Wang W H, Dong C, Shek C H. Bulk Metallic Glasses[J]. MaterialsScience&Engineering R-Reports,2004,44(2-3):45-89.
    [54] Inoue A, Takeuchi A. Recent Development and Application Products ofBulk Glassy Alloys[J]. Acta Materialia,2011,59(6):2243-2267.
    [55] Matsumoto H, Urata A, Yamada Y, et al. Novel Fe(97-X-Y)PXBYNb2Cr1Glassy Alloys with High Magnetization and Low Loss Characteristics forInductor Core Materials[J]. Ieee Transactions on Magnetics,2010,46(2):373-376.
    [56] Jayaraj J, Kim K B, Ahn H S, et al. Corrosion Mechanism of N-ContainingFe-Cr-Mo-Y-C-B Bulk Amorphous Alloys in Highly Concentrated HclSolution[J]. Materials Science and Engineering a-Structural MaterialsProperties Microstructure and Processing,2007,449517-520.
    [57] Scully J R, Gebert A, Payer J H. Corrosion and Related MechanicalProperties of Bulk Metallic Glasses[J]. Journal of Materials Research,2007,22(2):302-313.
    [58] Long Z L, Chang C T, Ding Y H, et al. Corrosion Behavior of Fe-BasedFerromagnetic (Fe, Ni)-B-Si-Nb Bulk Glassy Alloys in AqueousElectrolytes[J]. Journal of Non-Crystalline Solids,2008,354(40-41):4609-4613.
    [59] Gostin F, Siegel U, Mickel C, et al. Corrosion Behavior of the Bulk GlassyFe-Cr-Co-Mo-Mn-C-B-Y Alloy[J]. Journal of Materials Research,2009,24(4):1471-1479.
    [60] Buzzi S, Jin K F, Uggowitzer P J, et al. Cytotoxicity of Zr-Based BulkMetallic Glasses[J]. Intermetallics,2006,14(7):729-734.
    [61] Schroers J, Kumar G, Hodges T M, et al. Bulk Metallic Glasses forBiomedical Applications[J]. Jom,2009,61(9):21-29.
    [62] Demetriou M D, Wiest A, Hofmann D C, et al. Amorphous Metals forHard-Tissue Prosthesis[J]. Journal of Metal,2010,62(2):83-91.
    [63] Greer A L. Metallic Glasses on the Threshold[J]. Materials Today,2009,12(1-2):14-22.
    [64] Inoue A, Zhang T, Nishiyama N, et al. Preparation of16mm Diameter Rodof Amorphous Zr65Al7.5Ni10Cu17.5Alloy[J].1993,(34):1234-1237.
    [65] Tang M-B, Zhao D-Q, Pan M-X, et al. Binary Cu–Zr Bulk MetallicGlasses[J]. Chinese Physics Letters,2004,21(5):901.
    [66] Wang D, Li Y, Sun B B, et al. Bulk Metallic Glass Formation in the BinaryCu–Zr System[J]. Applied Physics Letters,2004,84(20):4029-4031.
    [67] Liu Y H, Wang G, Wang R J, et al. Super Plastic Bulk Metallic Glasses atRoom Temperature[J]. Science,2007,315(5817):1385-1388.
    [68] Sun Y J, Qu D D, Huang Y J, et al. Zr-Cu-Ni-Al Bulk Metallic Glasses withSuperhigh Glass-Forming Ability[J]. Acta Materialia,2009,57(4):1290-1299.
    [69] Cheng Y Q, Ma E. Atomic-Level Structure and Structure-PropertyRelationship in Metallic Glasses[J]. Progress in Materials Science,2011,56(4):379-473.
    [70] Inoue A, Shinohara Y, Gook J S. Thermal and Magnetic Properties of BulkFe-Based Glassy Alloys Prepared by Copper Mold Casting[J]. MaterialsTransactions Jim,1995,36(12):1427-1433.
    [71] Ponnambalam V, Poon S J, Shiflet G J. Fe-Based Bulk Metallic Glasseswith Diameter Thickness Larger Than One Centimeter[J]. Journal ofMaterials Research,2004,19(5):1320-1323.
    [72] Gu X J, Mcdermott A G, Poon S J, et al. Critical Poisson's Ratio forPlasticity in Fe-Mo-C-B-Ln Bulk Amorphous Steel[J]. Applied PhysicsLetters,2006,88(21):211905.
    [73] Gu X J, Poon S J, Shiflet G J. Effects of Carbon Content on the MechanicalProperties of Amorphous Steel Alloys[J]. Scripta Materialia,2007,57(4):289-292.
    [74] Gu X J, Poon S J, Shiflet G J. Mechanical Properties of Iron-Based BulkMetallic Glasses[J]. Journal of Materials Research,2007,22(2):344-351.
    [75] Gu X J, Poon S J, Shiflet G J, et al. Ductility Improvement of AmorphousSteels: Roles of Shear Modulus and Electronic Structure[J]. ActaMaterialia,2008,56(1):88-94.
    [76] Ponnambalam V, Poon S J, Shiflet G J, et al. Synthesis of Iron-Based BulkMetallic Glasses as Nonferromagnetic Amorphous Steel Alloys[J]. AppliedPhysics Letters,2003,83(6):1131-1133.
    [77] Lewandowski J J, Gu X J, Nouri A S, et al. Tough Fe-Based Bulk MetallicGlasses[J]. Applied Physics Letters,2008,92(9):091918.
    [78] Shen J, Chen Q, Sun J, et al. Exceptionally High Glass-Forming Ability ofan Fecocrmocby Alloy[J]. Applied Physics Letters,2005,86(15):151907.
    [79] Kazimirov V Y, Louca D, Widom M, et al. Local Organization and AtomicClustering in Multicomponent Amorphous Steels[J]. Physical Review B,2008,78(5):054112.
    [80] Wang H J, Gu X J, Poon S J, et al. Electronic Structure of Fe-BasedAmorphous Alloys Studied Using Electron-Energy-Loss Spectroscopy[J].Physical Review B,2008,77(1):014204.
    [81] Pan S P, Qin J Y, Gu T K, et al. Correlation between Local Structure ofMelts and Glass Forming Ability for Fe78M9B13(M=Nb, Si, and Zr)Alloys[J]. Journal of Applied Physics,2009,105(1):013531.
    [82] Jakse N, Pasturel A. Glass Forming Ability and Short-Range Order in aBinary Bulk Metallic Glass by Ab Initio Molecular Dynamics[J]. AppliedPhysics Letters,2008,93(11):113104-113103.
    [83] Jakse N, Pasturel A. Local Order and Dynamic Properties of Liquid andUndercooled CuXZr1X Alloys by Ab Initio Molecular Dynamics[J].Physical Review B,2008,78(21):214204.
    [84] Fujita T, Konno K, Zhang W, et al. Atomic-Scale Heterogeneity of aMulticomponent Bulk Metallic Glass with Excellent Glass FormingAbility[J]. Physical Review Letters,2009,103(7):075502.
    [85] Hao S G, Kramer M J, Wang C Z, et al. Experimental and Ab InitioStructural Studies of Liquid Zr2Ni[J]. Physical Review B,2009,79(10):104206.
    [86] Ma D, Stoica A D, Wang X L, et al. Efficient Local Atomic Packing inMetallic Glasses and Its Correlation with Glass-Forming Ability[J].Physical Review B,2009,80(1):014202.
    [87] Shen Y T, Kim T H, Gangopadhyay A K, et al. Icosahedral Order,Frustration, and the Glass Transition: Evidence from Time-DependentNucleation and Supercooled Liquid Structure Studies[J]. Physical ReviewLetters,2009,102(5):057801.
    [88] Wang S Y, Kramer M J, Xu M, et al. Experimental and Ab Initio MolecularDynamics Simulation Studies of Liquid Al60Cu40Alloy[J]. Physical ReviewB,2009,79(14):144205.
    [89] Huang L, Wang C Z, Hao S G, et al. Short-and Medium-Range Order inAmorphous Zr2Ni Metallic Alloy[J]. Physical Review B,2010,81(9):094118.
    [90] Liu X J, Xu Y, Hui X, et al. Metallic Liquids and Glasses: Atomic Orderand Global Packing[J]. Physical Review Letters,2010,105(15):155501.
    [91] Mendelev M I, Kramer M J, Ott R T, et al. Experimental and ComputerSimulation Determination of the Structural Changes Occurring through theLiquid–Glass Transition in Cu–Zr Alloys[J]. Philosophical Magazine,2010,90(29):3795-3815.
    [92] Pasturel A, Jakse N. Ab Initio Molecular Dynamics to Designing Structuraland Dynamic Properties in Metallic Glass-Forming Alloys[J].Computational Materials Science,2010,49(4, Supplement): S210-S213.
    [93] Han X J, Schober H R. Transport Properties and Stokes-Einstein Relationin a Computer-Simulated Glass-Forming Cu33.3Zr66.7Melt[J]. PhysicalReview B,2011,83(22):224201.
    [94] Hirata A, Guan P, Fujita T, et al. Direct Observation of Local Atomic Orderin a Metallic Glass[J]. Nature Materials,2011,10(1):28-33.
    [95] Huang L, Wang C Z, Ho K M. Structure and Dynamics of Liquid Ni36Zr64by Ab Initio Molecular Dynamics[J]. Physical Review B,2011,83(18):184103.
    [96] Pan S P, Qin J Y, Wang W M, et al. Origin of Splitting of the Second Peakin the Pair-Distribution Function for Metallic Glasses[J]. Physical ReviewB,2011,84(9):092201.
    [97] Pasturel A, Jakse N. Local Order and Dynamic Properties in Liquid Au-GeEutectic Alloys by Ab Initio Molecular Dynamics[J]. Physical Review B,2011,84(13):134201.
    [98] Zhang Y, Mattern N, Eckert J. Molecular Dynamic Simulation Study of theStructural Anisotropy in Cu50Zr50and Cu64.5Zr35.5Metallic Glasses Inducedby Static Uniaxial Loading within the Elastic Regime[J]. Journal of Alloysand Compounds,2011,509, Supplement1(0): S74-S77.
    [99] Jakse N, Nassour A, Pasturel A. Structural and Dynamic Origin of theBoson Peak in a Cu-Zr Metallic Glass[J]. Physical Review B,2012,85(17):174201.
    [100] Zhang Y, Mattern N, Eckert J. Strong Correlation of Atomic ThermalMotion in the First Coordination Shell of a Cu-Zr Metallic Glass[J].Applied Physics Letters,2013,102(8):081901.
    [101] Bernal J D. Geometry of the Structure of Monatomic Liquids[J]. Nature,1960,185(4706):68-70.
    [102] Scott G D. Packing of Spheres: Packing of Equal Spheres[J]. Nature,1960,188(4754):908-909.
    [103] Finney J L. Random Packings and the Structure of Simple Liquids. I. TheGeometry of Random Close Packing[J]. Proceedings of the Royal Societyof London A,1970,319(1539):479-493.
    [104] Cohen M H, Turnbull D. Metastability of Amorphous Structures[J]. Nature,1964,203(4948):964-964.
    [105] Cargill G S. Structural Investigation of Noncrystalline Nickel-PhosphorusAlloys[J]. Journal of Applied Physics,1970,41(1):12-29.
    [106] Bennett C H. Serially Deposited Amorphous Aggregates of HardSpheres[J]. Journal of Applied Physics,1972,43(6):2727-2734.
    [107] Finney J L. Random Packings and the Structure of Simple Liquids.2. TheMolecular Geometry of Simple Liquids[J]. Proceedings of the RoyalSociety of London A Mathematical and Physical Sciences,1970,319(1539):495-507.
    [108] Hoare M. Stability and Local Order in Simple Amorphous Packings[J].Annals of the New York Academy of Sciences,1976,279(OCT15):186-207.
    [109] Doye J P K, Wales D J. The Structure and Stability of Atomic Liquids:From Clusters to Bulk[J]. Science,1996,271(5248):484-487.
    [110] Honeycutt J D, Andersen H C. Molecular-Dynamics Study of Melting andFreezing of Small Lennard-Jones Clusters[J]. Journal of PhysicalChemistry,1987,91(19):4950-4963.
    [111] Steinhardt P J, Nelson D R, Ronchetti M. Icosahedral Bond OrientationalOrder in Supercooled Liquids[J]. Physical Review Letters,1981,47(18):1297-1300.
    [112] Steinhardt P J, Nelson D R, Ronchetti M. Bond-Orientational Order inLiquids and Glasses[J]. Physical Review B,1983,28(2):784-805.
    [113] Gaskell P H. New Structural Model for Transition Metal-MetalloidGlasses[J]. Nature,1978,276(5687):484-485.
    [114] Gaskell P H. New Structural Model for Amorphous Transition-MetalSilicides, Borides, Phosphides and Carbides[J]. Journal of Non-CrystallineSolids,1979,32(1-3):207-224.
    [115] Dubois J M, Gaskell P H, Lecaer G. A Model for the Structure of MetallicGlasses Based on Chemical Twinning[J]. Proceedings of the Royal Societyof London Series a-Mathematical Physical and Engineering Sciences,1985,402(1823):323-357.
    [116] Waseda Y, Chen H S. Structural Study of Metallic Glasses ContainingBoron (Fe-B, Co-B, and Ni-B)[J]. Physica Status Solidi a-AppliedResearch,1978,49(1):387-392.
    [117] Boudreaux D S, Frost H J. Short-Range Order in Theoretical-Models ofBinary Metallic-Glass Alloys[J]. Physical Review B,1981,23(4):1506-1516.
    [118] Egami T, Waseda Y. Atomic Size Effect on the Formability of MetallicGlasses[J]. Journal of Non-Crystalline Solids,1984,64(1-2):113-134.
    [119] Doye J P K, Meyer L. Mapping the Magic Numbers in BinaryLennard-Jones Clusters[J]. Physical Review Letters,2005,95(6):063401.
    [120] Miracle D B. A Structural Model for Metallic Glasses[J]. Nature Materials,2004,3(10):697-702.
    [121] Miracle D B. The Efficient Cluster Packing Model–an Atomic StructuralModel for Metallic Glasses[J]. Acta Materialia,2006,54(16):4317–4336.
    [122] Ma D, Stoica A D, Wang X L. Power-Law Scaling and Fractal Nature ofMedium-Range Order in Metallic Glasses[J]. Nature Materials,2009,8(1):30-34.
    [123] Sheng H W, Luo W K, Alamgir F M, et al. Atomic Packing andShort-to-Medium-Range Order in Metallic Glasses[J]. Nature,2006,439(7075):419-425.
    [124] Couzin J. How Much Can Human Life Span Be Extended?[J]. Science,2005,309(5731):83.
    [125] Angell C A. Structural Instability and Relaxation in Liquid and GlassyPhases near the Fragile Liquid Limit[J]. Journal of Non-Crystalline Solids,1988,102(1-3):205-221.
    [126] Debenedetti P G, Stillinger F H. Supercooled Liquids and the GlassTransition[J]. Nature,2001,410(6825):259-267.
    [127] Goldstein.M. Viscous Liquids and Glass Transition-a Potential EnergyBarrier Picture[J]. Journal of Chemical Physics,1969,51(9):3728-3739.
    [128] Stillinger F H. A Topographic View of Supercooled Liquids andGlass-Formation[J]. Science,1995,267(5206):1935-1939.
    [129]胡丽娜,边秀房.液体的脆性——一把深入了解玻璃态物质的钥匙[J].科学通报,2003,48(23):2393-2401.
    [130]汪卫华.非晶合金的本质和特性[J].物理学进展,2013,33(5):177-351.
    [131] Egami T. Atomic Level Stresses[J]. Progress in Materials Science,2011,56(6):637-653.
    [132] Hao S G, Wang C Z, Kramer M J, et al. Microscopic Origin of SlowDynamics at the Good Glass Forming Composition Range in Zr1-XCuXmetallic Liquids[J]. Journal of Applied Physics,2010,107(5):053511-053516.
    [133] Hao S G, Wang C Z, Li M Z, et al. Dynamic Arrest and Glass FormationInduced by Self-Aggregation of Icosahedral Clusters in Zr1XCuX Alloys[J].Physical Review B,2011,84(6):064203.
    [134] Gotze W, Sjogren L. Relaxation Processes in Supercooled Liquids[J].Reports on Progress in Physics,1992,55(3):241-376.
    [135] Mori H. Transport Collective Motion and Brownian Motion[J]. Progress ofTheoretical Physics,1965,33(3):423-455.
    [136] Lunkenheimer P, Schneider U, Brand R, et al. Glassy Dynamics[J].Contemporary Physics,2000,41(1):15-36.
    [137] Teichler H. Structure Conserving Correlation and theKohlrausch-Williams-Watts Decay of the Incoherent IntermediateScattering Function in Simulated Ni0.5Zr0.5Melt[J]. Physical ReviewLetters,2011,107(6):067801.
    [138] Egami T, Maeda K, Vitek V. Structural Defects in Amorphous Solids aComputer Simulation Study[J]. Philosophical Magazine A,1980,41(6):883-901.
    [139] Srolovitz D, Maeda K, Takeuchi S, et al. Local Structure and Topology of aModel Amorphous Metal[J]. Journal of Physics F: Metal Physics,1981,11(11):2209.
    [140] Srolovitz D, Maeda K, Vitek V, et al. Structural Defects in AmorphousSolids Statistical Analysis of a Computer Model[J]. PhilosophicalMagazine A,1981,44(4):847-866.
    [141] Egami T, Poon S J, Zhang Z, et al. Glass Transition in Metallic Glasses: AMicroscopic Model of Topological Fluctuations in the Bonding Network[J].Physical Review B,2007,76(2):024203.
    [142] Suzuki Y, Egami T. Shear Deformation of Glassy Metals-Breakdown ofCauchy Relationship and Anelasticity[J]. Journal of Non-Crystalline Solids,1985,75(1-3):361-366.
    [143] Srolovitz D, Vitek V, Egami T. An Atomistic Study of Deformation ofAmorphous Metals[J]. Acta Metallurgica,1983,31(2):335-352.
    [144] Tomida T, Egami T. Molecular-Dynamics Study of Structural Anisotropyand Anelasticity in Metallic Glasses[J]. Physical Review B,1993,48(5):3048-3057.
    [145] Suzuki Y, Haimovich J, Egami T. Bond-Orientational Anisotropy inMetallic Glasses Observed by X-Ray-Diffraction[J]. Physical Review B,1987,35(5):2162-2168.
    [146] Egami T, Dmowski W, Kosmetatos P, et al. Deformation-InducedBond-Orientational Order in Metallic Glasses[J]. Journal ofNon-Crystalline Solids,1995,193591-594.
    [147] Dmowski W, Egami T. Observation of Structural Anisotropy in MetallicGlasses Induced by Mechanical Deformation[J]. Journal of MaterialsResearch,2007,22(2):412-418.
    [148] Cheng Y Q, Ding J, Ma E. Local Topology Vs. Atomic-Level Stresses as aMeasure of Disorder: Correlating Structural Indicators for MetallicGlasses[J]. Materials Research Letters,2012,1(1):3-12.
    [149] Ding J, Cheng Y Q, Ma E. Quantitative Measure of LocalSolidity/Liquidity in Metallic Glasses[J]. Acta Materialia,2013,61(12):4474-4480.
    [150] Egami T. Understanding the Properties and Structure of Metallic Glasses atthe Atomic Level[J]. Journal of Metal,2010,62(2):70-75.
    [151] Egami T. Formation and Deformation of Metallic Glasses: AtomisticTheory[J]. Intermetallics,2006,14(8-9):882-887.
    [152] Li M, Wang C Z, Hao S G, et al. Structural Heterogeneity andMedium-Range Order in ZrXCu100X Metallic Glasses[J]. Physical ReviewB,2009,80(18):184201.
    [153] Leocmach M, Tanaka H. Roles of Icosahedral and Crystal-Like Order inthe Hard Spheres Glass Transition[J]. Nat Commun,2012,3974.
    [154] Soklaski R, Nussinov Z, Markow Z, et al. Connectivity of IcosahedralNetwork and a Dramatically Growing Static Length Scale in Cu-Zr BinaryMetallic Glasses[J]. Physical Review B,2013,87(18):184203.
    [155] Wu Z W, Li M Z, Wang W H, et al. Correlation between StructuralRelaxation and Connectivity of Icosahedral Clusters in Cuzr MetallicGlass-Forming Liquids[J]. Physical Review B,2013,88(5):054202.
    [156] Ward L, Miracle D, Windl W, et al. Structural Evolution and Kinetics inCu-Zr Metallic Liquids from Molecular Dynamics Simulations[J]. PhysicalReview B,2013,88(13):134205.
    [157] Fujita T, Guan P F, Sheng H W, et al. Coupling between Chemical andDynamic Heterogeneities in a Multicomponent Bulk Metallic Glass[J].Physical Review B,2010,81(14):140204.
    [158] Jiang Q K, Wang X D, Nie X P, et al. Zr–(Cu,Ag)–Al Bulk MetallicGlasses[J]. Acta Materialia,2008,56(8):1785-1796.
    [159]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review B,1964,136(3B):864-871.
    [160] Kohn W, Sham L J. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Physical Review,1965,140(4A):1133-1138.
    [161] Car R, Parrinello M. Unified Approach for Molecular-Dynamics andDensity-Functional Theory[J]. Physical Review Letters,1985,55(22):2471-2474.
    [162] Ganesh P, Widom M. Ab Initio Simulations of Geometrical Frustration inSupercooled Liquid Fe and Fe-Based Metallic Glass[J]. Physical Review B,2008,77(1):014205.
    [163] Hui X, Fang H Z, Chen G L, et al. Atomic Structure ofZr41.2Ti13.8Cu12.5Ni10Be22.5Bulk Metallic Glass Alloy[J]. Acta Materialia,2009,57(2):376-391.
    [164] Kazimirov V Y. First-Principles Simulation of the Elastic Properties ofMulticomponent Amorphous Steels[J]. Physical Review B,2009,80(21):214117.
    [165] Widom M, Sauerwine B, Cheung A M, et al. Elastic Properties of Ca-BasedMetallic Glasses Predicted by First-Principles Simulations[J]. PhysicalReview B,2011,84(5):083216
    [166] Daw M S, Baskes M I. Semiempirical, Quantum-Mechanical Calculation ofHydrogen Embrittlement in Metals[J]. Physical Review Letters,1983,50(17):1285-1288.
    [167] Daw M S, Baskes M I. Embedded-Atom Method-Derivation andApplication to Impurities, Surfaces, and Other Defects in Metals[J].Physical Review B,1984,29(12):6443-6453.
    [168] Foiles S M, Baskes M I, Daw M S. Embedded-Atom-Method Functions forthe Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys[J]. PhysicalReview B,1986,33(12):7983-7991.
    [169] Daw M S, Foiles S M, Baskes M I. The Embedded-Atom Method-aReview of Theory and Applications[J]. Materials Science Reports,1993,9(7-8):251-310.
    [170] Wessels V, Gangopadhyay A K, Sahu K K, et al. Rapid Chemical andTopological Ordering in Supercooled Liquid Cu46Zr54[J]. Physical ReviewB,2011,83(9):094116.
    [171] Steve P. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [172] Mendelev M I, Han S, Srolovitz D J, et al. Development of NewInteratomic Potentials Appropriate for Crystalline and Liquid Iron[J].Philosophical Magazine,2003,83(35):3977-3994.
    [173] Mendelev M I, Sordelet D J, Kramer M J. Using Atomistic ComputerSimulations to Analyze X-Ray Diffraction Data from Metallic Glasses[J].Journal of Applied Physics,2007,102(4):043501-043507.
    [174] Parrinello M, Rahman A. Crystal Structure and Pair Potentials: AMolecular-Dynamics Study[J]. Physical Review Letters,1980,45(14):1196-1199.
    [175] Nose S, Yonezawa F. Isothermal Isobaric Computer-Simulations of Meltingand Crystallization of a Lennard-Jones System[J]. Journal of ChemicalPhysics,1986,84(3):1803-1814.
    [176] Nose S. A Unified Formulation of the Constant TemperatureMolecular-Dynamics Methods[J]. Journal of Chemical Physics,1984,81(1):511-519.
    [177] Wang Y, Perdew J P. Correlation Hole of the Spin-Polarized Electron-Gas,with Exact Small-Wave-Vector and High-Density Scaling[J]. PhysicalReview B,1991,44(24):13298-13307.
    [178] Smoluchowski R. Movement and Diffusion Phenomena in GrainBoundaries, Imperfections in Nearly Perfect Crystals[M]. Wiley,1952:451-475.
    [179] Faber T E, Ziman J M. A Theory of the Electrical Properties of LiquidMetals[J]. Philosophical Magazine,1965,11(109):153-173.
    [180] Bhatia A B, Thornton D E. Structural Aspects of the Electrical Resistivityof Binary Alloys[J]. Physical Review B,1970,2(8):3004-3012.
    [181]余大启.过冷液体结构及其晶体成核过程的分子动力学研究[D].北京:清华大学,2006:12.
    [182] Clarke A S, Jónsson H. Structural Changes Accompanying Densification ofRandom Hard-Sphere Packings[J]. Physical Review E,1993,47(6):3975-3984.
    [183] Cheng Y Q, Ma E. Atomic-Level Structure and Structure–PropertyRelationship in Metallic Glasses[J]. Progress in Materials Science,2011,56(4):379-473.
    [184] Fang X W, Wang C Z, Yao Y X, et al. Atomistic Cluster Alignment Methodfor Local Order Mining in Liquids and Glasses[J]. Physical Review B,2010,82(18):184204.
    [185] Voronoi G. New Parametric Applications Concerning the Theory ofQuadratic Forms-Second Announcement[J]. Journal Fur Die Reine UndAngewandte Mathematik,1908,134(1/4):198-287.
    [186] Finney J L. Modelling the Structures of Amorphous Metals and Alloys[J].Nature,1977,266(5600):309-314.
    [187] Widmer-Cooper A, Harrowell P, Fynewever H. How Reproducible AreDynamic Heterogeneities in a Supercooled Liquid?[J]. Physical ReviewLetters,2004,93(13):135701.
    [188] Candelier R, Widmer-Cooper A, Kummerfeld J K, et al. SpatiotemporalHierarchy of Relaxation Events, Dynamical Heterogeneities, and StructuralReorganization in a Supercooled Liquid[J]. Physical Review Letters,2010,105(13):135702.
    [189] Cheng Y Q, Ma E, Sheng H W. Alloying Strongly Influences the Structure,Dynamics, and Glass Forming Ability of Metallic Supercooled Liquids[J].Applied Physics Letters,2008,93(11):111913.
    [190] Cheng Y Q, Sheng H W, Ma E. Relationship between Structure, Dynamics,and Mechanical Properties in Metallic Glass-Forming Alloys[J]. PhysicalReview B,2008,78(1):014207.
    [191] Mauro N A, Vogt A J, Johnson M L, et al. Anomalous Structural Evolutionin Cu50Zr50Glass-Forming Liquids[J]. Applied Physics Letters,2013,103(2):021904.
    [192] Mauro N A, Vogt A J, Johnson M L, et al. Anomalous Structural Evolutionand Liquid Fragility Signatures in Cu–Zr and Cu–Hf Liquids andGlasses[J]. Acta Materialia,2013,61(19):7411-7421.
    [193] Kresse G, Furthmuller J. Efficiency of Ab-Initio Total Energy Calculationsfor Metals and Semiconductors Using a Plane-Wave Basis Set[J].Computational Materials Science,1996,6(1):15-50.
    [194] Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the ProjectorAugmented-Wave Method[J]. Physical Review B,1999,59(3):1758-1775.
    [195] Jakse N, Pasturel A. Glass Forming Ability and Short-Range Order in aBinary Bulk Metallic Glass by Ab Initio Molecular Dynamics[J]. AppliedPhysics Letters,2008,93(11):
    [196] Park K-W, Lee C-M, Wakeda M, et al. Elastostatically Induced StructuralDisordering in Amorphous Alloys[J]. Acta Materialia,2008,56(19):5440-5450.
    [197] Cao A J, Cheng Y Q, Ma E. Structural Processes That Initiate ShearLocalization in Metallic Glass[J]. Acta Materialia,2009,57(17):5146-5155.
    [198] Cheng Y Q, Ma E, Sheng H W. Atomic Level Structure in MulticomponentBulk Metallic Glass[J]. Physical Review Letters,2009,102(24):245501.
    [199] Fujita T, Konno K, Zhang W, et al. Atomic-Scale Heterogeneity of aMulticomponent Bulk Metallic Glass with Excellent Glass FormingAbility[J]. Physical Review Letters,2009,103(7):075502.
    [200] Zhang Y, Mattern N, Eckert J. Effect of Uniaxial Loading on the StructuralAnisotropy and the Dynamics of Atoms of Cu50Zr50Metallic Glasseswithin the Elastic Regime Studied by Molecular Dynamics Simulation[J].Acta Materialia,2011,59(11):4303-4313.
    [201] Fang H Z, Hui X, Chen G L, et al. Al-Centered Icosahedral Ordering inCu46Zr46Al8Bulk Metallic Glass[J]. Applied Physics Letters,2009,94(9):091904.
    [202] Cheng Y Q, Ma E, Sheng H W. Atomic Level Structure in MulticomponentBulk Metallic Glass[J]. Physical Review Letters,2009,102(24):245501.
    [203] Xi X K, Li L L, Zhang B, et al. Correlation of Atomic Cluster Symmetryand Glass-Forming Ability of Metallic Glass[J]. Physical Review Letters,2007,99(9):095501.
    [204] Karayiannis N C, Laso M. Dense and Nearly Jammed Random Packings ofFreely Jointed Chains of Tangent Hard Spheres[J]. Physical Review Letters,2008,100(5):050602.
    [205] Karayiannis N C, Foteinopoulou K, Laso M. The CharacteristicCrystallographic Element Norm: A Descriptor of Local Structure inAtomistic and Particulate Systems[J]. Journal of Chemical Physics,2009,130(7):074704.
    [206] Karayiannis N C, Foteinopoulou K, Laso M. Entropy-DrivenCrystallization in Dense Systems of Athermal Chain Molecules[J]. PhysicalReview Letters,2009,103(4):045703.
    [207] Karayiannis N C, Foteinopoulou K, Laso M. The Structure of RandomPackings of Freely Jointed Chains of Tangent Hard Spheres[J]. The Journalof Chemical Physics,2009,130(16):164908.
    [208] Karayiannis N C, Foteinopoulou K, Abrams C F, et al. Modeling of CrystalNucleation and Growth in Athermal Polymers: Self-Assembly of LayeredNano-Morphologies[J]. Soft Matter,2010,6(10):2160-2173.
    [209] Karayiannis N C, Malshe R, De Pablo J J, et al. Fivefold Symmetry as anInhibitor to Hard-Sphere Crystallization[J]. Physical Review E,2011,83(6):061505.
    [210] Karayiannis N C, Malshe R, Kroger M, et al. Evolution of Fivefold LocalSymmetry During Crystal Nucleation and Growth in Dense Hard-SpherePackings[J]. Soft Matter,2012,8(3):844-858.
    [211] Teichler H. Heterogeneous Dynamics on the Microsecond Scale inSimulated Ni0.5zr0.5Metallic Melts Far Below the Glass Temperature[J].Physical Review E,2005,71(3):031505.
    [212] Miracle D B. Noncrystalline Compact Packings of Hard Spheres of TwoSizes: Bipyramids and the Geometry of Common Neighbors[J]. Journal ofChemical Physics,2009,130(11):114505.
    [213] Peng H L, Li M Z, Wang W H. Structural Signature of Plastic Deformationin Metallic Glasses[J]. Physical Review Letters,2011,106(13):135503.
    [214] Plimpton S. Fast Parallel Algorithms for Short-Range MolecularDynamics[J]. Journal of Computational Physics,1995,117(1):1-19.
    [215] Nose S. A Unified Formulation of the Constant Temperature MolecularDynamics Methods[J]. The Journal of Chemical Physics,1984,81(1):511-519.
    [216] Kelton K F, Greer A L. Nucleation in Condensed Matter: Applications inMaterials and Biology[M]. Amsterdam: Elsevier,2010:19-51.
    [217] Granasy L. Diffuse Interface Theory of Nucleation[J]. Journal ofNon-Crystalline Solids,1993,162(3):301-303.
    [218] Kelton K F, Greer A L. Nucleation in Condensed Matter: Applications inMaterials and Biology[M]. Amsterdam: Elsevier,2010:144-156.
    [219] Granasy L, Igloi F. Comparison of Experiments and Modern Theories ofCrystal Nucleation[J]. Journal of Chemical Physics,1997,107(9):3634-3644.
    [220] Wu Z W, Li M Z, Wang W H, et al. Effect of Local Structures on StructuralEvolution During Crystallization in Undercooled Metallic Glass-FormingLiquids[J]. The Journal of Chemical Physics,2013,138(7):074502.
    [221] Fang X W, Wang C Z, Yao Y X, et al. Signature of Al11Sm3Fragments inUndercooled Al90Sm10Liquid from Ab initio Molecular DynamicsSimulations[J]. Journal of Physics: Condensed Matter,2011,23(23):235104.
    [222] Fang X W, Wang C Z, Yao Y X, et al. Competition between Fcc andIcosahedral Short-Range Orders in Pure and Samarium-Doped LiquidAluminum from First Principles[J]. Physical Review B,2011,83(22):224203.
    [223]方华志.非晶合金液态性质、液固转变及原子结构的第一性原理分子动力学研究[D].北京:北京科技大学,2009:78-79.
    [224]潘少鹏. Fe基合金液态及非晶态结构的分子动力学研究[D].山东:山东大学,2012:57-67.
    [225] Wang Q, Liu C T, Yang Y, et al. Atomic-Scale Structural Evolution andStability of Supercooled Liquid of a Zr-Based Bulk Metallic Glass[J].Physical Review Letters,2011,106(21):215505.
    [226] Deng D, Argon A S, Yip S. Simulation of Plastic-Deformation in a2-Dimensional Atomic Glass by Molecular-Dynamics.4[J]. PhilosophicalTransactions of the Royal Society a-Mathematical Physical andEngineering Sciences,1989,329(1608):613-640.
    [227] Bulatov V V, Argon A S. A Stochastic-Model for Continuum ElastoplasticBehavior.1. Numerical Approach and Strain Localization[J]. Modellingand Simulation in Materials Science and Engineering,1994,2(2):167-184.
    [228] Falk M L, Langer J S. Dynamics of Viscoplastic Deformation inAmorphous Solids[J]. Physical Review E,1998,57(6):7192-7205.
    [229] Lekka C E, Ibenskas A, Yavari A R, et al. Tensile DeformationAccommodation in Microscopic Metallic Glasses Via SubnanoclusterReconstructions[J]. Applied Physics Letters,2007,91(21):214103.
    [230] Park K-W, Jang J-I, Wakeda M, et al. Atomic Packing Density and ItsInfluence on the Properties of Cu-Zr Amorphous Alloys[J]. ScriptaMaterialia,2007,57(9):805-808.
    [231] Wakeda M, Shibutani Y, Ogata S, et al. Relationship between LocalGeometrical Factors and Mechanical Properties for Cu-Zr AmorphousAlloys[J]. Intermetallics,2007,15(2):139-144.
    [232] Park K-W, Lee C-M, Wakeda M, et al. Homogeneous Deformation of BulkAmorphous Alloys During Elastostatic Compression and Its PackingDensity Dependence[J]. Scripta Materialia,2008,59(7):710-713.
    [233] Wakeda M, Shibutani Y. Icosahedral Clustering with Medium-Range Orderand Local Elastic Properties of Amorphous Metals[J]. Acta Materialia,2010,58(11):3963-3969.
    [234] Cheng Y Q, Cao A J, Sheng H W, et al. Local Order Influences Initiation ofPlastic Flow in Metallic Glass: Effects of Alloy Composition and SampleCooling History[J]. Acta Materialia,2008,56(18):5263-5275.
    [235] Cheng Y Q, Ma E. Indicators of Internal Structural States for MetallicGlasses: Local Order, Free Volume, and Configurational PotentialEnergy[J]. Applied Physics Letters,2008,93(5):051910.
    [236] Cheng Y Q, Cao A J, Ma E. Correlation between the Elastic Modulus andthe Intrinsic Plastic Behavior of Metallic Glasses: The Roles of AtomicConfiguration and Alloy Composition[J]. Acta Materialia,2009,57(11):3253-3267.
    [237] Zhang L, Cheng Y-Q, Cao A J, et al. Bulk Metallic Glasses with LargePlasticity: Composition Design from the Structural Perspective[J]. ActaMaterialia,2009,57(4):1154-1164.
    [238] Peng H L, Li M Z, Wang W H, et al. Effect of Local Structures and AtomicPacking on Glass Forming Ability in CuXZr100-X Metallic Glasses[J].Applied Physics Letters,2010,96(2):021901.
    [239] Nelson D R. Order, Frustration, and Defects in Liquids and Glasses[J].Physical Review B,1983,28(10):5515-5535.
    [240] Becke A D, Edgecombe K E. A Simple Measure of Electron Localization inAtomic and Molecular Systems[J]. The Journal of Chemical Physics,1990,92(9):5397-5403.
    [241] Li M, Wang C Z, Hao S G, et al. Structural Heterogeneity andMedium-Range Order in ZrXCu100-X Metallic Glasses[J]. Physical ReviewB,2009,80(18):184201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700