Cu-Zr基非晶合金结构及动力学数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金的各种优异性能与其独特的原子结构特征存在内在的、直接的关系。因此,研究非晶合金的原子结构有利于深入地理解非晶合金的各种性能,并且可以加深对玻璃转化现象的认识。本文主要采用数值模拟方法,研究了Cu-Zr合金中的短程序结构,给出了原子团簇的堆积方式;探讨了短程序结构随着温度的演化以及与成分的关系;研究了合金的动力学和热力学性质,表征了扩散系数和热膨胀系数与成分的关系。结合已有的实验结果,阐明了Zr-Cu-Ni-Al四元合金系的结构与成分的关系,揭示了结构与玻璃形成能力的可能关系。本文的主要研究内容如下:
     非晶合金中存在二十面体团簇,但是,在二元合金中,二十面体团簇的堆积方式并不清楚。本文研究了Cu60Zr40二元非晶合金中的短程序结构,给出了二十面体团簇的堆积方式。研究结果表明,在该合金中,存在两种短程序团簇,一种是以Zr原子为中心、平均配位数为14.7的团簇,另一种是以Cu原子为中心、平均配位数为11.6的团簇。二十面体团簇都是以Cu原子为中心,并且主要以相互贯穿的方式形成弯曲的链条式结构。链条中二十面体团簇的数量介于3~11个之间,从而形成中程有序结构。这种中程序结构在合金中相互离散地、无规则地分布,使合金中的二十面体团簇区域和非二十面体团簇区域相互交错和镶嵌,表现出原子尺度上的结构不均匀性。
     Cu60Zr40合金中原子短程序结构随温度的变化关系表明,二十面体团簇主要是在玻璃转变温度Tg以上约200 K的温度范围内形成,在此过程中,体系的平均配位数和最近邻键长基本保持不变,原子的排列方式变得更加有序。
     对Cu60Zr40合金中原子的动力学性质研究发现,当温度高于1200 K时,原子的弛豫可以分为两个阶段,在短时间段原子作振动,此后,原子的运动表现为液体的流动。当温度低于1100 K时,在β弛豫时间段出现笼子效应。合金中Cu原子的扩散比Zr原子快。根据模式耦合理论(MCT),计算得到了Cu60Zr40合金的临界玻璃转变温度Tc,其数值为1008.2 K。对扩散系数的拟合结果表明,在液态,MCT幂指数方程比Vogel-Fulcher-Tammann方程更适合于描述合金的动力学性质,从而验证了MCT理论。在过冷液相区,体系的动力学具有不均匀性,随着温度的降低,动力学不均匀性逐渐加强。合金中原子具有不同的弛豫机制,Cu原子的扩散存在激活跳跃过程,而Zr原子的扩散则没有这一过程。
     通过对不同成分合金样品的制备、测试分析,研究了Cu-Zr合金的玻璃形成能力,发现Cu50Zr50合金的玻璃形成能力最大,合金中主要的竞争晶化相是Cu10Zr7相。通过数值模拟分析发现,合金中团簇的化学短程序随成分发生明显改变。在所研究的成分范围内,随着Cu含量的增加,以Cu原子为中心的团簇的平均成分从Cu5Zr8变化为Cu8Zr5,以Zr原子为中心的团簇的平均成分从Cu7Zr9变化为Cu11Zr5。局域化学短程序的变化促进了Cu10Zr7相的产生,从而对合金的玻璃形成能力产生显著的影响。
     Cu-Zr合金的热力学性质和动力学性质随成分发生变化。对合金热力学性质的研究发现,在液态和玻璃态,合金的热膨胀系数随成分的变化满足不同的线性变化规律,变化率数值分别为0.275和0.015。Cu50Zr50合金液体的热膨胀系数最小,热稳定性最强,从而解释了其强的玻璃形成能力。对合金的动力学性质研究发现,在不同的温度区间,成分变化对扩散系数的影响不同。在高温区(T >1300 K),Cu、Zr原子的扩散系数不随成分的变化而发生变化,并且满足Arrhenius关系。在过冷液相区(1300 K> T >1000 K),用Vogel-Fulcher-Tammann方程对扩散系数进行拟合,得到的激活能数值表明,在所研究的四种合金中,Cu64Zr36合金的动力学稳定性最强。
     根据同步辐射高能XRD实验结果,采用逆蒙特卡罗方法,构建了Zr53Cu18.7Ni12Al16.3,Zr51.9Cu23.3Ni10.5Al14.3和Zr50.7Cu28Ni9Al12.3三种块体非晶合金的原子结构,研究了三种合金结构的差异,发现随着Cu含量的增加,配位数为CN=11及CN=12的多面体团簇的数量增加,配位数为CN=8及CN=9的多面体团簇数量减少。对各元素的团簇结构分析结果表明,随着Cu含量的增加,以Zr和Al原子为中心的团簇中,配位数为CN=11及CN=12的多面体团簇数量增加,配位数为CN=9及CN=10的多面体团簇数量减少。Cu含量的增加使非晶合金中以Zr和Al原子为中心的团簇转化为原子数量更多的原子团簇。在三种合金中,原子的分布存在不均匀性,表现为局域原子密度分布的离散性与无规则性,并且满足正态分布。合金中原子结构的不均匀性与玻璃形成能力直接相关。
There is a direct relationship between outstanding properties of metallic glasses and specific characteristics of atomic structure. Investigation in atomic structure of metallic glass will not only benefit a deep apprehension of the various properties of metallic glass, but also promote an interpretation of glass transition phenomena. In this thesis, numerical simulations are used to investigate the short-range ordering in Cu-Zr metallic glasses. A packing scheme of atomic clusters is obtained. The structural evolution of short-range ordering with temperature and its relation with composition are explored. The dynamic and thermodynamic properties and the composition dependence of diffusion coefficient and thermal expansion coefficient are investigated. Moreover, the composition dependence of the structure of quaternary Zr-Cu-Ni-Al metallic glasses is explored based on the experimental results, the possible relation between the structure and glass-forming ability is discussed. The following provides the main contents of this thesis.
     Though icosahedral cluster is believed to exist in metallic glasses, the packing scheme of icosahedral clusters in binary metallic glasses still remains unclear. In this thesis, the short-range ordering in Cu60Zr40 metallic glass is investigated, the packing scheme of icosahedral clusters is constructed. It is found that there are two types of short-range clusters in the alloy, one is centered by Zr atoms with an average coordination number of 14.7; the other is centered by Cu atoms with the average coordination number of 11.6. The icosahedral clusters are entirely centered by Cu atoms and primarily form a flexural sting-like structure by interpenetration of 3-11 clusters, exhibiting medium-range order. The medium-range ordering clusters distribute irregularly and separate from each other, leading to the interpenetration of icosahedral regions and non-icosahedral regions, and thus exhibiting structural heterogeneity on atomic scale.
     The temperature dependence of short-range order in Cu60Zr40 metallic glass unveils that the icosahedral clusters are mainly formed within a temperature range of about 200 K above glass transition temperature Tg. During this process, the average coordination numbers and the nearest neighbor bond lengths nearly remain unchanged, but the arrangement of atoms becomes more ordering.
     The investigation in dynamical properties of Cu60Zr40 metallic glass suggests that, there are two processes during the relaxation at temperatures higher than 1200 K. At short times the atoms vibrate, and then at long times perform liquid-like flow. Cage effect is found during theβrelaxation at temperatures lower than 1100 K. The diffusion of Cu atoms is faster than that of Zr atoms. According to the mode-coupling theory (MCT), the critical glass transition temperature Tc is obtained to be 1008.2 K. In liquid state the MCT power-law equation is more suitable in describing the diffusion kinetics than the Vogel-Fulcher-Tammann equation. Therefore, the results validate the MCT. Dynamic heterogeneity is detected and becomes pronounced with the decrease of temperature in the supercooled liquid state. Different mechanisms are found in the atomic relaxation. The activated hopping process takes place for Cu atoms but not for Zr atoms.
     The glass-forming ability of Cu-Zr metallic glasses is assessed by means of sample preparation and analysis. It is found that Cu50Zr50 metallic glass is the best glass former among the studied binary alloyes, its primary crystalline phase is Cu10Zr7. By numerical simulations, the chemical short-range order is found to change significantly with composition. The average composition of the clusters centered by Cu atoms varies from Cu5Zr8 to Cu8Zr5, while that of the clusters centered by Zr atoms varies from Cu7Zr9 to Cu11Zr5. This variation promotes the formation of Cu10Zr7 phase and brings about great effect on the glass-forming ability of metallic glasses.
     Meanwhile, the dynamic and thermodynamic properties of Cu-Zr alloyes change with composition. In liquid and glassy states, the composition dependences of thermal expansion coefficients indicate different linear relationships, the corresponding slopes are 0.275 and 0.015, respectively. That the thermal expansion coefficient of Cu50Zr50 metallic liquid is smallest among the studied alloys indicates its largest thermal stability and thus interprets its highest glass-forming ability. Effect of composition on diffusion coefficient varies with temperature. At temperatures higher than 1300 K, diffusion coefficients of Cu and Zr atoms are independent of composition and follow the Arrhenius law. However, at temperatures between 1300 K and 1000 K, the activation energies obtained by fitting Vogel-Fulcher-Tammann equation to diffusion coefficients of both types of atoms suggest that the dynamic stability of Cu64Zr36 alloy is largest in the supercooled liquid region.
     In addition, atomic structures of Zr53Cu18.7Ni12Al16.3, Zr51.9Cu23.3Ni10.5Al14.3 and Zr50.7Cu28Ni9Al12.3 bulk metallic glasses are investigated using reverse Monte Carlo method. The number of clusters with coordination number of 11 and 12 is found to increase with Cu content, while that with coordination number of 8 and 9 decreases. With increasing Cu content, the number of clusters with coordination number of 11 and 12 increases but that with coordination number of 9 and 10 decreases among the clusters centered by Zr and Al atoms. The clusters centered by Zr and Al atoms become larger. Structural heterogeneity is found on atomic scale in the three metallic glasses. The local atomic density distributes separately and irregularly, following a normal distribution. The atomic heterogeneity of metallic glasses is closely related to its glass-forming ability.
引文
1 J. F. Lutsko, D. Wolf, S. R. Phillpot and S.Yip. Molecular-dynamics Study of Lattice-defect-nucleated Melting in Metals Using an Embedded-atom-method Potential. Phys. Rev. B 1989, 40: 2841~2855
    2 S. M. Foiles. Calculation of the Surface Segregation of Ni-Cu Alloys with the Use of the Embedded-atom Method. Phys. Rev. B 1985, 32: 7685~7693
    3 R. A. Johnson. Relationship between Defect Energies and Embedded-atom-method Parameters. Phys. Rev. B 1988, 37: 6121~6125
    4 K.Y. Chen, H. B. Liu, X. P. Li, Q. Y. Han and Z. Q. Hu. Molecular Dynamics Simulation of Local Structure of Aluminium and Copper in Supercooled Liquid and Solid State by Using EAM. J. Phys.: Condens. Matter. 1995, 7: 2379~2393
    5 M. Tanaka. Molecular Dynamics Simulation of the Structure of Liquid Rubidium along the Saturated Vapour-pressure Curve. J. Phys. F: Metal Phys. 1980,10: 2581~2594
    6 Y. N. Zhang, L. Wang and W. M. Wang. Thermodynamic, Dynamic and Structural Relaxation in Supercooled Liquid and Glassy Ni below the Critical Temperature. J. Phys.: Condens. Matter 2007,19: 196106
    7 T. J. Lenosky, S. R. Bickham, J. D. Kress, and L. A. Collins. Density Functional Calculation of the Hugoniot of Shocked Liquid Deuterium. Phys. Rev. B 2000, 61: 1~4
    8 J. Wang and W. Wang. A Computational Approach to Simplifying the Protein Folding Alphabet. Nat. Struct. Biol. 1999, 6: 1033~1038
    9 H. Li, R. Helling, C. Tang and N. Wingreen. Emergence of Preferred Structures in a Simple Model of Protein Folding. Science, 1996, 273: 666~669
    10 J. D. Honeycutt and H.C.Anderson. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. J. Phys. Chem. 1987, 91: 4950~4963
    11 I. F. Golovnev, T. V. Basova, E. K. Koltsov and I. K. Igumenov. Molecular Dynamics Method in Studies of Molecular Film Growth Processes.2006, 47: 532~548
    12 K. A. Fichthorn, R. A. Miron, Y. Wang and Y. Tiwary. Accelerated Molecular Dynamics Simulation of Thin-film Growth with the Bond-boost Method. J. Phys.:Condens. Matter 2009, 21: 084212
    13 V. M. Kaganer, H. M?hwald and P. Dutta. Structure and Phase Transtion in Langmuir Monolayers. Rev. Mod. Phys. 1999, 71: 779~819
    14 R. M. Wentzcovitch. Invariant Molecular-dynamics Approach to Structural Phase Transitions. Phys. Rev. B 1991, 44: 2358~2361
    15 A. Inoue. High-Strength Bulk Amorphous-Alloys with Low Critical Cooling Rates. Mater. Trans. JIM. 1995, 36: 866~875
    16 W. H. Wang, C. Dong and C.H. Shek. Bulk Metallic Glasses. Mater. Sci. Eng. 2004, R44 (2-3): 45~98
    17 A. Inoue. Bulk Glassy and Nonequilibrium Crystalline Alloys by Stabilization of Supercooled Liquid: Fabrication, Functional Properties and Applications (part 2). Proc. Japan Acad. 2005, 81: 171~188
    18 A. Inoue and N. Nishiyama. New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials. MRS Bull, 2007, 32: 651~658
    19 W. W. Warren Jr. Summary-experiment. J. Non-Cryst. Solids. 1996, 205-207: 930~933
    20 S. R. Elliott. Physics of Amorphous Materials. Longman, London and Newyork. 1983
    21 A. Boos, P. Lamparter, S.Steeb, Short Range Order in Binary Melts and Solid Solutions. Z. Naturforsch. 1977, 32a:1222~1228
    22 K. H. J. Buschow. Short-range Order and Thermal Stability in Amorphous Alloys. J. Phys. F: Met. Phys. 1984, 14: 593~607
    23 C. S.ⅢCargill and F. Spaepen. Description of Chemical Ordering in Amorphous Alloys. J. Non-Cryst. Solids. 1981, 43: 91~97
    24 B. E. Warren, B. L. Averbach and B. W. Roberts. Atomic Size Effect in the X-ray Scattering by Alloys. J. Appl. Phys. 1951, 22(12): 1493~1496
    25 J. H. Li, H. B. Guo, W. S. Lai and B.X. Liu. Micro Chemical Inhomogeneity of Multi-component Systems and its Evaluation from Interatomic Potential. Phys. Rev. B 2004, 69: 172201
    26徐祖耀,金属材料热力学,科学出版社,北京,1981
    27下地光雄(日),液态金属,郭淦钦译,科学出版社,北京,1987
    28陈焕矗,结晶化学,山东教育出版社,济南,1985
    29 S. R. Elliott. Medium-range Structural Order in Covalent Amorphous Solids. Nature 1991, 354: 445~452
    30 J. C. Phillips. Topology of Covalent Non-crystalline Solids II: Medium-range Order in Chalcogenide Alloys and A-Si(Ge). J. Non-Cryst. Solids.1981, 43: 37~77
    31 L. Cervinka On the Problem of Medium-range Ordering in Non-crystalline Solids. Czech. J. Phys. 1985, B35: 1193~1196
    32 Y. Waseda. The Structure of Non-crystalline Materials: Liquids and Amorphous Solids. New York; London: McGraw-Hill International Book Co. 1980
    33 F. E. Luborsky. Amorphous Metallic Alloys. Butterworths. 1983, 45~46, 58~65.
    34 D. B. Miracle, W. S. Sanders and O. N. Senkov. The Influence of Efficient Atomic Packing on the Constitution of Metallic Glasses. Phil. Mag. A 2003, 83: 2409~2428
    35 D. B. Miracle and O. N. Senkov. A Geometric Model for Atomic Configurations in Amorphous Al Alloys. J. Non-Cryst. Solids. 2003, 319: 174~191
    36 D. B. Miracle. A Structural Model for Metallic Glasses. Nature Mater. 2004, 3: 697~702
    37 D. B. Miracle. The Efficient Cluster Packing Model–An Atomic Structural Model for Metallic Glasses. Acta Mater. 2006, 54: 4317~4336
    38 H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai and E. Ma. Atomic Packing and Short-to-medium-range Order in Metallic Glasses. Nature 2006, 439: 419~425
    39 W. K. Luo, H. W. Sheng, and E. Ma. Pair Correlation Functions and Structural Building Schemes in Amorphous Alloys. Appl. Phys. Lett. 2006, 89: 131927
    40 H. W. Sheng, H. Z. Liu, Y. Q. Cheng, J. Wen, P. L. Lee, W. K. Luo, S. D. Shastri and E. Ma. Polyamorphism in a Metallic Glass. Nature Mater. 2007, 6: 192~197
    41 A. R. Yavari. Materials Science: A New Order for Metallic Glasses. Nature 2006, 439: 405~406
    42 Y. Q. Cheng, A. J. Cao, H. W. Sheng and E. Ma. Local Order Influences Initiation of Plastic Flow in Metallic Glass: Effects of Alloy Composition and Sample Cooling History. Acta Mater. 2008, 56: 5263~5275
    43 A. P. Wang, J. Q. Wang and E. Ma. Modified Efficient Cluster Packing Model for Calculating Alloy Compositions with High Glass Forming Ability. Appl. Phys. Lett. 2007, 90: 121912
    44 J. M. Zaug, A. K. Soper and S. M. Clark. Pressure-dependent Structures of Amorphous Red Phosphorus and the Origin of the First Sharp Diffraction Peaks.Nature Mater. 2008, 7: 890~899
    45 H. Tsuzuki, P. S. Branicio and J. P. Rino. Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood. Comput. Phys. Commun. 2007, 177: 518~523
    46 D. Ma, A. D. Stoica and X.L. Wang. Power-law Scaling and Fractal Nature of Medium-range Order in Metallic Glasses. Nature Mater. 2009, 8: 30~34
    47 T. Egami. Icosahedral Order in Liquids. J. Non-Cryst. Solids. 2007, 353: 3666~3670
    48 J. J?ckle. Models of the Glass Transition. Rep. Prog. Phys. 1986, 49: 171~231
    49 C. A. Angell. Formation of Glasses from Liquids and Biopolymers. Science 1995, 267: 1924~1935
    50 X. P. Tang, U. Geyer, R. Busch, W. L. Johnson and Y. Wu. Diffusion Mechanisms in Metallic Supercooled Liquids and Glasses. Nature 1999, 402: 160~162
    51 H. Teichler. Structural Dynamics on theμs Scale in Molecular-dynamics Simulated, Deeply Undercooled, Glass-forming Ni0.5Zr0.5. J. Non-Cryst. Solids. 2001, 293-395: 339~344
    52 F. Faupel,W. Frank,M.-P. Macht,H. Mehrer,V. Naundorf,K. R?tzke,H. R. Schober,S. K. Sharma and H. Teichler. Diffusion in Metallic Glasses and Supercooled Melts. Rev. Mod. Phys. 2003, 75: 237~280
    53 H. G. Jiang and J. Baram. Estimation of the Glass Transition Temperature in Metallic Glasses. Mater. Sci. Eng. A 1996, 208: 232~238
    54 S. V. Nemilov. Correlation of Crystallization Character of Glass Melts with the Temperature-Dependence of their Viscosity and the Degree of Spatial Structural Connectiveness. Glass Phys. Chem. 1995, 21: 91~96
    55 D. Kivelson and G. Tarjus. The Kauzmann Paradox Interpreted via the Theory of Frustration-limited-domains. J. Chem. Phys. 1998, 109: 5481~5486
    56 P. Wen. M. X. Pan and W. H. Wang. Progress in the Theoretical Investigations of Glass Transitions. Phys. 2004, 33: 587~592
    57 U. Bengtzelius, W. Gotze and A. Sjolander. Dynamics of Supercooled Liquids and the Glass Transition. J. Phys. C : Solid State Phys. 1984, 17: 5915~5934
    58 E. Leutheusser. Dynamical Model of the Liquid-glass Transition. Phys. Rev. A 1984, 29: 2765~2773
    59 C. A. Angell. Relaxation in Liquids, Polymers and Plastic Crystals-strong/fragilePatterns and Problems. J. Non-Cryst. Solid. 1991, 131-133: 13~31
    60 W. G?tze and L. Sjogren. Relaxation Processes in Supercooled Liquids. Rep. Prog. Phys. 1992, 55: 241~376
    61 D. R. Reichman and P. Charbonneau. Mode-coupling Theory. J. Stat. Mech. 2005, 5: 05013
    62 S. P. Das. Mode-coupling Theory and the Glass Transition in Supercooled Liquids. Rev. Mod. Phys. 2004, 76: 785~851
    63 V. Krakoviack. Liquid-glass Transition of Confined Fluids: Insights from a Mode-coupling Theory. J. Phys.: Condens. Matter 2005, 17: S3565~S3570
    64 W. G?tze and L. Sjogren. Comments on the Mode Coupling Theory for Structural Relaxation. Chem. Phys. 1996, 212: 47~59
    65 W. G?tze and L. Sj?gren.βRelaxation at the Glass Transition of Hard-spherical Colloids. Phys. Rev. A 1991, 43: 5442~5448
    66 H. R. Schober, C. Oligschleger and B. B. Laird. Low-frequency Vibrations and Relaxations in Glasses. J. Non-Cryst. Solids. 1993, 156-158: 965~968
    67 M. Kimura and F. Yonezawa. Topological Disorder in Condensed Matter. Edited by F. Yonezawa and T. Niniomiya (Springer, Berlin). 1983
    68 W. G?tze and M. Sperl. Logarithmic Relaxation in Glass-forming Systems. Phys. Rev. E 2002, 66: 011405
    69 W. G?tze and Th. Voigtmann. Effect of Composition Changes on the Structural Relaxation of a Binary Mixture. Phys. Rev. E 2003, 67: 021502
    70 W. G?tze and M. Sperl. Nearly Logarithmic Decay of Correlations in Glass-Forming Liquids. Phys. Rev. Lett. 2004, 92: 105701
    71 P. Mayer, K. Miyazaki and D. R. Reichman. Cooperativity beyond Caging: Generalized Mode-Coupling Theory. Phys. Rev. Lett. 2006, 97: 095702
    72 A. J. Moreno and J. Colmenero. Relaxation Scenarios in a Mixture of Large and Small Spheres: Dependence on the Size Disparity. J. Chem. Phys. 2006, 125: 164507
    73 G. Wahnstrom. Dynamic Anomalies in a Supercooled Liquid: a Molecular Dynamics Study. Phys. Scr. 1991, 44: 116~119
    74 F. F. Chen, H. F. Zhang, F. X. Qin and Z. Q. Hu. Molecular Dynamics Study of Atomic Transport Properties in Rapidly Cooling Liquid Copper. J. Chem. Phys. 2004, 120: 1826~1831
    75 X. J. Han and H. Teichler. Liquid-to-glass Transition in Bulk Glass-forming Cu60Ti20Zr20 Alloy by Molecular Dynamics Simulations. Phys. Rev. E 2007, 75: 061501
    76 C. Müller, E. Zienicke, S. Adams, J. Habasaki and P. Maass. Comparison of Ion Sites and Diffusion Paths in Glasses Obtained by Molecular Dynamics Simulations and Bond Valence Analysis. Phys. Rev. B 2007, 75: 014203
    77 M. Sharma and S. Yashonath. Correlation between Conductivity or Diffusivity and Activation Energy in Amorphous Solids. J. Chem. Phys. 2008, 129: 144103
    78 J. Hachenberg, D. Bedorf, K. Samwer, R. Richert, A. Kahl, M. D. Demetriou and W. L. Johnson. Merging of theαandβRelaxations and Aging via the Johari–Goldstein Modes in Rapidly Quenched Metallic Glasses. Appl. Phys. Lett. 2008, 92: 131911
    79 H. Teichler. Atomic dynamics in computer simulated amorphous Ni-Zr alloys. Defect Diffus. Forum 1997, 143-147: 717~722
    80 M. Kluge. Ph.D. thesis (University of Aachen). 2001
    81 U. K. R??ler and H. Teichler. Molecular Dynamics Simulations of Supercooled and Amorphous Co100-xZrx: Atomic Mobilities and Structural Properties. Phys. Rev. E 2000, 61: 394~402
    82 F. F. Chen, H. F. Zhang, F. X. Qin and Z. Q. Hu. Molecular Dynamics Study of Atomic Transport Properties in Rapidly Cooling Liquid Copper. J. Chem. Phys. 2004, 120: 1826~1831
    83 S. Sastry, P. G. Debenedetti and F. H. Stillinger. Signatures of Distinct Dynamical Regimes in the Energy Landscape of a Glass-forming Liquid. Nature 1998, 393: 554~557
    84 S. Sastry, P. G. Debenedetti, F. H. Stillinger, T. B. Schr?der, J. C. Dyre and S. C. Glotzer. Potential Energy Landscape Signatures of Slow Dynamics in Glass Forming Liquids. Physica A 1999, 270: 301~308
    85 M.Goldstein. Viscous Liquids and the Glass Transition: A Potential Energy Barrier Picture. J. Chem. Phys. 1969, 51: 3728~3739
    86 W. Kob and H. C. Andersen. Scaling Behavior in theβ-Relaxation Regime of a Supercooled Lennard-Jones Mixture. Phys. Rev. Lett. 1994, 73: 1376~1379
    87 W. Kob and H.C. Andersen. Kinetic Lattice-gas Model of Cage Effects in High-density Liquids and a Test of Mode-coupling Theory of the Ideal-glass Transition. Phys. Rev. E 1993, 48: 4364~4377
    88 W. Kob and H. C. Andersen. Testing Mode-coupling Theory for a Supercooled Binary Lennard-Jones Mixture: the van Hove Correlation Function. Phys. Rev. E 1995, 51: 4626~4641
    89 G. A. Appignanesi, J. A. Rodr?′guez Fris, R. A. Montani and W. Kob. Democratic Particle Motion for Metabasin Transitions in Simple Glass Formers. Phys. Rev. Lett. 2006, 96: 057801
    90 M. Li, C. Z. Wang, M. I. Mendelev and K. M. Ho. Molecular Dynamics Investigation of Dynamical Heterogeneity and Local Structure in the Supercooled Liquid and Glass States of Al. Phys. Rev. B 2008, 77: 184202
    91 P. Pal, C. S. O’Hern, J. Blawzdziewicz, E. R. Dufresne and R. Stinchcombe. Minimal Model for Kinetic Arrest. Phys. Rev. E 2008, 78: 011111
    92 C. Lutz, M. Kollmann and C. Bechinger. Single-File Diffusion of Colloids in One-Dimensional Channels. Phys. Rev. Lett. 2004, 93: 026001
    93 B. Lin, M. Meron, B. Cui, S. A. Rice and H. Diamant. From Random Walk to Single-File Diffusion. Phys. Rev. Lett. 2005, 94: 216001
    94 M. D. Ediger. Spatially Heterogeneous Dynamics in Supercooled Liquids. Annu. Rev. Phys. Chem. 2000, 51: 99~128
    95 G. Biroli and J.-P. Bouchaud. Diverging Length Scale and Upper Critical Dimension in the Mode-Coupling Theory of the Glass Transition. Europhys. Lett. 2004, 67: 21~27
    96 S. C. Glotzer, V. N. Novikov and T. B. Schroder. Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. J. Chem. Phys. 2000, 112: 509~512
    97 S. Karmakar, C. Dasgupta and S. Sastry. Growing Length and Time Scales in Glass-forming Liquids. Proc. Natl. Acad. Sci. 2009, 106: 3675~3679
    98 Z. Altounian, G. H. Tu and J. O. Strom-Olsen. Crystallization Characteristics of Cu-Zr Metallic Glasses from Cu70Zr30 to Cu25Zr75. J. Appl. Phys. 1982, 53: 4755~4758
    99 D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu and E. Ma. Bulk Metallic Glass Formation in the Binary Cu–Zr System. Appl. Phys. Lett. 2004, 84: 4029~4031
    100 D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson and C. Garland. Bulk Metallic Glass Formation in Binary Cu-rich Alloy Series– Cu100-xZrx (x =34, 36, 38.2, 40 at.%) and Mechanical Properties of Bulk Cu64Zr36 Glass. Acta Mater. 2004, 52:2621~2624
    101 W. H. Wang, J. J. Lewandowski and A. L. Greer. Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. J. Mater. Res. 2005, 20: 2307~2313
    102 D. Xu, G. Duan and W. L. Johnson. Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Phys. Rev. Lett. 2004, 92: 245504
    103 A. Inoue and W. Zhang. Formation, Thermal Stability and Mechanical Properties of Cu–Zr and Cu–Hf Binary Glassy Alloy Rods. Mater. Trans. 2004, 45: 584~587
    104 T. Abe, M. Shimono, M. Ode and H. Onodera. Estimation of the Glass Forming Ability of the Ni–Zr and the Cu–Zr Alloys. J. Alloys Compd. 2007, 434–435: 152~155
    105 N. Mattern, A. Sch?ps, U. Kühn, J. Acker, O. Khvostikova and J. Eckert. Structural Behavior of CuxZr100-x Metallic Glass (x = 35-70). J. Non-Cryst. Solids. 2008, 354: 1054~1060
    106 K. Yamaguchi, Y.-C. Songb, T. Yoshida and K. Itagaki. Thermodynamic Investigation of the Cu–Zr System. J. Alloys Comp. 2008, 452: 73~79
    107 M. I. Mendelev, R. T. Ott, M. Heggen, M. Feuerebacher, M. J. Kramer and D. J. Sordelet. Deformation Behavior of an Amorphous Cu64.5Zr35.5 Alloy: A Combined Computer Simulation and Experimental Study. J. Appl. Phys. 2008, 104: 123532
    108 C. Gaukel, M. Kluge and H. R. Schober. Diffusion Mechanisms in Under-cooled Binary Liquids of Zr67Cu33. J. Non-Cryst. Solids.1999, 250-252: 664~668
    109 M. Kluge and H. R. Schober. Diffusion in a Binary Amorphous Metal: Pair-correlation in Cu33Zr67. J. Non-Cryst. Solids. 2006, 352: 5093~5097
    110 B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics I: General Method. J. Chem. Phys. 1959, 31(2): 459~466
    111 B. Lesyng and J. A. McCammon. Molecular Modeling Methods. Basic Techniques and Challenging Problems. Pharmacol. Ther. 1993, 60: 149~167
    112 T. Huber, A. E. Torda and W. F. Vangunsteren. Local Elevation - A Method for Improving the Searching Properties of Molecular-Dynamics Simulation. J. Comput.-Aided Mol. Des. 1994, 8: 695~708
    113 A. F. Voter. A Method for Accelerating the Molecular Dynamics Simulation of Infrequent Events. J. Chem. Phys. 1997, 106: 4665~4677
    114 B. Schonfelder, D. Wolf, S. R. Phillpot and M. Furtkamp. Molecular-dynamics Method for the Simulation of Grain-boundary Migration. Interface Sci. 1997, 5: 245~262
    115 G. Csanyi, T. Albaret, M. C. Payne and A. De Vita.“Learn on the Fly”: A Hybrid Classical and Quantum-mechanical Molecular Dynamics Simulation. Phys. Rev. Lett. 2004, 93: 175503
    116 M. P. Allen. Introduction to Molecular Dynamics Simulation. Computational Soft Matter: From Synthetic Polymers to Proteins. 2004, 23: 1~28
    117 M. Praprotnik, L. Delle Site and K. Kremer. Adaptive Resolution Molecular-dynamics Simulation: Changing the Degrees of Freedom on the Fly. J. Chem. Phys. 2005, 123: 224106
    118 M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon. Oxford. 1987
    119 L. Verlet. Computer“Experiments”on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967,159: 98~103
    120 D. Beeman. Some Multistep Methods for Use in Molecular Dynamics Calculations. J. Comput. Phys.1976, 20: 130~139
    121 S. Nose. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52: 255~268
    122 S. Nose and M. L. Klein. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys.1983, 50: 1055~1076
    123 W. G. Hoover. Canonical Dynamics: Equilibrium Phase-space Distributions. Phys. Rev. A. 1985, 31: 1695~1697
    124 S. Nose and F. Yonezawa. Isothermal-isobaric Computer Simulations of Melting and Crystallization of a Lennard-Jones System. J. Chem. Phys. 1986, 84: 1803~1814
    125 G. S. Pawley and G. W. Thomas. Computer Simulation of the Plastic-to-Crystalline Phase Transition in SF6. Phys. Rev. Lett. 1982, 48: 410~413
    126 S. Nose and M. L. Klein. A Study of Solid and Liquid Carbon Tetrafluoride Using the Constant Pressure Molecular Dynamics Technique. J. Chem. Phys. 1983, 78: 6928~6939
    127 B. Bernades. Theory of Solid Ne, Ar, Kr and Xe at 0 K. Phys. Rev. 1958,112: 1534~1539
    128 M. Born and J. E. Mayer. Lattice theory of ionic crystals. Zeitschrift fur Physik. 1932, 75: 1~18
    129 P. M. Morse. Diatomic Molecules According to the Wave Mechanics.Ⅱ. Vibrational Levels. Phys. Rev. 1929, 34: 57~64
    130 R. A. Johnson and W. D. Wilson. Interatomic Potential and Simulation of Lattice Defects. P. C. Gehlen, J. R. Beeler and R. I. Jaffee, Eds. Plenum Press. 1972, 301~305
    131 M. S. Daw and M. I. Baskes. Embedded-atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Phys. Rev. B. 1984, 29(12): 6443~6453
    132 M. S. Daw and M. I. Baskes. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett. 1983, 50: 1285~1288
    133 S. M. Foiles and M. S. Daw. Calculation of the Thermal Expansion of Metals Using the Embedded-atom Method. Phys. Rev. B 1988, 38: 12643~12644
    134 R. Q. Hwang, J. C. Hamilton, J. L. Stevens and S. M. Foiles. Near-surface Buckling in Strained Metal Overlayer Systems. Phys. Rev. Lett.1995, 75: 4242~4245
    135 M. I. Baskes. Modified Embedded-atom Potentials for Cubic Materials and Impurities. Phys. Rev. B 1992, 46: 2727~2742
    136 M. I. Baskes and R. A. Johnson. Modified Embedded Atom Potentials for hcp Metals. Modell. Simul. Mater. Sci. Eng. 1994, 2: 147~163
    137 M.W. Finnis and J. E. Sinclair. A Simple Empirical N-body Potential for Transition Metals. Philos. Mag. A 1984, 50: 45~55
    138 G. J.Ackland, S.J. Wooding and D.J. Bacon. Surface and Displacement-threshold Properties ofα-Zr Simulated with a Many-body Potential. Philo. Mag. 1995, 71: 553~565
    139 F. Cleri and V. Rosato. Tight-binding Potentials for Transition Metals and Alloys. Phys. Rev. B 1993, 48 (1): 22~23
    140 K. H. Hoffmann and M. Schreiber. Computational Physics, Berlin Heidelberg: Springer-Verlag. 1986, 268~326
    141 W. G. Hoover. Canonical Dynamics: Equilibrium Phase-space Distributions. Phys. Rev. A 1985, 31: 1695~1697
    142 D. J. Evans and G. P. Morriss. Statistical Mechanics of Non-Equilibrium Liquids. Academic Press, London. 1990
    143 H. J. C. Berendsen, J. P. M. Postma and W. F. V. Gunsteren. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81: 3684~3690
    144 M. Parrinello and A. Rahman. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. App. Phys. 1981, 52: 7182~7190
    145 C. L. Cleveland. New Equations of Motion for Molecular Dynamics Systems that Change Shape. J. Chem. Phys. 1988, 89: 4987~4993
    146 R. L. McGreevy and L. Pusztai. Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures. Mol. Simul. 1988, 1: 359~367
    147 R. L. McGreevy. Reverse Monte Carlo Simulation Techniques for Combining X-ray and Neutron Diffraction Data. IOP Conf. Ser. 1989, 101: 41~50
    148 R. Evans. Comments on Reverse Monte Carlo Simulation. Mol. Simul. 1990, 4: 409~411
    149 N. Metropolis and S. Ulam. The Monte Carlo Method. J. Amer. Stat. Assoc. 1949, 44: 335~341
    150 N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A.H. Teller and E. Teller. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21: 1087~1092
    151 S. J. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117: 1~19
    152 R. Smoluchowski. Movement and Diffusion Phenomena in Grain Boundaries. Imperfections in Nearly Perfect Crystals. John Wiley and Sons, Inc. New York. 1952, 451~475
    153黄昆,韩汝琦.固体物理学.高等教育出版社.1988, 41~44
    154 G. Ciccotti, D. Frenkel and I. R. McDonald. Simulation of Liquids and Solids. NorthHolland, Amsterdam. 1987
    155 J. P. Hansen and I. R. McDonald. Theory of Simple Liquids. Academic. London. 1986, 198~199
    156 J. D. Bernal. Geometry of the Structure of Monatomic Liquids. Nature 1960, 185: 68~70
    157 J. D. Bernal and J. Mason. Packing of Spheres: Co-ordination of Randomly Packed Spheres. Nature 1960, 188: 910~911
    158 J. L. Finney. Modelling the Structures of Amorphous Metals and Alloys. Nature1977, 266: 309~314
    159 P. H. Gaskell. Similarities in Amorphous and Crystalline Transition Metal-metalloid Alloy Structures. Nature 1981, 289: 474~476
    160 Y. Waseda, H.-S. Chen, K. T. Jacob and H. Shibata. On the Glass Forming Ability of Liquid Alloys. Sci. Technol. Adv. Mater. 2008, 9: 023003
    161 A. Takeuchi, K. Yubuta, A. Makino and A. Inoue. Evaluation of Glass-forming Ability of Binary Metallic Glasses with Liquidus Temperature, Crystallographic Data from Binary Phase Diagrams and Molecular Dynamics Simulations. J. Alloys Compd 2009, 483: 102~106
    162 A. S. Clarke and H. Jónsson. Structural Changes Accompanying Densification of Random Hard-sphere Packings. Phys. Rev. E 1993, 47: 3975~3984
    163 H. Jonsson and H. C. Andersen. Icosahedral Ordering in the Lennard-Jones Liquid and Glass. Phys. Rev. Lett. 1988, 60: 2295~2298
    164 W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He and E. Ma. Icosahedral Short-Range Order in Amorphous Alloys. Phys. Rev. Lett. 2004, 92: 145502
    165 X. Hui, H. Z. Fang, G. L. Chen, S. L. Shang, Y. Wang and Z. K. Liu. Icosahedral Ordering in Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Appl. Phys. Lett. 2008, 92: 201913
    166 J. P. K. Doye and D. J. Wales. The Structure and Stability of Atomic Liquids: From Clusters to Bulk. Science 1996, 271: 484~487
    167 F.C. Frank. Supercooling of liquids. Proc. Roy. Soc. London A 1952, 215: 43~46
    168 J. L. Finny. Random Packings and the Structure of Simple Liquids. I: The Geometry of Random Close Packing. Proc. Roy. Soc. London A 1970, 319: 479~493
    169 F. H. Stillinger and T. A. Weber. Packing Structures and Transitions in Liquids and Solids. Science 1984, 225: 983~989
    170 T. Egami and Y. Waseda. Atomic Size Effect on the Formability of Metallic Glasses. J. Non-Cryst. Solids. 1984, 64:113~134
    171 T. Egami. Atomistic Mechanism of Bulk Metallic Glass Formation. J. Non-Cryst. Solids. 2003, 317: 30~33
    172 B. X. Liu, W. S. Lai and Q. Zhang. Irradiation Induced Amorphization in Metallic Multilayers and Calculation of Glass-forming Ability from Atomistic Potential in the Binary Metal Systems. Mater. Sci. Eng. R-Rep. 2000, 29: 1~48
    173 T. Tomida and T. Egami. Molecular-dynamics Study of Orientational Order inLiquids and Glasses and its Relation to the Glass Transition. Phys. Rev. B 1995, 52: 3290~3308
    174 F. Faupel, P. W. Hüppe and K. R?tzke. Pressure Dependence and Isotope Effect of Self-diffusion in a Metallic Glass. Phys. Rev. Lett. 1990, 65: 1219~1222
    175 A. Heesemann, V. Z?llmer, K. R?tzke and F. Faupel. Evidence of Highly Collective Co Diffusion in the Whole Stability Range of Co-Zr Glasses. Phys. Rev. Lett. 2000, 84: 1467~1470
    176 P. W. Anderson. Through the Glass Lightly. Science 1995, 267: 1615~1616
    177 P. G. Debenedetti and F. H. Stillinger. Supercooled Liquids and the Glass Transition. Nature 2001, 410: 259~267
    178 P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich and V. Trappe. Heterogeneous Dynamics of Coarsening Systems. Phys. Rev. Lett. 2004, 93: 115701
    179 C. Toninelli, M. Wyart, L. Berthier, G. Biroli and J. P. Bouchaud. Dynamical Susceptibility of Glass Formers: Contrasting the Predictions of Theoretical Scenarios. Phys. Rev. E 2005, 71: 041505
    180 M. Kluge and H. R. Schober. Diffusion and Jump-length Distribution in Liquid and Amorphous Cu33Zr67. Phys. Rev. B 2004, 70: 224209
    181 M. I. Mendelev, D. J. Sordelet and M. J. Kramer. Using Atomistic Computer Simulations to Analyze X-ray Diffraction Data from Metallic Glasses. J. Appl. Phys. 2007, 102: 043501
    182 M. I. Mendelev, D. K. Rehbein, R. T. Ott, M. J. Kramer and D. J. Sordelet. Computer Simulation and Experimental Study of Elastic Properties of Amorphous Cu-Zr Alloys. J. Appl. Phys. 2007, 102: 093518
    183 G. X. Li, Y. F. Liang, Z. G. Zhu and C. S. Liu. Microstructural Analysis of the Radial Distribution Function for Liquid and Amorphous Al. J. Phys.: Conds. Matter 2003, 15: 2259~2267
    184 A. Sadoc, D. Raoux, P.Lagarde and A. Fontaine. EXAFS Studies of the Ni66Y33 and Cu60Zr40 Amorphous Alloys: A Modelling of the Pair Distribution Function with Two Subshells. J. Non-Cryst. Solids. 1982, 50: 331~349
    185 G. Duan, D.H. Xu, Q Zhang, G. Y. Zhang, T. Cagin, W. L. Johnson and W. A. Goddard III. Molecular Dynamics Study of the Binary Cu46Zr54 Metallic Glass Motivated by Experiments: Glass Formation and Atomic-level Structure. Phys. Rev.B 2005, 71: 224208
    186 M. Asta, D. Morgan, J. J. Hoyt, B. Sadigh, J. D. Althoff, D. de Fontaine and S. M. Foiles. Embedded-atom-method Study of Structural, Thermodynamic, and Atomic-transport Properties of Liquid Ni-Al Alloys. Phys. Rev. B 1999, 59: 14271~14281
    187 H. C. Andersen. Molecular Dynamics Studies of Heterogeneous Dynamics and Dynamic Crossover in Supercooled Atomic Liquids. Proc. Natl. Acad. Sci. 2005, 102: 6686~6691
    188 M. M. Hurley and P. Harrowell. Non-Gaussian Behavior and the Dynamical Complexity of Particle Motion in a Dense Two-dimensional Liquid. J. Chem. Phys. 1996, 105: 10521~10526
    189 W. Kob, C. Donati, S. J. Plimpton, P. H. Poole and S. C. Glotzer. Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid. Phys. Rev. Lett. 1997, 79: 2827~2830
    190 R. Candelier, O. Dauchot and G. Biroli. Building Blocks of Dynamical Heterogeneities in Dense Granular Media. Phys. Rev. Lett. 2009, 102: 088001
    191 V. Zollmer, K. Ratzke, F. Faupel, A. Rehmet and U. Geyer. Evidence of Diffusion via Collective Hopping in Metallic Supercooled Liquids and Glasses. Phys. Rev. B 2002, 65: 220201(R)
    192 J. N. Roux, J. L. Barrat and J. P. Hansen. Dynamical Diagnostics for the Glass Transition in Soft-sphere Alloys. J. Phys. Condens. Matter 1989, 1: 7171~7186
    193 D. Turnbull. Under What Conditions Can a Glass be Formed? Contemp. Phys. 1969, 10: 473~488
    194 Z.P. Lu, C.T. Liu. A New Glass-Forming Ability Criterion for Bulk Metallic Glasses. Acta Mater. 2002, 50: 3501~3512
    195 F.R. DeBoer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen. In: Cohesion in Metals. North-Holland, Netherlands. 1989, 1~297, 335~338
    196 M. Kluge and H. R. Schober. Simulation of Diffusion in Amorphous Solids and Liquids. Defect Diffus.Forum 2001, 194-199: 849~854
    197 W. L. Johnson. Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bull. 1999, 24: 42~56
    198 A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48: 279~306
    199 B. S. Rao, J. Bhatt and B. S. Murty. Identification of Compositions with Highest Glass Forming Ability in Multicomponent Systems by Thermodynamic and Topological Approaches. Mater. Sci. Eng. A 2007, 449-451: 211~214
    200 P. K. Ray, K. Chattopadhyay and B. S. Murty. Influence of Thermodynamics and Local Geometry on Glass Formation in Zr Based Alloys. Appl. Phys. Lett. 2008, 93: 061903
    201 S. Mukherjee, J. Schroers, W. L. Johnson and W. K. Rhim. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys. Phys. Rev. Lett. 2005, 94: 245501
    202 E. S. Park and D. H. Kim. Effect of Atomic configuration and Liquid Stability on the Glass-Forming Ability of Ca-Based Metallic Glasses. Appl. Phys. Lett. 2005, 86: 201912
    203 X. F. Bian, J. Guo, X. Q. Lv, X. B. Qin and C. D. Wang. Prediction of Glass-forming Ability of Metallic Liquids. Appl. Phys. Lett. 2007, 91: 221910
    204 N. Jakse and A. Pasturel. Glass Forming Ability and Short-Range Order in a Binary Bulk Metallic Glass by Ab Initio Molecular Dynamics. Appl. Phys. Lett. 2008, 93:113104
    205 D. J. Wales. A Microscopic Basis for the Global Appearance of Energy Landscapes. Science 2001, 293: 2067~2070
    206 Y. J. Sun, D. D. Qu, Y. J. Huang, K. D. Liss, X. S. Wei, D. W. Xing and J. Shen. Zr–Cu–Ni–Al Bulk Metallic Glasses with Superhigh Glass-Forming Ability. Acta Mater. 2009, 57: 1290~1299
    207 J. Shen, J.Zou, L.Ye, Z. P. Lu, D. W. Xing, M. Yan and J. F. Sun. Glass-Forming Ability and Thermal Stability of a New Bulk Metallic Glass in the Quaternary Zr–Cu–Ni–Al System. J. Non-Cryst. Solids. 2005, 351: 2519~2523
    208 W. K. Luo and E. Ma. EXAFS Measurements and Reverse Monte Carlo Modeling of Atomic Structure in Amorphous Ni80P20 Alloys. J. Non-Cryst. Solids. 2008, 354: 945~955
    209 G. Q. Li, K. B. Borisenko, Y. Chen, D. Nguyen-Manh, E. Ma and D. J. H. Cockayne. Local Structure Variations in Al89La6Ni5 Metallic Glass. Acta Mater. 2009, 57: 804~811
    210 C. Fan, P. K. Liaw, T. W. Wilson, H. Choo, Y. F. Gao, C. T. Liu, Th. Proffen and J. W. Richardson. Pair Distribution Function Study and Mechanical Behavior ofAs-Cast and Structurally Relaxed Zr-Based Bulk Metallic Glasses. Appl. Phys. Lett. 2006, 89: 231920
    211 X. J. Liu, G. L. Chen, X. Hui, T. Liu and Z. P.Lu. Ordered Clusters and Free Volume in a Zr–Ni Metallic Glass. Appl. Phys. Lett. 2008, 93: 011911
    212 V. A. Borodin. Local Atomic Arrangements in Polytetrahedral Materials. Phil. Mag. A 1999, 79: 1887~1907
    213 M. H. Cohen and G. S. Grest. Liquid-Glass Transition, a Free-Volume Approach. Phys. Rev. B 1979, 20: 1077~1098
    214 R. J. Roe. Density Fluctuation in a‘‘Theorist’s Ideal Glass’’. J Chem. Phys. 1983, 79: 936~938
    215 S. P. Chen, T. Egami and V. Vitek. Local Fluctuations and Ordering in Liquid and Amorphous Metals. Phys. Rev. B 1988, 37: 2440~2449
    216 T. Egami and S. J. L. Billinge. Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Pergamon Materials Series, edited by Cahn RW. Elsevier, Oxford. 2003
    217 D. R. Nelson. Liquids and Glasses in Spaces of Incommensurate Curvature. Phys. Rev. Lett. 1983, 50: 982~985
    218 L. Yang, S. Yin, X. D. Wang, Q. P. Cao, J. Z. Jiang, K. Saksl and H. Franz. Atomic Structure in Zr70Ni30 Metallic Glass. J. Appl. Phys. 2007, 102: 083512
    219 X. D. Wang, Q. K. Jiang, Q. P. Cao, J. Bednarcik, H. Franz and J. Z. Jiang. Atomic Structure and Glass Forming Ability of Cu46Zr46Al8 Bulk Metallic Glass. J. Appl. Phys. 2008, 104: 093519
    220 X. Hui, H. Z. Fang, G. L. Chen, S.L. Shang, Y. Wang, J.Y. Qin and Z.K. Liu. Atomic Structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Alloy. Acta Mater. 2009, 57: 376~391
    221 A. Inoue, T. Negishi, H. M. Kimura, T. Zhang and A. R.Yavari. High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys. Mater. Trans. JIM 1998, 39: 318~321
    222 F. H. Stillinger. Relaxation and Flow Mechanisms in“Fragile”Glass-Forming Liquids. J. Chem. Phys. 1988, 89: 6461~6469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700