基于忆阻的递归神经网络的动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的计算机架构中,信息存储与处理是分离的,其信息存储与处理的传递通道经由总线来连接,这难以突破“冯·诺依曼瓶颈”,严重制约了高性能计算的发展.而人脑由于独有的突触可塑性,对于信息存储与处理是合一的,没有明显的界限.因此,研制兼具信息存储与处理功能的新型电子存储器件,用以支持信息存储与处理融合的计算体系架构,是下一代超高性能计算的极具潜力的可行发展方向.忆阻作为一种新型的存储器件,其特性极其类似于人脑突触,有望实现类似于人脑突触的信息存储与处理的一体化功能,高效地融合存储与处理,为构建突破“冯·诺依曼瓶颈”的新型计算机体系提供一种全新的设计架构.
     具有混杂互补金属氧化物半导体阵列结构的忆阻神经系统兼具阻变、高速、低功耗、高集成度等特性,这种新型电子信息系统是一种能够模仿神经功能、可自适应调节的微电子电路,在进行数据存储的同时实现逻辑运算功能,达到信息存储与处理的融合,为构建新型计算机架构奠定器件基础.然而,基于忆阻的新型神经系统在系统理论方面还有很多关键瓶颈问题亟待解决.探究其动态行为演化机制,有助于有效调控类神经元的阈值激发功能,为基于忆阻的信息存储与处理提供基础理论支撑,在动态信息的类脑存储与运算等方面孕育出许多重大的创新机遇.
     本文主要研究基于忆阻的神经动力学系统.针对几类基于忆阻的递归神经网络,利用不连续动力系统理论、线性矩阵不等式、数学分析技巧,结合忆阻电路特性,讨论其动态演化行为学,得到了一些初步的动力学理论判据.本文一个有趣的的理论结果是:忆阻系统能够通过微分包含和集值映像理论得到巧妙地分析.本文的主要工作如下:
     探究了基于忆阻的递归神经网络的动力学基础理论.建立了一类基于忆阻的Lotka-Volterra神经网络和多种反馈函数刺激下基于忆阻的神经网络,在Filippov解的数学框架下,得到了基于忆阻的Lotka-Volterra神经网络的吸引性、完全稳定性和多种反馈函数刺激下基于忆阻的神经网络的Lagrange稳定性,获得的结果也许可应用于忆阻的神经联想记忆.这些理论分析可刻画忆阻装置的基本电气性能,为应用提供便利.
     讨论了基于忆阻的递归神经网络的控制设计策略.通过构建基于忆阻的多模型神经网络,分析了其指数镇定和最优控制.获得的判据可应用于忆阻系统的闭环控制,改进和拓展了现有的一些相关结果.
     探讨了基于忆阻的递归神经网络的动力学应用.结合一类基于忆阻的线性阈值神经网络,通过网络的局部抑制和局部不变集理论,分析了其模式记忆行为.提出的结果拓展了传统的递归神经网络的模式记忆理论.
     本文针对忆阻神经动力学系统的初步研究有助于探寻这种新型电子信息系统的纳米尺度电荷输运机理,进一步明确基于忆阻的信息存储与计算机理,为研制信息存储与处理的一体化的高性能电子存储系统奠定基石.
Within the architecture of traditional computer, information memory and processingare separate. The delivery channels of information memory and processing are connectedvia bus, which will be hard to break “Von Neumann challenge”, severely restricting the ad-vancement of high performance computing. However, the combination is that of informationmemory and processing for human brain, due to the synaptic plasticity. Therefore, devel-oping new memory devices with storage and processing, in order to support the computingarchitecture of information storage and fusion processor, may be potential future directionsfor the next generation ultra-high-performance computing. As a new memory device, thefeatures of memristor most closely resemble cerebral synapses. It is believed that memristormay achieve integrated function of information memory and processing, similar to cerebralsynapses, giving a new design scheme for new-type computer architecture that can breakthrough the “Von Neumann challenge”.
     Memristive neural systems made of hybrid complementary metal oxide semiconduc-tor array structure have demonstrated the superior capabilities in the resistance changingmemory, super-speed, low-power dissipation, high integration density, etc, which can forma basis for the realization of powerful brain-like “neural” computer. This neuromorphicelectronic system can enable data storage and to achieve logic operation, which may makegreat breakthrough in the respect of blending of information memory and processing, andlay a good foundation for structuring new-type computer architecture. Nevertheless, somesignificant problems in nonlinear system theory based on memristive neural systems remainto be resolved. Exploring the evolving dynamic mechanism of memristive neural systemswill contribute to regulate the threshold stimulating function of neurons, which can providebasic theory support to information memory and processing based on memristor, and breedlots of major opportunities for storage and computation on dynamic information.
     The dissertation focuses on memristive neurodynamic systems. Several classes ofmemristor-based recurrent neural networks are formulated and studied. Some preliminarytheoretic principles on dynamic behaviors of these networks are derived. The analysis inthe dissertation employs results from the theory of discontinuous dynamical systems, linearmatrix inequalities and mathematical analysis techniques. An interesting theoretical resultof this research work is that the memristive systems can be cleverly analyzed according tothe theories of differential inclusions and set-valued maps. The main contents are sketchedout as follows:
     The basic theories of dynamics on memristor-based recurrent neural networks are dis-cussed. By means of structuring a class of memristor-based Lotka-Volterra neural networksand a class of memristor-based neural networks with various feedback functions, withinmathematical framework of the Filippov solution, the attractivity, complete stability ofmemristor-based Lotka-Volterra neural networks, and the Lagrange stability of memristor-based neural networks with various feedback functions are analyzed, respectively. Theseresults can be applied to the memristive dynamic memories. The theoretical analysis cancharacterize the fundamental electrical properties of memristor devices and provide conve-nience for applications.
     The control design of memristor-based recurrent neural networks is studied. By intro-ducing a class of memristor-based multi-model neural networks, the exponential stabiliza-tion and optimal control are presented. The obtained results can be applied to the closed-loopcontrol of memristive systems. These analytical results were the improvement and extensionof the existing results in the literature.
     The application of dynamics on memristor-based recurrent neural networks is inves-tigated. Combining with a class of memristor-based linear threshold neural networks, thepattern memory analysis is established by using local inhibition and local invariant sets. Thederived results extend some previous works on pattern memory analysis of conventional re-current neural networks.
     The study on dynamic analysis of memristive neurodynamic systems will be helpfulin approaching nanoscale charge transport mechanisms of this new electronic informationsystem, and making more explicit mechanisms on information storage and computing basedon memristor. Such a study also sets the base and tone for the future development of highperformance electronic storage systems that can realize integration of information memoryand processing.
引文
[1] Chua L O. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,1971,CT-18(5):507-519.
    [2] Strukov D B, Snider G S, Stewart G R, Williams R S. The missing memristor found. Nature,2008,453(7191):80-83.
    [3] Tour J M, He T. The fourth element. Nature,2008,453(7191):42-43.
    [4] Hayes B. The memristor. American Scientist,2011,99(2):106-110.
    [5] Kumar M J. Memristor-Why do we have to know about it. IETE Technical Review,2009,26(1):3-6.
    [6] Di Ventra M, Pershin Y V. Memory materials: a unifying description. Materials Today,2011,14(12):584-591.
    [7] Pershin Y V, Di Ventra M. Memory effects in complex materials and nanoscale systems. Advancesin Physics,2011,60(2):145-227.
    [8] Chang T, Jo S H, Lu W. Short-term memory to long-term memory transition in a nanoscale mem-ristor. ACS Nano,2011,5(9):7669-7676.
    [9] Ho Y P, Huang G M, Li P. Dynamical properties and design analysis for nonvolatile memristormemories. IEEE Transactions on Circuits and Systems I: Regular Papers,2011,58(4):724-736.
    [10] Kim S, Jeong H Y, Kim S K, Choi S Y, Lee K J. Flexible memristive memory array on plasticsubstrates. Nano Letters,2011,11(12):5438-5442.
    [11] Ebong I E, Mazumder P. Self-controlled writing and erasing in a memristor crossbar memory.IEEE Transactions on Nanotechnology,2011,10(6):1454-1463.
    [12] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley RD, Medeiros-Ribeiro G, Williams R S. Anatomy of a nanoscale conduction channel reveals themechanism of a high-performance memristor. Advanced Materials,2011,23(47):5633-5640.
    [13] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S. Memristive switchingmechanism for metal/oxide/metal nanodevices. Nature Nanotechnology,2008,3(7):429-433.
    [14] Anthes G. Memristors: pass or fail? Communications of the ACM,2011,54(3):22-24.
    [15] Mullins J. Memristor minds. New Scientist,2009,203(2715):42-45.
    [16] Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N, Lu W. A functionalhybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.Nano Letters,2012,12(1):389-395.
    [17] Borghetti J, Li Z Y, Straznicky J, Li X M, Ohlberg D A A, Wu W, Stewart D R, Williams R S.A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of theNational Academy of Sciences of the United States of America,2009,106(6):1699-1703.
    [18] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S.‘Memristive’ switchesenable ‘stateful’ logic operations via material implication. Nature,2010,464(7290):873-876.
    [19] Rajendran J, Manem H, Karri R, Rose G S. An energy-efficient memristive threshold logic circuit.IEEE Transactions on Computers,2012,61(4):474-487.
    [20] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W. Nanoscale memristor device assynapse in neuromorphic systems. Nano Letters,2010,10(4):1297-1301.
    [21] Wang F Z, Helian N, Wu S N, Lim M G, Guo Y K, Parker M A. Delayed switching in memristorsand memristive systems. IEEE Electron Device Letters,2010,31(7):755-757.
    [22] Wang F Z, Helian N, Wu S N, Yang X, Guo Y K, Lim G, Rashid M M. Delayed switching appliedto memristor neural networks. Journal of Applied Physics,2012,111(7):07E317/1-07E317/3.
    [23] Pershin Y V, Di Ventra M. Experimental demonstration of associative memory with memristiveneural networks. Neural Networks,2010,23(7):881-886.
    [24] Afifi A, Ayatollahi A, Raissi F, Hajghassem H. Efficient hybrid CMOS-Nano circuit design forspiking neurons and memristive synapses with STDP. IEICE Transactions on Fundamentals ofElectronics, Communications and Computer Sciences,2010, E93A(9):1670-1677.
    [25] Kim H, Sah M, Yang C J, Roska T, Chua L O. Neural synaptic weighting with a pulse-basedmemristor circuit. IEEE Transactions on Circuits and Systems I: Regular Papers,2012,59(1):148-158.
    [26] Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M. Hebbian learning in spikingneural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Transactionson Nanotechnology,2011,10(5):1066-1073.
    [27] Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M. Neural learning crcuits uti-lizing nano-crystalline silicon transistors and memristors. IEEE Transactions on Neural Networksand Learning Systems,2012,23(4):565-573.
    [28] Wu A L, Wen S P, Zeng Z G. Synchronization control of a class of memristor-based recurrentneural networks. Information Sciences,2012,183(1):106-116.
    [29]廖晓昕.稳定性的理论、方法和应用.武汉:华中科技大学出版社,2010.
    [30]廖山涛.微分动力系统的定性理论.北京:科学出版社,1992.
    [31]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001.
    [32]周作领,尹建东,许绍元.拓扑动力系统-从拓扑方法到遍历理论方法.北京:科学出版社,2011.
    [33]周武能,苏宏业.区域稳定性约束鲁棒控制理论及应用.北京:科学出版社,2009.
    [34]王占山.连续时间时滞递归神经网络的稳定性.沈阳:东北大学出版社,2007.
    [35]钟守铭,刘碧森,王晓梅,范小明.神经网络稳定性理论.北京:科学出版社,2008.
    [36]刘国荣.多变量系统模糊/神经网络自适应控制.北京:科学出版社,2012.
    [37] Wu A L, Zeng Z G. Exponential stabilization of memristive neural networks with time delays.IEEE Transactions on Neural Networks and Learning Systems,2012,23(12):1919-1929.
    [38] Wu A L, Zeng Z G. Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Networks,2012,36:1-10.
    [39] Mazumder P, Kang S M, Waser R. Memristors: Devices, models, and applications. Proceedingsof the IEEE,2012,100(6):1911-1919.
    [40] Ebong I E, Mazumder P. CMOS and memristor-based neural network design for position detection.Proceedings of the IEEE,2012,100(6):2050-2060.
    [41] Eshraghian K, Kavehei O, Cho K R, Chappell J M, Iqbal A, Al-Sarawi S F, Abbott D. Memristivedevice fundamentals and modeling: Applications to circuits and systems simulation. Proceedingsof the IEEE,2012,100(6):1991-2007.
    [42] Shin S, Kim K, Kang S M. Analysis of passive memristive devices array: Data-dependent statisti-cal model and self-adaptable sense resistance for RRAMs. Proceedings of the IEEE,2012,100(6):2021-2032.
    [43] Pershin Y V, Di Ventra M. Neuromorphic, digital, and quantum computation with memory circuitelements. Proceedings of the IEEE,2012,100(6):2071-2080.
    [44] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. NanoLetters,2009,9(2):870-874.
    [45] Kavehei O, Al-Sarawi S, Cho K R, Eshraghian K, Abbott D. An analytical approach for memristivemanoarchitectures. IEEE Transactions on Nanotechnology,2012,11(2):374-385.
    [46] Jung C M, Jo K H, Lee E S, Vo H M, Min K S. Zero-sleep-leakage flip-flop circuit with conditional-storing memristor retention latch. IEEE Transactions on Nanotechnology,2012,11(2):360-366.
    [47] Shin S, Kim K, Kang S M. Memristive XOR for resistive multiplier. Electronics Letters,2012,48(2):78-80.
    [48] Snider G. Instar and outstar learning with memristive nanodevices. Nanotechnology,2011,22(1):015201/1-015201/6.
    [49] Sah M P, Yang C J, Kim H, Chua L O. A voltage mode memristor bridge synaptic circuit withmemristor emulators. Sensors,2012,12(3):3587-3604.
    [50] Pershin Y V, Di Ventra M. Teaching memory circuit elements via experiment-based learning. IEEECircuits and Systems Magazine,2012,12(1):64-74.
    [51] Pershin Y V, Di Ventra M. Solving mazes with memristors: A massively parallel approach. Phys-ical Review E,2011,84(4):046703/1-046703/6.
    [52] Krzysteczko P, Munchenberger J, Schafers M, Reiss G, Thomas A. The memristive magnetictun-nel junction as a nanoscopic synapse-neuron system. Advanced Materials,2012,24(6):762-766.
    [53] Adamatzky A, Chua L. O. Memristive excitable cellular automata. International Journal of Bifur-cation and Chaos,2011,21(11):3083-3102.
    [54] Itoh M, Chua L O. Memristor cellular automata and memristor discrete-time cellular neural net-works. International Journal of Bifurcation and Chaos,2009,19(11):3605-3656.
    [55] Messias M, Nespoli C, Botta V A. Hopf bifurcation from lines of equilibria without parameters inmemristor oscillators. International Journal of Bifurcation and Chaos,2010,20(2):437-450.
    [56] Talukdar A, Radwan A G, Salama K N. Generalized model for Memristor-based Wien familyoscillators. Microelectronics Journal,2011,42(9):1032-1038.
    [57] Talukdar A, Radwan A G, Salama K N. A memristor-based third-order oscillator: beyond oscilla-tion. Applied Nanoscience,2011,1(3):143-145.
    [58] Talukdar A, Radwan A G, Salama K N. Nonlinear dynamics of memristor based3rd order oscil-latory system. Microelectronics Journal,2012,43(3):169-175.
    [59] Itoh M, Chua L O. Memristor oscillators. International Journal of Bifurcation and Chaos,2008,18(11):3183-3206.
    [60] Corinto F, Ascoli A, Gilli M. Nonlinear dynamics of memristor oscillators. IEEE Transactions onCircuits and Systems I: Regular Papers,2011,58(6):1323-1336.
    [61] Zidan M A, Omran H, Radwan A G, Salama K N. Memristor-based reactance-less oscillator.Electronics Letters,2011,47(22):1220-1221.
    [62] Driscoll T, Kim H T, Chae B G, Di Ventra M, Basov D N. Phase-transition driven memristivesystem. Applied Physics Letters,2009,95(4):043503/1-043503/3.
    [63] Petras I. Fractional-order memristor-based Chua’s circuit. IEEE Transactions on Circuits and Sys-tems Part II: Express Briefs,2010,57(12):975-979.
    [64] Riaza R. Dynamical properties of electrical circuits with fully nonlinear memristors. NonlinearAnalysis: Real World Applications,2011,12(6):3674-3686.
    [65] Prodromakis T, Peh B P, Papavassiliou C, Toumazou C. A versatile memristor model with nonlin-ear dopant kinetics. IEEE Transactions on Electron Devices,2011,58(9):3099-3105.
    [66] Valsa J, Biolek D, Biolek Z. An analogue model of the memristor. International Journal of Numer-ical Modelling: Electronic Networks, Devices and Fields,2011,24(4):400-408.
    [67] Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q. A simple memristor chaotic circuit with complex dynamics.International Journal of Bifurcation and Chaos,2011,21(9):2629-2645.
    [68] Jeltsema D, van der Schaft A J. Memristive port-Hamiltonian systems. Mathematical and Com-puter Modelling of Dynamical Systems,2010,16(2):75-93.
    [69] Itoh M, Chua L O. Memristor Hamiltonian circuits. International Journal of Bifurcation and Chaos,2011,21(9):2395-2425.
    [70] Zhang X L, Huang Z C, Yu J B. Memristor model for SPICE. IEICE Transactions on Electronics,2010, E93C(3):355-360.
    [71] Sharifi M J, Banadaki Y M. General SPICE models for memristor and application to circuit simula-tion of memristor-based synapses and memory cells. Journal of Circuits, Systems and Computers,2010,19(2):407-424.
    [72] Erokhin V, Berzina T, Smerieri A, Camorani P, Erokhina S, Fontana M P. Bio-inspired adaptivenetworks based on organic memristors. Nano Communication Networks,2010,1(2):108-117.
    [73] Ginoux J M, Letellier C, Chua L O. Topological analysis of chaotic solution of a three-elementmemristive circuit. International Journal of Bifurcation and Chaos,2010,20(11):3819-3827.
    [74] Iu H H C, Yu D S, Fitch A L, Sreeram V, Chen H. Controlling chaos in a memristor based circuitusing a Twin-T notch filter. IEEE Transactions on Circuits and Systems I: Regular Papers,2011,58(6):1337-1344.
    [75] Batas D, Fiedler H. A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology,2011,10(2):250-255.
    [76] Wang X Y, Fitch A L, Iu H H C, Qi W G. Design of a memcapacitor emulator based on a memristor.Physics Letters A,2012,376(4):394-399.
    [77] Driscoll T, Quinn J, Klein S, Kim H T, Kim B J, Pershin Y V, Di Ventra M, Basov D N. Memristiveadaptive filters. Applied Physics Letters,2010,97(9):093502/1-093502/3.
    [78] Tulina N A, Borisenko I Y, Sirotkin V V. Reproducible resistive switching effect for memoryapplications in heterocontacts based on strongly correlated electron systems. Physics Letters A,2008,372(44):6681-6686.
    [79] Machado J T. Fractional generalization of memristor and higher order elements. Communicationsin Nonlinear Science and Numerical Simulation,2013,18(2):264-275.
    [80] El-Sayed A M A, Elsaid A, Nour H M, Elsonbaty A. Dynamical behavior, chaos control andsynchronization of a memristor-based ADVP circuit. Communications in Nonlinear Science andNumerical Simulation,2013,18(1):148-170.
    [81] Lu W L, Wang L L, Chen T P. On attracting basins of multiple equilibria of a class of cellularneural networks. IEEE Transactions on Neural Networks,2011,22(3):381-394.
    [82] Wang L L, Chen T P. Complete stability of cellular neural networks with unbounded time-varyingdelays. Neural Networks,2012,36:11-17.
    [83] Li X M, Ma C Q, Huang L H. Invariance principle and complete stability for cellular neuralnetworks. IEEE Transactions on Circuits and Systems II: Express Briefs,2006,53(3):202-206.
    [84] Zeng Z G, Wang J. Complete stability of cellular neural networks with time-varying delays. IEEETransactions on Circuits and Systems I: Regular Papers,2006,53(4):944-955.
    [85] Zeng H B, He Y, Wu M, Zhang C F. Complete delay-decomposing approach to asymptotic stabil-ity for neural networks with time-varying delays. IEEE Transactions on Neural Networks,2011,22(5):806-812.
    [86] Takahashi N, Nishi T. Necessary and sufficient condition for a class of planar dynamical systemsrelated to CNNs to be completely stable. IEEE Transactions on Circuits and Systems II: ExpressBriefs,2006,53(8):727-733.
    [87] Chen W H, Zheng W X. A new method for complete stability analysis of cellular neural networkswith time delay. IEEE Transactions on Neural Networks,2010,21(7):1126-1139.
    [88] Yi Z, Tan K K. Dynamic stability conditions for Lotka-Volterra recurrent neural networks withdelays. Physical Review E,2002,66(1):011910/1-011910/8.
    [89] Yi Z, Heng P A, Vadakkepat P. Absolute periodicity and absolute stability of delayed neural net-works. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2002,49(2):256-261.
    [90] Yi Z, Tan K K. Global convergence of Lotka-Volterra recurrent neural networks with delays. IEEETransactions on Circuits and Systems I: Regular Papers,2005,52(11):2482-2489.
    [91] Yi Z. Foundations of implementing the competitive layer model by Lotka-Volterra recurrent neuralnetworks. IEEE Transactions on Neural Networks,2010,21(3):494-507.
    [92] Zhang Z Q, Liu W B, Zhou D M. Global asymptotic stability to a generalized Cohen-GrossbergBAM neural networks of neutral type delays. Neural Networks,2012,25:94-105.
    [93] Akhmet M U, Yllmaz E. Global exponential stability of neural networks with non-smooth andimpact activations. Neural Networks,2012,34:18-27.
    [94] Zhang Z Q, Liu K Y, Yang Y. New LMI-based condition on global asymptotic stability concerningBAM neural networks of neutral type. Neurocomputing,2012,81:24-32
    [95] Liu Y J, Ma W B, Mahmoud M S. New results for global exponential stability of neural networkswith varying delays. Neurocomputing,2012,97:357-363.
    [96] Shao J L, Huang T Z, Wang X P. Further analysis on global robust exponential stability of neuralnetworks with time-varying delays. Communications in Nonlinear Science and Numerical Simu-lation,2012,17(3):1117-1124.
    [97] Orman Z. New sufficient conditions for global stability of neutral-type neural networks with timedelays. Neurocomputing,2012,97:141-148.
    [98] Wu B, Liu Y, Lu J Q. New results on global exponential stability for impulsive cellular neuralnetworks with any bounded time-varying delays. Mathematical and Computer Modelling,2012,55(3-4):837-843.
    [99] Liu B W. Global exponential stability for BAM neural networks with time-varying delays in theleakage terms. Nonlinear Analysis: Real World Applications,2013,14(1):559-566.
    [100] Zhou C H, Zhang H Y, Zhang H B, Dang C Y. Global exponential stability of impulsive fuzzyCohen-Grossberg neural networks with mixed delays and reaction-diffusion terms. Neurocomput-ing,2012,91:67-76.
    [101] Wu S L, Li K L, Huang T Z. Global exponential stability of static neural networks with delay andimpulses: Discrete-time case. Communications in Nonlinear Science and Numerical Simulation,2012,17(10):3947-3960
    [102] Li Z, Xu R. Global asymptotic stability of stochastic reaction-diffusion neural networks with timedelays in the leakage terms. Communications in Nonlinear Science and Numerical Simulation,2012,17(4):1681-1689.
    [103] Liu J, Liu X Z, Xie W C. Global convergence of neural networks with mixed time-varying delaysand discontinuous neuron activations. Information Sciences,2012,183(1):92-105.
    [104] Song X L, Xin X, Huang W P. Exponential stability of delayed and impulsive cellular neuralnetworks with partially Lipschitz continuous activation functions. Neural Networks,2012,29-30:80-90.
    [105] Zhang Y T, Luo Q. Global exponential stability of impulsive delayed reaction-diffusion neuralnetworks via Hardy-Poincare inequality. Neurocomputing,2012,83:198-204.
    [106] Wang Y J, Yang C L, Zuo Z Q. On exponential stability analysis for neural networks with time-varying delays and general activation functions. Communications in Nonlinear Science and Nu-merical Simulation,2012,17(3):1447-1459.
    [107] Li B, Xu D Y. Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time-varying delays. Applied Mathematics and Computation,2012,219(5):2506-2520.
    [108] Faydasicok O, Arik S. Further analysis of global robust stability of neural networks with multipletime delays. Journal of the Franklin Institute,2012,349(3):813-825.
    [109] Wang Y F, Lin P, Wang L S. Exponential stability of reaction-diffusion high-order Markovian jumpHopfield neural networks with time-varying delays. Nonlinear Analysis: Real World Applications,2012,13(3):1353-1361.
    [110] Wu S L, Li K L, Zhang J S. Exponential stability of discrete-time neural networks with delay andimpulses. Applied Mathematics and Computation,2012,218(12):6972-6986.
    [111] Cao J D, Feng G, Wang Y Y. Multistability and multiperiodicity of delayed Cohen-Grossbergneural networks with a general class of activation functions. Physica D: Nonlinear Phenomena,2008,237(13):1734-1749.
    [112] Di Marco M, Forti M, Grazzini M, Pancioni L. Limit set dichotomy and multistability for a classof cooperative neural networks with delays. IEEE Transactions on Neural Networks and LearningSystems,2012,23(9):1473-1485.
    [113] Huang G, Cao J D. Multistability of neural networks with discontinuous activation function. Com-munications in Nonlinear Science and Numerical Simulation,2008,13(10):2279-2289.
    [114] Huang G, Cao J D. Multistability in bidirectional associative memory neural networks. PhysicsLetters A,2008,372(16):2842-2854.
    [115] Huang G, Cao J D. Delay-dependent multistability in recurrent neural networks. Neural Networks,2010,23(2):201-209.
    [116] Huang Y J, Zhang H G, Wang Z S. Dynamical stability analysis of multiple equilibrium points intime-varying delayed recurrent neural networks with discontinuous activation functions. Neuro-computing,2012,91:21-28.
    [117] Huang Y J, Zhang H G, Wang Z S. Multistability and multiperiodicity of delayed bidirectional as-sociative memory neural networks with discontinuous activation functions. Applied Mathematicsand Computation,2012,219(3):899-910.
    [118] Huang Z K, Feng C H, Mohamad S. Multistability analysis for a general class of delayed Cohen-Grossberg neural networks. Information Sciences,2012,187:233-244.
    [119] Huang Z K, Song Q K, Feng C H. Multistability in networks with self-excitation and high-ordersynaptic connectivity. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(8):2144-2155.
    [120] Hui Q, Haddad W M, Bailey J M. Multistability, bifurcations, and biological neural networks: Asynaptic drive firing model for cerebral cortex transition in the induction of general anesthesia.Nonlinear Analysis: Hybrid Systems,2011,5(3):554-572.
    [121] Kaslik E, Sivasundaram S. Impulsive hybrid discrete-time Hopfield neural networks with delaysand multistability analysis. Neural Networks,2011,24(4):370-377.
    [122] Kaslik E, Sivasundaram S. Multistability in impulsive hybrid Hopfield neural networks with dis-tributed delays. Nonlinear Analysis: Real World Applications,2011,12(3):1640-1649.
    [123] Lu W L, Wang L L, Chen T P. On attracting basins of multiple equilibria of a class of cellularneural networks. IEEE Transactions on Neural Networks,2011,22(3):381-394.
    [124] Nie X B, Cao J D. Multistability of competitive neural networks with time-varying and distributeddelays. Nonlinear Analysis: Real World Applications,2009,10(2):928-942.
    [125] Nie X B, Cao J D. Multistability of second-order competitive neural networks with nondecreasingsaturated activation functions. IEEE Transactions on Neural Networks,2011,22(11):1694-1708.
    [126] Nie X B, Huang Z K. Multistability and multiperiodicity of high-order competitive neural net-works with a general class of activation functions. Neurocomputing,2012,82:1-13.
    [127] Wang L L, Chen T P. Multistability of neural networks with Mexican-hat-type activation functions.IEEE Transactions on Neural Networks and Learning Systems,2012,23(11):1816-1826.
    [128] Wang L L, Lu W L, Chen T P. Multistability and new attraction basins of almost-periodic solutionsof delayed neural networks. IEEE Transactions on Neural Networks,2009,20(10):1581-1593.
    [129] Wang L L, Lu W L, Chen T P. Coexistence and local stability of multiple equilibria in neuralnetworks with piecewise linear nondecreasing activation functions. Neural Networks,2010,23(2):189-200.
    [130] Zeng Z G, Huang T W, Zheng W X. Multistability of recurrent neural networks with time-varyingdelays and the piecewise linear activation function. IEEE Transactions on Neural Networks,2010,21(8):1371-1377.
    [131] Zeng Z G, Zheng W X. Multistability of neural networks with time-varying delays and concave-convex characteristics. IEEE Transactions on Neural Networks and Learning Systems,2012,23(2):293-305.
    [132] Zhang L, Yi Z, Yu J L, Heng P A. Some multistability properties of bidirectional associativememory recurrent neural networks with unsaturating piecewise linear transfer functions. Neuro-computing,2009,72(16-18):3809-3817.
    [133] Zou L, Tang H J, Tan K C, Zhang W N. Nontrivial global attractors in2-D multistable attractorneural networks. IEEE Transactions on Neural Networks,2009,20(11):1842-1851.
    [134] Liao X X, Luo Q, Zeng Z G. Positive invariant and global exponential attractive sets of neuralnetworks with time-varying delays. Neurocomputing,2008,71(4-6):513-518.
    [135] Liao X X, Luo Q, Zeng Z G, Guo Y X. Global exponential stability in Lagrange sense for recurrentneural networks with time delays. Nonlinear Analysis: Real World Applications,2008,9(4):1535-1557.
    [136] Wu A L, Zeng Z G, Fu C J, Shen W W. Global exponential stability in Lagrange sense for periodicneural networks with various activation functions. Neurocomputing,2011,74(5):831-837.
    [137] Luo Q, Zeng Z G, Liao X X. Global exponential stability in Lagrange sense for neutral typerecurrent neural networks. Neurocomputing,2011,74(4):638-645.
    [138] Tu Z W, Jian J G, Wang K. Global exponential stability in Lagrange sense for recurrent neuralnetworks with both time-varying delays and general activation functions via LMI approach. Non-linear Analysis: Real World Applications,2011,12(4):2174-2182.
    [139] Wang B X, Jian J G, Jiang M H. Stability in Lagrange sense for Cohen-Grossberg neural networkswith time-varying delays and finite distributed delays, Nonlinear Analysis: Hybrid Systems,2010,4(1):65-78.
    [140] Wang X H, Jiang M H, Fang S L. Stability analysis in Lagrange sense for a non-autonomousCohen-Grossberg neural network with mixed delays. Nonlinear Analysis: Theory, Methods&Applications,2009,70(12):4294-4306.
    [141] Zeng Z G, Huang D S, Wang Z F. Memory pattern analysis of cellular neural networks. PhysicsLetters A,2005,342(1-2):114-128.
    [142] Fourati F, Chtourou M, Kamoun M. Stabilization of unknown nonlinear systems using neuralnetworks. Applied Soft Computing,2008,8(2):1121-1130.
    [143] Liu Z Q, Torres R E, Patel N, Wang Q J. Further development of input-to-state stabilizing controlfor dynamic neural network systems. IEEE Transactions on Systems, Man, and Cybernetics, PartA: Systems and Humans,2008,38(6):1425-1433.
    [144] Lu J Q, Ho D W C, Wang Z. Pinning stabilization of linearly coupled stochastic neural networksvia minimum number of controllers. IEEE Transactions on Neural Networks,2009,20(10):1617-1629.
    [145] Patan K. Stability analysis and the stabilization of a class of discrete-time dynamic neural net-works. IEEE Transactions on Neural Networks,2007,18(3):660-673.
    [146] Phat V N, Trinh H. Exponential stabilization of neural networks with various activation functionsand mixed time-varying delays. IEEE Transactions on Neural Networks,2010,21(7):1180-1184.
    [147] Shen Y, Wang J. Noise-induced stabilization of the recurrent neural networks with mixed time-varying delays and Markovian-switching parameters. IEEE Transactions on Neural Networks,2007,18(6):1857-1862.
    [148] Zhu X L, Wang Y Y. Stabilization for sampled-data neural-network-based control systems. IEEETransactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41(1):210-221.
    [149] Li C D, Wu S C, Feng G G, Liao X F. Stabilizing effects of impulses in discrete-time delayedneural networks. IEEE Transactions on Neural Networks,2011,22(2):323-329.
    [150] Liu X Z, Wang Q. Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays. IEEE Transactions on Neural Networks,2008,19(1):71-79.
    [151] Long F, Fei S M. Neural networks stabilization and disturbance attenuation for nonlinear switchedimpulsive systems. Neurocomputing,2008,71(7-9):1741-1747.
    [152] Ke Y Q, Miao C F. Pattern memory analysis of second-order neural networks with time-delay.Applied Mathematics and Computation,2011,217(22):8883-8898.
    [153] Mejias J F, Torres J J. Maximum memory capacity on neural networks with short-term synapticdepression and facilitation. Neural Computation,2009,21(3):851-871.
    [154] Mejias J F, Hernandez-Gomez B, Torres J J. Short-term synaptic facilitation improves informationretrieval in noisy neural networks. Europhysics Letters,2012,97(4):48008/1-48008/6.
    [155] Stroffeka J, Marsaleka P. Short-term potentiation effect on pattern recall in sparsely coded neuralnetwork. Neurocomputing,2012,77(1):108-113.
    [156] Zeng Z G, Huang D S, Wang Z F. Pattern memory analysis based on stability theory of cellularneuralnetworks. Applied Mathematical Modelling,2008,32(1):112-121.
    [157] Yi Z, Zhang L, Yu J L, Tan K K. Permitted and forbidden sets in discrete-time linear thresholdrecurrent neural networks. IEEE Transactions on Neural Networks,2009,20(6):952-963.
    [158] Zhang L, Yi Z. Selectable and unselectable sets of neurons in recurrent neural networks withsaturated piecewise linear transfer function. IEEE Transactions on Neural Networks,2011,22(7),1021-1031.
    [159] Zhang L, Yi Z, Yu J L. Multiperiodicity and attractivity of delayed recurrent neural networks withunsaturating piecewise linear transfer functions. IEEE Transactions on Neural Networks,2008,19(1):158-167.
    [160] Zhang L, Yi Z, Zhang S L, Heng P A. Activity invariant sets and exponentially stable attractors oflinear threshold discrete-time recurrent neural networks. IEEE Transactions on Automatic Control,2009,54(6):1341-1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700