水下机器人运动控制与故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是人类开发和利用海洋的世纪,海洋是人类的发源地和资源宝库,对全球的经济和社会发展起到重要的推动作用。“谁控制了海洋和掌握海洋资源开发的技术,谁就掌握了未来世界的资源宝库”,这是对海洋重要性的高度评价。作为人类认识和利用海洋资源的重要工具,水下机器人在海洋资源开发和军事应用方面展示出良好的应用前景。运动控制和故障诊断技术作为水下机器人的核心技术,对其开展深入研究具有重要的理论意义和工程应用价值。论文的主要目的是提出更好的运动控制算法并实现控制系统的故障自主诊断,从而提高水下机器人在恶劣海洋环境下的运动控制性能和生存能力。
     作者以“水下机器人运动控制与故障诊断技术研究”为题展开博士论文研究工作。论文首先简要介绍研究对象的基本情况,阐述水下机器人的硬件体系和软件体系结构,导出水下机器人运动仿真模型,为随后的运动控制与故障诊断技术研究奠定理论基础;为了提高水下机器人组合导航系统的精度和可靠性,开展了联邦kalman滤波技术研究。基于信息守恒原则,推导出联邦kalman滤波算法并完成最优性证明。将联邦kalman滤波器应用于水下机器人组合导航,通过试验结果分析验证了联邦kalman滤波器应用于水下机器人的可行性;考虑到普通S面控制器在系统稳定时存在一定的稳态误差,本文在S面控制器中引入智能积分以减小稳定时的稳态误差。将专家系统引入到S面控制器中,构建专家S面控制器,借助领域专家的经验构造控制策略,从而提高控制系统的控制性能。基于普通S面控制器和极板模型控制器的对比分析,提出了广义S面控制器,通过选取不同的S形非线性函数来代替普通S面控制器中的Sigmoid函数以得到不同的S面控制器,相应的结论可以指导控制器的设计过程;针对基于解析模型等故障诊断方法鲁棒性差的缺点,引入滑动模态的思想以提高故障诊断的鲁棒性。由于阈值判别法分析残差时容易受到客观因素和主观因素的影响引起误判,本文引入模糊推理的方式来分析残差信息以克服阈值判别法判断不连续和误报率高的缺点,大量的仿真试验结果表明基于模糊推理的残差分析方法能够区分水下机器人当前是处于状态调整阶段还是状态异常阶段,从而大大提高了故障诊断的准确性,有利于故障诊断鲁棒性的提高;针对神经网络用于故障诊断存在的缺点,将模糊逻辑与神经网络结合构造模糊神经网络以弥补神经网络的不足,阐述了一种模糊神经网络结构,推导出基于最小调整的网络动态学习率以确保当前学习样本的调整结果对历史数据改变最小;对水下机器人传感器信息做小波变换,利用小波变换极值点来检测信号的突变故障。为了消除环境噪声的影响,引入了阈值法,通过对小波变换的高频系数设置阈值来消除噪声干扰。针对定位声纳输出数据的振荡情况,采用了线性平滑方法。设计了三次曲线拟合及kalman滤波并与线性平滑进行了对比试验,试验结果表明:对水下机器人这样一个特定的对象,线性平滑方法不仅处理简单而且直接有效。
     本文完成了大量的仿真试验和实际试验,试验结果验证了文中所提方法的可行性和有效性。运动控制算法能够提高控制性能,故障诊断算法可以提高故障诊断的准确性和鲁棒性。
21 century is the century which human develop and utilize ocean. Ocean is the seedbed and resource treasury of human being and it will play great roll in the development of economics and society. "The people who control ocean and master the development technology of ocean resource will control the future resource treasury", these words show the important value of ocean. As the important instrument of knowing and utilizing the ocean resource, underwater vehicle will display its potential usage in ocean development and maritime application. Motion control and fault detection and diagnosis (FDD) are the core technologies of underwater vehicle, and it has crucial theory and practical engineering worth. The main purpose of this dissertation is to propose better motion control algorithms and realize the FDD of control system so as to enhance the motion control performance and life-force of underwater vehicle.
     The author undertakes the dissertation research with the title of "Research on Motion Control and Fault Diagnosis of Underwater Vehicle". We introduced the basic configuration of the research plant and hardware and software architectures, and the motion model in six-degree freedom was built up. All those will establish the theory foundation for the following passages. The federated kalman filtering technology was studied in order to improve the precision and reliability of combined navigation of underwater vehicle. Based on the information conservation principle, the federated kalman filtering algorithm was deduced and its optimization was demonstrated. The federated kalman filter was adapted for the combined navigation of underwater vehicle, and the feasibility of the federated kalman filter was verified by the experiment results. The typical S-plane controller has certain steady state error when the system is stable; therefore, the intelligent integral was brought in to decrease the steady state error. The expert system was brought in S-plane controller to construct the expert S-plane controller. We use the expert experience for reference, and the control effect was improved. Comparing between the typical S-plane controller and the capacitor-plate model controller, the generalized S-plane controller was presented. Different S-plane controller can be obtained by substitute different S type nonlinear function for Sigmoid function in typical S-plane controller. The analyzing conclusion can direct controller designing. Aiming at the bad robustness of fault detection and diagnosis (FDD) based on analytic model; the sliding mode idea was introduced to enhance the robustness of FDD. The threshold method can cause erroneous judgement because of its own defects; therefore, here we use fuzzy reasoning method to analyze the residual data so as to overcome the shortcoming of the threshold method. Plenty of simulation results told us that the residual analyzing method based on fuzzy reasoning can distinguish between the state adjustment and the state abnormity of underwater vehicle; accordingly, the precision and robustness of FDD were increased. Aiming at the disadvantage of neural network, we combined the fuzzy logic and neural network. A fuzzy neural network structure was introduced, and the neural network dynamic learning rate based on minimum adjustment was deduced to make sure the present sample will has small impact to the history data. The wavelet transform is undertaken for the sensor information of the underwater vehicle, and the extreme points of the wavelet transform are used to detect the jumping faults of the signal. In order to decrease the noise's influence, the threshold method is brought in. The disturbance of the noise can be bucked by setting the threshold for the high frequency parameters of the wavelet transform. As to the oscillation of the outputs of the positioning sonar, the linear smoothing method is adopted. The cubical curve fitting and kalman filter are designed and comparison experiments are conducted among them, and the experiment results say:underwater vehicle as the specific research plant, linear smoothing method is not only very simple but also direct and effective.
     This dissertation undertakes plenty of simulation experiments and practical trials, and the experiment results verify the feasibility and validity of the proposed methods. The motion control algorithms can improve the control performance, and the fault detection and diagnosis algorithms can enhance the precision and robustness of FDD.
引文
[1]Wang Jianguo, Wu Gongxing, Wan Lei. Sensor Fault Diagnosis for Underwater Robots. Proceedings of the 7th World Congress on Control and Automation. Chongqing, China.2008,254-259P
    [2]朱继懋.潜水器设计.上海:上海交通大学出版社.1992:1-15页
    [3]WANG Jianguo, SUN Yushan, WAN Lei, JIANG Da-peng. Fault Diagnosis of Underwater Robots Based on Recurrent Neural Network. Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics. GuangZhou, China, December, 19-23,2009:2497-2502P
    [4]http://woodhole.org
    [5]D. Richard Blidberg, Roy M.Turner, Steven G. Chappell. Autonomous Underwater Vehicles:Current activities and research opportunities, Robotics and Autonomous Systems,1991,7(2):139-145P
    [6]http://www.cs.nps.navy.mil
    [7]http://auvlab.mit.edu
    [8]http://underwater.iis.u-tokyo.ac.jp
    [9]http://www.verylib.com.cn/html/technology/306/59211.htm
    [10]李一平,封锡盛.“CR-01"6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通讯.2001,1(12):85-87页
    [11]Hyun-Sik Kim, Yong-Ku Shin. Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control. Ocean Engineering.2007,34 (8):1080-1088P
    [12]Nakamura, Y. and Savant, S. Nonlinear tracking control of autonomous underwater vehicles. Proceedings of IEEE Int. Conf. on Robotics and Automation,1992(3):4-7P
    [13]Goheen, K.R. and Jeffery, R.E. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering. 1990,15(3):146-150P
    [14]Choi, S.K. andYuh, J. Experimental study on a learning control system with bound estimation for underwater vehicles. Int'l J. of Autonomous Robots.1996,3(3): 188-192P
    [15]A. Bagheri, T. Karimi, N. Amanifard. Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controller. Applied Soft Computing,2010,10(3):908-918P
    [16]Kazuo Ishii, Teruo Fujii and Tamaki Ura. An On-line Adaption Method in a Neural Network Based Control System for AUV's. IEEE Journal of Oceanic Engineering, 1995,20(3):223-227P
    [17]Hakki Murat Genc, Engin Yesil. A rule base modification scheme in fuzzy controllers for time-delay systems.Expert Systems with Applications.2009,36(4):8476-8486P
    [18]马岭,崔维成NTSM控制的AUV路径跟踪控制研究.中国造船.2006,47(4):76-80页
    [19]彭良,卢迎春,万磊,孙俊岭.水下智能潜器的神经网络运动控制.海洋工程.1995,13(2):39-44页
    [20]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程.2001,19(3):81-83页
    [21]王建国,吴恭兴,万磊,孙玉山,王丽荣.基于广义S面的水下机器人控制器设计研究.电机与控制学报增刊.2009.13(1):144-147页
    [22]刑志伟.复杂海洋环境下水下机器人控制问题研究.沈阳:中国科学院沈阳自动化研究所博士论文,2003
    [23]Keith C.Yang, J.Yuh, S.K.Choi. Experimental Study of Fault-Tolerant System Design for Underwater Robots. Proceedings of the 1998 IEEE International Conference on Robotics& Automation. Leuven, Belgium, May 1998:1052-1055P
    [24]Edin Omerdic, Geoff Roberts. Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control Engineering Practice.2004(12):1578-1593P
    [25]Takai, M., Ura, T.. Development of a system to diagnose autonomous underwater vehicle. International Journal of Systems Science.1999,30(9),983-987P
    [26]Christopher Tubb, Geoff Roberts, Edin Omerdic. Development of a fault handling system for remotely operated vehicles. IFAC Mechatronic Systems, California, USA,2002:384-388P
    [27]Kelvin Hamilton, Dave Lane, Nick Taylor, Keith Brown. Fault Diagnosis on Autonomous Robotic Vehicles with RECOVERY; An Integrated Heterogeneous-Knowledge Approach.2001 IEEE Conference on Robotics and Automation.2001, 5(21-25):3232-3238P
    [28]万磊,刘建成,常文君,徐玉如.基于Elman神经网络的水下机器人推进器故障诊断.舰船标准化工程师.2003(1)(总211期):23-25页
    [29]WANG Yu-jia, ZHANG Ming-jun. Study of fuzzy neural networks model for system contion monitoring of AUV. Journal of marine science and application.2002,1(2): 42-45P
    [30]王建国,吴恭兴,赵福龙,万磊.水下机器人故障诊断方案.电机与控制学报.2007.12(2):202-205页
    [31]王建国,吴恭兴,万磊,孙玉山,姜大鹏.基于小波网络的水下机器人故障诊断研究.船舶工程.2009.31(增刊):124-127,130页
    [32]王丽荣,甘永,徐玉如等.滑模观测器在水下机器人推力器故障诊断中的应用.哈尔滨工程大学学报.2005,26(4):425-428页
    [33]崔江,王友仁.采用基于模糊推理的分类器融合方法诊断电力电子电路参数故障.中国电机工程学报.2009,29(18):54-58页
    [34]庞永杰,方少吉,王丽容.基于小波网络的水下机器人推进器故障诊断.中国造船.2009,49(2):94-95页
    [35]马剑,吕琛,刘红梅.复杂系统故障诊断中的两类关键技术.测试技术学报.2010,24(4):372-373页
    [36]Rongxin Cui, Shuzhi Sam Ge, Bernard Voon Ee How.Leader-follower formation control of underactuated autonomous underwater vehicles.Ocean Engineering.2010, 37(17):1491-1496P
    [37]Giacomo Marani, Song K. Choi, Junku Yuh.Underwater autonomous manipulation for intervention missions AUVs.Ocean Engineering.2009,36(1):15-20P
    [38]WANG Jianguo, WU Gongxing, WAN Lei, SUN Yushan, JIANG Da-peng. Motion Control of Underwater Robot Based on an Improved Controller. Proceedings of 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. ShangHai, China, November,20-22,2009:694-699P
    [39]王建国,万磊,甘永,黄昂.嵌入式数据库在水下机器人中的应用研究.哈尔滨工程大学学报.2008,29(9):897-901页
    [40]http://www.tss-international.com
    [41]http://www.pnicorp.com
    [42]http://www.klha.cn/viewproductdetail.asp?id=448
    [43]http://www.tecnadyne.com/Brochure/Model%201060%20Brochure.pdf
    [44]http://www.tecnadyne.com/Brochure/Model%201020%20Brochure.pdf
    [45]http://www.tecnadyne.com/Brochure/Model%20520%20Brochure.pdf
    [46]http://www.sbs.com.cn/productshow.asp?id=520
    [47]http://www.diamondsystem.com
    [48]http://www.sbs.com.cn/productshow.asp?id=605
    [49]http://www.sbs.com.cn/productshow.asp?id=596
    [50]施生达.潜艇操纵性.北京:国防工业出版社,1995:149-161页
    [51]张国林,吴学峰.南极内陆导航方法的研究.测绘与空间地理信息.2009,32(6):25-28页
    [52]Xu Jianmao, Zhang Haipeng, Sun Junzhong.Periodic Error Compensation for Quartz MEMS Gyroscope Drift of INS.Chinese Journal of Aeronautics.2007,20(6):539-545P
    [53]Dongjun Hyun, Hyun Seok Yang, Hyuk-Sung Park, Hyo-Jun Kim. Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping.Mechatronics.2010,20(2):213-223P
    [54]李雄伟,刘建业,康国华TERCOM地形高程辅助导航系统发展及应用研究.中国惯性技术学报.2006,14(1):34-40页
    [55]杨朝明,蒋军彪,黄超凡,田荣军.两种车载导航分散滤波算法对比及应用研究.弹箭与制导学报.2009,29(6):270-273页
    [56]仇越,郭碧波,李成,梁斌.航天器非合作目标相对导航的联邦滤波算法研究.宇航学报.2009,30(6):2206-2210页
    [57]J.V.T. S(?)rensen, H. Madsen, H. Madsen.Parameter sensitivity of three Kalman filter schemes for assimilation of water levels in shelf sea models.Ocean Modelling.2006, 11(3):441-463P
    [58]史利剑,王永生,警方.无重置联邦滤波及在组合导航中的应用.弹箭与制导学报.2005,25(4):132-134页
    [59]张怡,蔡毅,唐成凯.基于联邦卡尔曼滤波器的信息分配因子的研究.计算机真.2009,26(1):358-360页
    [60]R.P. Kumar, C.S. Kumar, D. Sen, A. Dasgupta.Discrete time-delay control of an autonomous underwater vehicle:Theory and experimental results. Ocean Engineering. 2009,36(1):74-81P
    [61]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报.2006,1(1):9-16页
    [62]V. Maiorov.Approximation by neural networks and learning theory.Journal of Complexity.2006,22(l):102-117P
    [63]吴简形,张树侠.误差反向传播神经网络模拟软件.软件.1994,8(1):1-7页
    [64]Laurent Dupont, Daniel Lazard, Sylvain Lazard, Sylvain Petitjean. Near-optimal parameterization of the intersection of quadrics:The generic algorithm. Journal of Symbolic Computation.2008,43(3):168-191P
    [65]L. Dymova, P. Sevastianov, P. Bartosiewicz. A new approach to the rule-base evidential reasoning:Stock trading expert system application. Expert Systems with Applications. 2010,37(8):5564-5576P
    [66]Wallace M. Bessa, Max S. Dutra, Edwin Kreuzer. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robotics and Autonomous Systems.2010,58(1):16-20P
    [67]王建国,孙玉山,万磊.无缆自治水下机器人运动控制技术研究.高技术通讯.2010.11(20):1156-1161页
    [68]杨智博,孙和平.基于仿人智能积分的Fuzzy-PD控制器性能优化研究.北华大学学报.2009,10(5):464-466页
    [69]Salim Labiod, Thierry Marie Guerra. Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy Sets and Systems.2007,158(10):1126-1137P
    [70]Paisan Kittisupakorn, Piyanuch Thitiyasook, M.A. Hussain, Wachira Daosud. Neural network based model predictive control for a steel pickling process. Journal of Process Control.2009,19(4):579-590P
    [71]G. Q. Fan, N. W. Rees. An intelligent expert system (KBOSS) for power plant coal mill supervision and control. Control Engineering Practice.1997,5(1):101-108P
    [72]蔡自兴,姜志明.基于专家系统的机器人高层规划.电子学报.1993,21(5):88-90页
    [73]张启新,张举华.蛋白质相互作用网络的负反馈控制及其建模.生命科学仪器.2006,4(2):3-6页
    [74]甘永,万磊,陆雯雯,庞永杰.无舵翼水下机器人路径跟踪控制的研究.海洋工程.2007,25(1):70-75页
    [75]甘永,万磊,庞永杰.高速无舵翼水下机器人运动控制的研究.船舶工程.2006.28(4):22-26页
    [76]Gan Yong, Sun Yushan, Wan Lei, Pang Yongjie. Motion Control System Architecture of Underwater Robot, Proceedings of the 6th World Congress on Control and Automation. Dalian, China. June,21-23,2006:8876-8879P
    [77]唐旭东,庞永杰,王建国.基于单神经元的水下机器人S面自适应运动控制.计算机应用.2007.27(12):2899-2901页
    [78]Gan Yong, Wang Lirong, Wan Lei etc. Parallel Neural Network Based Motion Controller for Autonomous Underwater Vehicle. China Ocean Engineering.2005,19(3):485-496P
    [79]D. Richard Blidberg, Roy M. Turner, Steven G. Chappell. Autonomous underwater vehicles:Current activities and research opportunities. Robotics and Autonomous Systems.1991,7(2):139-150P
    [80]Rolf Isermann. Model-based fault-detection and diagnosis-status and applications. Annual Reviews in Control.2005,29(1):71-85P
    [81]樊久铭,王秋生,徐敏强,邹经湘.基于模态区间分析的半定性故障诊断方法.哈尔滨工业大学学报.2007,39(5):774-778页
    [82]朱大奇,于盛林.基于知识的故障诊断方法综述.安徽工业大学学报.2002,19(3):197-203页
    [83]吕建新,孙双.基于信号处理的柴油机配气机构故障诊断研究.工业安全与环保.2010,36(7):31-34页
    [84]Wallace M. Bessa, Max S. Dutra, Edwin Kreuzer. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robotics and Autonomous Systems.2010,58(1):16-26P
    [85]Chung-Shi Tseng, Chi-Kuang Hwang. Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances. Fuzzy Sets and Systems. 2007,28(2):164-179P
    [86]朱建栋.带传输滞后的离散系统的观测器及输出动态反馈.控制与决策.2008,23(10):1178-1181P
    [87]姜云春,邱静,刘冠军,钱彦岭.基于未知输入观测器的故障检测诊断降虚警研究.仪器仪表学报.2005,26(8):767-768页
    [88]Michael Basin, Dario Calderon-Alvarez. Sliding mode regulator as solution to optimal control problem for non-linear polynomial systems. Journal of the Franklin Institute. 2010,347(6):910-922P
    [89]苏健勇,李铁才,杨贵杰.PMSM无位置传感器控制中数字滑模观测器抖振现象分析与抑制.电工技术学报.2009,8(1):58-64页
    [90]高亚东,张曾铝.直升机旋翼不平衡故障诊断试验研究.振动、测试与诊断.2009,29(2):214-217页
    [91]Andreas Johansson, Michael Bask, Torbjorn Norlander. Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty. Automatica. 2006,42(7):1095-1106P
    [92]Vassilis G. Kaburlasos, Ioannis N. Athanasiadis, Pericles A. Mitkas. Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. International Journal of Approximate Reasoning.2007,45(1):152-188P
    [93]Qi Wu, Rob Law. Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization. Information Sciences.2010,180(23):4514-4528P
    [94]Mehbuba Rehim, Haijun Jiang, Zhidong Teng. Boundedness and stability for nonautonomous cellular neural networks with delay. Neural Networks.2004, 17(7):1017-1025P
    [95]Samanwoy Ghosh-Dastidar, Hojjat Adeli. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks.2009,22(10):1419-1431P
    [96]甘业君,景小宁,侯颖.神经网络用于故障诊断的实现方法.状态监测与诊断技术.2004,9(2):42-43页
    [97]陈斌.关于高斯函数的几个应用.河南科学.2008,26(10):1160-1161页
    [98]Nikola K. Kasabov. Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems. Fuzzy Sets and Systems.1996,82(2):135-149P
    [99]彭家寅.基于极大模糊熵原理的模糊推理三Ⅰ约束算法.内江师范学院学报.2010,25(8):513页
    [100]刘百顺,徐玉如,解贵新,刘学敏.一种带非线性扩展的前向神经网络模型及其学习算法.哈尔滨工程大学学报.1999,20(3):1-6页
    [101]李庆扬,王能超,易大义.数值分析.武汉:华中科技大学出版社,2004
    [102]王建国,万磊,徐玉如.水下机器人传感器故障诊断研究.大连海事大学学报.2007.33(4):47-50,55页
    [103]Verma V, Gordon G, Simmons R, et al. Real-time fault diagnosis (robot fault diagnosis).IEEE Robotics& Automation Magazine.2004,11(2):56-66 P
    [104]XU Tao, WANG Qi. Sensor fault diagnosis based on wavelet package and LVQ network. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY. 2007,39(1):8-10P
    [105]黄时聪,韩志新.机器人故障诊断.微计算机应用.1991,12(3):14-18页
    [106]LANG Fangcai, YUAN Xiao, ZHOU Ji liu. Redundancy Analysis of Wavelet Transform Coefficient. ACTA AUTOMATICA SINICA.2006,33(4):568-577 P
    [107]周小勇,叶银忠.小波分析在故障诊断中的应用.控制工程,2006,13(1):70-73页
    [108]邓洪声,舒大文.基于小波分析的故障诊断.研究与开发.2003,34(4):21-23页
    [109]孙娟,唐慧强.一种基于小波的奇异信号检测方法.武汉理工大学学报.2004,26(8):84-86,89页
    [110]唐和生,薛松涛,谢强.基于小波理论的奇异信号分析.上海海运学院学报.2001,22(3):78-80,88页
    [111]张珍,翁史烈,王永泓.小波分析在燃气轮机传感器故障诊断中的应用.动力工程.2006,26(2):245-248页
    [112]周小勇,叶银忠.基于Mallat塔式算法小波变换的多故障诊断方法.控制与决策, 2004,19(5):592-594页
    [113]Li Li, QU Liangshen, LIAN Xianghui. Haar wavelet for machine fault diagnosis. Mechanical Systems& Signal Processing.2007,21:1773-1786P
    [114]周小勇.小波分析在故障诊断中的应用.上海海运学院硕士学位论文.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700