电脉冲除冰系统的实验、理论与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电脉冲除冰系统是保障飞机在结冰气象条件下安全飞行的一种机械除冰系统,它具有高效节能、稳定性好、通用性强等优点。本文采用实验与理论相结合的方法,讨论了该系统的地面基础实验、理论及其相关计算方法与设计开发过程,具体内容如下:
     搭建了电脉冲除冰系统地面实验台,进行了脉冲电流、磁感应强度、瞬态加速度、结构模态以及除冰实验,为系统的理论分析与相关计算方法提供了论证依据。引出了系统振动效果的两种评价指标——峰值加速度与位移有效值,并由实验测量结果分析了放电电压、电容、线圈-铝板间距、边界条件、线圈外径、导线厚度对评价指标的影响程度。
     简化了脉冲电路的分析模型,基于RLC电路分析理论,求解了瞬态电流函数,通过比较几组计算与实验电流曲线,得到两者峰值偏差均小于5.2%。由此提出了正弦电流函数代替实测电流以简化电路分析的思路。并研究了以衰减电频率为设计基础且以能力需求最小为目标的圆盘形脉冲线圈优化设计方法。
     建立了电脉冲除冰系统铝板与线圈的二维电磁涡流场分析模型,以瞬态电流为输入参量,数值求解了铝板上的磁感应强度,该值与NASACR-4175所述计算方法相比更吻合实验结果。接着分析了电脉冲除冰系统除冰激励的两种形式:基于麦克斯韦应力法求解的总电磁脉冲力与基于安培力求解的不均匀分布在铝板上的脉冲压力。通过加载不同电流曲线计算电磁脉冲压力,初步论证了利用正弦半波电流计算除冰激励的可行性。然后讨论了铝板厚度、铝板电导率、铝板-线圈间距、电流峰值与电频率对脉冲激励的影响,为电脉冲除冰系统设计除冰激励的估算提供了重要分析依据。
     建立了无冰层覆盖的铝板的三维结构有限元分析模型,首先研究了铝板的固有模态,所得的前四阶固有频率与实验值相比其偏差小于3.5%,说明了所建模型的正确性。以不均匀分布的脉冲压力作为除冰激励输入载荷加载在有限元分析模型上求解了铝板的瞬态响应位移,可减少近似加载总电磁力的计算误差。并通过比较不同输入载荷条件下所计算的位移曲线,发现第一个正向周期的位移曲线基本一致,且位移峰值与实验之间的偏差均在10%以内,再次论证了正弦半波电流简化分析除冰激励是可行的。然后讨论了电流大小、电频率、铝板厚度、铝板弹性模量、铝板密度、铝板长宽比对最大响应位移的影响,同时根据分析结果提出了将电频率与系统低阶固有频率按1:1的关系设计系统的思路。
     研究了除冰实验与除冰过程的数值模拟。通过除冰实验一方面验证了系统设计关系式的正确性,另一方面解决了除冰机理中的一个争议性问题:高加速度并不是除冰效果的直接影响因素,而形变位移更直观评价系统的除冰好坏。引入单元生死法编写了冰层失效分析程序,有效解决了传统研究中冰层不断脱落而模型不断更新的数值问题,同时得知此次分析采用vonMises最大等效应力分析法比Labeas失效准则模拟计算的除冰范围更吻合实验结果。建立了NACA系列翼型断面模型,利用冰层失效分析程序研究了不同影响因素的除冰效果,可用于指导电脉冲除冰系统的设计安装。
     以ANSYS为平台二次开发了电脉冲除冰系统的设计程序,包括模态分析、脉冲线圈设计、脉冲激励求解与除冰效果分析模块。通过调用程序的各个分析模块,以实验铝板与NACA0018机翼断面为比较对象,利用优化后的脉冲线圈设计参数计算所得的除冰效果明显得到了改善。
     本文所取得的加载电流的简化、不均匀脉冲激励的分布求解、系统设计关系式的确定、脉冲线圈的设计与优化、除冰效果分析程序与系统设计程序等研究成果,具有一定的理论与工程实用价值,可用于指导电脉冲除冰系统的设计与分析,对减少实验成本与优化设备资源具有很好地促进作用。
Electro-impulse de-icing (EIDI) system is one of the mechanical de-icing systems which assurethe safety of aircrafts in icing condition. It owns the major advantages such as effectiveness, lessenergy consumption, stability, reliability, etc. Combined theoretical and experimental methods, theground-based experiment, theory with related calculation methods, and designing programdevelopment of the EIDI system are discussed in this dissertation. Specific contents are as follows:
     A ground-experimental platform of EIDI system is set up. The experiments as impulse current,magnetic induction, transient acceleration, structural modal and de-icing effectiveness are completed,which provide reference for theory analysis with related calculation methods. The evaluation indexeslike peak acceleration and RMS displacement are introduced. Meanwhile, the relations between theevaluation indexes and the parameters like the discharge voltage, the capacitance, thecoil-aluminum-plate gap, boundary condition, outer diameter, and the wire thickness are discussed.
     Based on the simplified circuit model, the transient current are solved in the RLC circuit theory.The calculated errors of the peak current are less than5.2%by comparing the calculated withexperimental current curves. Thus, the sine current function is proposed to instead of theexperimental data for simplifying the circuit. The optimization design with less energy demand ofthe impulse coil is investigated on the basis of the damped electrical frequency.
     A two-dimensional electromagnetic eddy current model of the aluminum plate and the coil isbuilt. The magnetic inductions are numerical simulated with the transient current as the inputparameter, which fit better with the experiment results than the calculated values in NASA CR-4175.Then, two types of de-icing excitation of the EIDI system are intensively studied, that is, the totalelectromagnetic force based on the Maxwell tress method and the nonuniform distributedelectromagnetic pressure based on the Ampere force of the aluminum plate. The feasibility of thesimplified half-sine current is preliminarily demonstrated for the obtained pressure values by loadingthe different current functions to the eddy current model. Moreover, the factors of the impulseexcitation like the thickness and the electrical conductivity of the aluminum plate, the gap betweenthe plate and the coil, the peak current, and the electrical frequency are illustrated, which providesimportant analysis base for evaluating the de-icing excitation of the EIDI system.
     A three-dimensional finite element model of the aluminum plate without ice layer is developed,which is proved feasibly in the structural modal analysis with the relative error of the initial fourth order natural frequency less than3.5%by comparing the calculated natural frequency with theexperimental data. Then, the nonuniform distributed pressures are applied to the model to calculatethe transient response displacement, which can reduce the error by loading the total electromagneticforce. Additionally, the first positive displacements agree well with the experimental values and thepeak errors are less than10%by loading the different de-icing excitation, which stronglydemonstrate the feasibility of using the simplified half-sine current. Moreover, the factors of themaximum response displacement are discussed like current, electrical frequency, the thickness, theelastic module, the density, and the ratio of the length and width of the aluminum plate. Meanwhile,that the relation between the electric frequency and the natural frequency is defined as1:1isproposed for designing the EIDI system.
     The numerical simulation and tests of the de-icing process are investigated. The designingrelation is validated by the de-icing tests. On the other hand, a controversial issue is settled for thede-icing principle of the EIDI system, that is, the great acceleration has no direct effect on thede-icing effectiveness, while the deformation displacement is more efficient cause for the de-icingresults. Then, the ice failure program is compiled in the element killing technique, which overcomesthe limitation of the ice failure without updating the model in traditional method. Comparing withthe experimental results, the von Mises yield criterion is more suitable than Labeas ice failure insimulating the de-icing process. Then, using the series section NACA wings as the model thede-icing effectiveness is simulated, which can guide the design and installation of the EIDI system.
     The design program is creatively proposed by further developing the ANSYS FE codes, whichincludes the modal analysis module, the impulse coil design module, the de-icing excitation solutionmodule, and the de-icing effectiveness analysis module. Selecting the modulus sequentially, thede-icing effectiveness using the aluminum plate and the section wing of NACA0018for comparisonobjects is obtained, which is greatly improved in the optimized designing coil parameters.
     The achievements of the dissertation such as the simplification of the current, the solution of theuneven distribution of the de-icing excitation, the definition of the design relation, the design and theoptimization of parameters of the impulse coil, the program compilation of the de-icing effectiveness,etc, have theory and engineering value. It can make benefit to the design and analysis of the EIDIsystem, which will reduce the experimental cost and optimize the allocation of resources.
引文
[1] Scott K, Thomas R C. Aircraft anti-icing and de-icing techniques and modeling. Journal ofAircraft,1996,33(5):841-854.
    [2]裘燮纲,韩凤华.飞机防冰系统.北京:航空专业教材编审组,1985.
    [3] Shaw R J. NASA’s aircraft icing analysis program. NASA TM88791,1986.
    [4] Lee S, Bragg M B. Investigation of factors affecting iced-airfoil aerodynamics. Journal ofAircraft,2003,40(3):499-508.
    [5]周莉,徐浩军,龚胜科,李大伟.飞机结冰特性及防除冰技术研究.中国安全科学学报,2010,20(6):105-110.
    [6] Lynch F T, Khodadoust A. Effects of ice accretions on aircraft aerodynamics. Progress inAerospace Sciences,2001,37(8):669-767.
    [7]刘根林,沈海军.飞机防冰与除冰技术综述.江苏航空,2003,4:18-20.
    [8]孔凡龙,积冰对飞机性能和飞机安全的影响.《飞行员》杂志,2012.
    [9] Cole J, Sand W. Statistical study of aircraft icing accidents, AIAA-91-0558,1991.
    [10]谢毅.飞机结冰事故的统计分析.国外试飞,1996,3:23-28.
    [11] Williams K W. A summary of unmanned aircraft accident/incident data: human factorsimplications, DOT/FAA/AM-04/24,2004.
    [12] Botch S R, Johnson R D. Benzodiazepine use in pilots of civil aviation accidents:1990-2008toxicology and autopsy findings, DOT/FAA/AM-11/2,2011.
    [13]常士楠.防止飞机结冰.百科知识,2005.
    [14] http://aviation-safety.net/index.php.
    [15] Kamel A K, Eddie I, Dean M. Mixed phase icing simulation and testing at the cox icing windtunnel, AIAA-2003-0903,2003.
    [16] Lan E C. Flight dynamic analysis of a turboprop transport airplane in icing accident,AIAA-2005-5922,2005.
    [17]肖春华.飞机电热除冰过程的传热特性及其影响研究,[博士学位论文],绵阳:中国空气动力研究与发展中心,2010.
    [18] http://www.cnr.cn/gundong/201204/t20120405_509380631.shtml.
    [19] Kim H, Kedward K T. Modeling hail ice impacts and predicting impact damage initiation incomposite structures. AIAA Journal,2000,38(7):1278-1288.
    [20] Heinrich A, Ross R, Zumwalt G, et al. Aircraft Icing Handbook. U.S.: U.S. Department ofTransportation&FAA Technical Center,1991.
    [21]李航航,周敏.飞机结冰探测技术及防除冰系统工程应用.航空工程进展,2010,1(2):112-115.
    [22] Ratvasky T P, Blankenship K, Rieke W, et al. Iced aircraft flight data for flight simulatorvalidation. NASA TM-2003-212114,2003.
    [23] Oleskiw M. A review of65years of aircraft in-flight icing research at NRC. CanadianAeronautics and Space Journal,2001,47(3):259-268.
    [24] Feher L, Thumm M. Design of avionic microwave de-/anti-icing systems. Advances inMicrowave and Radio Frequency Processing,2006, Part X:695-702.
    [25] Weisend N. Design of an advanced pneumatic deicer for the composite rotor blades. Journal ofAircraft,1989,26:947-950.
    [26] Martin C A, Putt J C. Advanced pneumatic impulse ice protection system (PIIP) for aircraft.Journal of Aircraft,1992,29(4):714-716.
    [27] Palacios J L, Zhu Y, Smith E C, el al. Ultrasonic shear and lamb wave interface stress forhelicopter rotor de-icing purposes, AIAA-2006-2282.
    [28] Zhu Y, Palacios J L, Rose J L, et al. De-icing of multi-layer composite plates using ultrasonicguided waves, AIAA-2008-1862,2008.
    [29] Zhu Y, Palacios J L, Rose J L, et al. Numerical simulation and experimental validation oftailored wave guides for ultrasonic de-icing on aluminum plate, AIAA-2010-3043,2010.
    [30] Venna S Y, Lin Y J, Botura G. Piezoelectric transducer actuated leading edge de-icing withsimultaneous shear and impulse forces. Journal of Aircraft,2007,44(2):509-515.
    [31] Schrag R L, Zunwal G W. Electro-impulse de-icing: concept and electrodynamic studies,AIAA-84-0021,1984.
    [32] Scavuzzo R J, Chu M L, Ananthaswamy V. Influence of aerodynamic forces in ice shedding.Journal of Aircraft,1994,31(3):526-530.
    [33] Kamel M A, Thomas W F, Dennis M P. A hybrid anti-icing ice protection system,AIAA-97-0302,1997.
    [34] Kamel A K. Thermo-mechanical expulsion deicing system-TMEDS, AIAA-2007-692,2007.
    [35] Levin I A. USSR electric impulse de-icing design. Aircraft Engineering,1972:7.
    [36] http://www.eipos.ru/index.php?id=15.
    [37] Levin I A. A device for removing ice from surfaces of thin-walled structures, U.S. Patent,3809341, May,1974.
    [38] Levin I A. Electric-impulse de-icing system (Aviation). PWT Brochure,1997.
    [39] Ross R. Electro-impulse deicing of the NASA Lewis altitude wind tunnel turning vanes.Journal of Aircraft,1988,25(6):499-502.
    [40] Zunwalt G W. Icing tunnel tests of electro-impulse de-icing of an engine inlet and high-speedwings, AIAA-85-0446,1985.
    [41] Zunwalt G W. Electromagnetic impulse de-icing applied to a nacelle nose lip, AIAA-85-1118,1985.
    [42] Nelepovitz D O, Rosenthal H A, Rockholt H M. Test and analysis of electro-impulse de-icingsystems in turbine engine inlets, AIAA-88-0020,1988.
    [43] Smith S, Zieve P. Thin film eddy current impulse deicer, AIAA-90-0761,1990.
    [44] Lowell J A. Electro-impulse de-icer, U.S. Patent,5429327, Jul.4,1995.
    [45] Lowell J A, Norbert A W, Thomas E W. Attachable electro-impulse de-icer, U.S. Patent,5129598, Jul.14,1992.
    [46] Goenher R D, Glover N I, Hensley G. Electro-impulse de-icing system for aircraft, U.S. Patent,4678144, Jul.7,1987.
    [47] Haslim L A, Lee R D. Electro-expulsive separation system, U.S. Patent,4690353, Sep.1,1987.
    [48] Charles O. Masters. Electro-impulse de-icing systems-issues and concerns for certification,AIAA-89-0761,1989.
    [49] Zieve P B. Low voltage electro-impulse de-icer, AIAA-88-0021,1988.
    [50] Zieve P, Huffer B, Ng J. Electromagnetic emissions from a modular low voltage EIDI system,AIAA-89-0758,1989.
    [51] Zumwalt G W, Friedberg R A. Designing an electro-impulse de-icing system,AIAA-86-0545,1986.
    [52]裘燮纲,郭宪民.电脉冲系统参数的合理选择.南京航空航天大学学报,1993,25(2):211-217.
    [53]杜骞.电脉冲除冰系统设计研究,[硕士学位论文].南京:南京航空航天大学.2009.
    [54]姚远,林贵平.电脉冲除冰系统的建模与计算分析.飞机设计,2008,28(1):64-75.
    [55]李广超,何江,林贵平.电脉冲除冰(EIDI)技术研究.航空动力学报,2011,26(8):1728-1738.
    [56]吴小华,杨堤,张晓斌,等.飞机电脉冲除冰系统的建模与仿真.系统仿真学报,2010,22(4):1064-1066.
    [57]张文杰,董文俊,王斌团,等.电脉冲除冰仿真冰层松脱准则研究.计算机工程与应用2012,48(3):232-233.
    [58] Hammond D W, Braund M J, Duffy P. Progress report on ice physics investigation. BritishAerospace Rept. CAPRI/BAE/REP/0807/SUB, Nov.1990.
    [59] Scavuzzo R L, Chu M L, Kellackey C J. Structural analysis and properties of impact icesaccreted on aircraft structures, NASA CR-198473,1996.
    [60]何树先,王俊,孙宝德,等.电脉冲对金属铝箔的作用.中国有色金属学报,2002,12(1):173-177.
    [61]林志琦,郎永辉,王岩,等.倍压整流电路电容参数的优化设计.长春工业大学学报(自然科学版),2009,30(5):551-555.
    [62]李永红,韩冰冰,刘朋.脉冲晶闸管.元器件应用,2008:70-71.
    [63]申烛,钱政,罗承沐,等. Rogowski线圈的测量误差分析和估计.高电压技术,2003,29(1):5-7.
    [64]周继明,江世明.传感技术与应用.长沙:中南大学出版社,2009.
    [65]李清英,白天,朱春玲.电脉冲除冰系统的加速度实验研究.飞机设计,2011,31(6):37-40.
    [66]王济,胡晓. MATLAB在振动信号处理中的应用.北京:中国水利水电出版社,2005.
    [67] Henderson R A. Theoretical analysis of the electrical aspects of the basic electro-impulseproblem in aircraft de-icing applications,[Ph.D dissertion]. Wichita State. U.S.: The WichitaState University,1988.
    [68]陈景亮,姚学玲,孙伟.脉冲电流技术.西安:西安交通大学出版社,2008年.
    [69] П.Л.卡兰塔罗夫, Л.А.采依特林.电感计算手册(陈汤铭,刘保安,罗应力,等译).北京:机械工业出版社,1992.
    [70] Bernhart W D, Schrag R L. Electroimpulse deicing: electrodynamic solution by discreteelements. Journal of Aircraft,1989,26(6):547-553.
    [71] Zumwalt G W, Schrag R L, Barnhart W D, el al. Analsis and tests for design of anelectro-impulse de-icing system, NASA CR-174919,1985.
    [72] Scavuzzo R J, Chu M L. Finite element studies of the electro impulse de-icing system. Journalof Aircraft,1990,27(9):757-762.
    [73] Samuel O S. Modeling and strain gauging of eddy current repulsion deicing system,AIAA-93-0296,1993.
    [74]刘克富,王少荣,钟和清,等.脉冲强磁场高功率脉冲电源系统研制.核技术,2008,31(11):864-868.
    [75] Bowley R M, King P J, Lewis G J. Production of short mechanical impulses by means of eddycurrents. IEE PROCEEDINGS,1983,30(6):415-423.
    [76] Nakata T, Takahashi N, Fujiwara K, et al. Comparison of different finite elements for3-D eddycurrent analysis. IEEE Trans.On Magnetics,1990,26(2):434-437.
    [77] Tsukerman A. Error estimation for finite element solutions of the eddy currents problem,COMPEL,1990,9:83-98.
    [78] Bermudez A, Rodr guez R. Numerical analysis of the electric field formulation of an eddycurrents problem. C.R.Acad. Sci. Paris, Ser. I,2003,337:359-364.
    [79] Zheng W Y, Zhang F R. Adaptive finite element frequency domain method for eddy currentproblems.Comput. Methods Appl.Mech.Engrg.,2008,197:1233-1241.
    [80]王金铭.工程电磁场耦合问题分析的若干数值技术研究,[博士学位论文].沈阳:沈阳工业大学电气工程学院,2006.
    [81]谢德馨,杨仕友.工程电磁场数值分析与综合.北京:机械工业出版社,2008.
    [82] Zumwalt G W, Schrag R L, Bernhart W D, et al. Electro-impulse de-icing testing analysis anddesign, NASA CR-4175,1988.
    [83]李清英,白天,朱春玲.电脉冲除冰系统的电磁场分析.南京航空航天大学学报,2011,43(1):95-100.
    [84]阎照文. ANSYS工程电磁分析技术与实例详解.北京:中国水利水电出版社,2006.
    [85]董健年,吴应,桂应春,等.电磁弹射装置中线圈受力与电流相位的关系.高电压技术,2006,32(7):79-80.
    [86] Bernhart W D, Zunwal G W. Electro-impulse deicing: structural dynamic studies, icing tunneltests and applications, AIAA-84-0022,1984.
    [87] Bernhart W D, Gien P H. A structural dynamics investigation related to EIDI applications,AIAA-86-0550,1986.
    [88] Wilson B K. A finite element solution to the dynamic response of a semi-cylindrical shellsubjected to electro-impulse de-icing forces,[Master dissertion]. Wichita State, U.S.: TheWichita State University,1985.
    [89]屈维德,唐恒龄.机械振动手册.北京:机械工业出版社,2000.
    [90]李清英,朱春玲,白天.脉冲除冰系统除冰激励的简化与影响因素研究.航空学报,2012,33(8):1384-1393.
    [91] Gerardi J, Hickman G. Distributed accretion sensor for smart aircraft structures, AIAA-89-0772,1989.
    [92] Kermani M, Farzaneh M. Flexural and low-cycle fatigue behavior of atmospheric ice. Journalof Materials Science,2009,44:2497-2506.
    [93] Smith T R, Schulson E M. The brittle compressive failure of fresh-water columnar ice underbiaxial loading. Acta Metallurgica et Materialia,1993,41:153–163.
    [94] Weber L J, Nixon W A. Fatigue of freshwater ice. Cold regions science and technology,1997,26:153-164.
    [95] Mellor M, Cole D. Cyclic loading and fatigue in ice. Cold Regions Science and Technology,1981,4:41-53.
    [96] Nixon W A, Smith R A. Preliminary results on the fatigue behaviour of polycrystallinefreshwater ice. Cold Regions Science and Technology,1984,9:267-269.
    [97] Xu X, Jeronimidis G, Atkins A G. Rate-dependent fracture toughness of pure polycrystalline ice.Journal of Materials Science,2004,39:225-233.
    [98] Chu M L, Scavuzzo R J. Adhesive shear strength of impact ice. AIAA Journal,1991,29(11):1921-1926.
    [99] Goodrich B F, Scavuzzo R, Chu M. Survey of mechanical properties of impact ice,AIAA-94-0712,1994.
    [100] Xian X, Chu M L, Scavuzzo R J, el al. An experimental evaluation of the tensile strength ofimpact ice. Journal of Aircraft,1989:1205-1208.
    [101] Reich A D. Ice property/structure variations across the glaze/rime transition, AIAA-92-0296,1992.
    [102] Reich A D. Interface influences upon ice adhesion to airfoil materials, AIAA-94-0714,1994.
    [103] Chu M L, Scavuzzo R J, KEllackey. Tensile properties of impact ices, AIAA-92-0883,1992.
    [104] Cole D M. Reversed direct-stress testing of ice: initial experimental results and analysis. ColdRegions Science and Technology,1990,1:303-321.
    [105] Gupta V. A progressive damage model for failure by shear faulting in polycrystalline ice underbiaxial compression. International Journal of Plasticity,2002,18:507-530.
    [106] Sundaram D S, Yang V. Combustion of aluminum, aluminum hydride, and ice mixtures,AIAA-2011-603,2011.
    [107] Kandagal S B, Venkatraman K. Piezo-actuated vibratory de-icing of a flat plate,AIAA-2005-2115,2005.
    [108] Scavuzzo R, Kellackey C, Chu M. Impact ice interface shear stresses caused by blade bendingand twisting, AIAA-93-0030,1993.
    [109] Scavuzzo R J, Chu M L, Kellackey C J. Impact ice stresses in rotating airfoils. Journal ofAircraft,1991,28(7):450-455.
    [110] Loughborough D, Hass E G. Rdudction of adhesion of ice to de-icer surfaces. Journal ofAeronautical Sciences,1946,13(3):126-134.
    [111] Raraty L E, Tabor D. The adhesion and strength properties of ice. Proceedings of the royalsociety of London,1958,245A:184-201.
    [112] Bascom W D, Cottintone R L, Singleterry C R. Ice adhesion to hydrophillie and hydrophobicsurfaces. Journal of Adhesion,1969,1:246-263.
    [113] Ford T F, Nichols O D. Adhesive shear strength of ice frozen to clean and lubricated surfaces.Naval Research Lab, Rept.5932,1962.
    [114] Arccher P, Gupta V. Measurement and control of ice adhesion to aluminum6061alloy.Journal of the Mechanics and Physics of Solids,1998,46(10):1745-1771.
    [115] Druezs J, Phan C L, Laforte J L, et al. The adhesion of glaze and rime on aluminum electricconductors. Transactions CSME,1979,5(4):215-220.
    [116] Kellackey C J, Chu M L, Scavuzzo R J. Statistical structural analysis of rotor impact iceshedding, AIAA-91-0663,1991.
    [117] Khatkhate A A, Skavuzzo R J, Chu M L. A finite element study of the EIDI system,AIAA-88-0026, Vol.26,1988.
    [118] Labeas G N, Diamantakos I D, Sunaric M M. Simulation of the electroimpulse de-icingprocess of aircraft wings. Journal of Aircraft,2006,43(6):1876-1885.
    [119] Wang G, Rothmayer A P. Properties of thin water films driven by air through surfaceroughness, AIAA-2007-901,2007.
    [120] Papadakis M. Simulation of ice shedding from a business jet aircraft, AIAA-2007-506,2007.
    [121] Papadakis M, Yeong H W, Suares I G, el al. Experimental and computational investigation ofice shedding from aircraft surfaces, AIAA-2006-1010,2006
    [122] Beaugendre H, Morency F, Gallizio F. Simulation of ice shedding around an airfoil,AIAA-2010-7984,2010.
    [123] Li Q, Zhu C, Bai T. Numerical simulation and experimental verification of the electro-impulsede-icing system, AIAA-2012-1992,2012.
    [124]龚曙光,谢桂兰,黄云清. ANSYS参数化编程与命令.北京:机械工业出版社,2009.
    [125]阚前华. ANSYS高级工程应用实例分析与二次开发.北京:电子工业出版社,2006年.
    [126] ANSYS Programmer's Manual. ANSYS, Inc.,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700