Pushover分析方法的改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何选择合适的工程结构抗震分析和设计方法一直是地震工程领域引人关注的重要问题。随着基于性态抗震设计思想的提出和发展,作为一种简化的实现性态设计分析的方法,Pushover方法引起了广大学者和工程人员的兴趣,并得到了广泛的研究。本文针对以往Pushover方法的研究中存在的缺点和不足,对Pushover方法进行了改进,主要包括对模态Pushover方法的改进、对钢筋混凝土框架结构Pushover位移反应的修正、Pushover荷载模式与结构性态指标相关性的探讨、基于模态Pushover分析方法确定结构滞回耗能计算四个方面的问题。本论文主要研究内容和成果包括以下几个方面:
     1.模态Pushover分析方法的一个重要假定是,结构在强震作用下进入非线性状态时,作用于结构的Pushover荷载模式保持不变;可是众所周知,结构发生屈服后,结构的动力特性会发生改变,结构遭受的地震荷载也会发生变化,因此各阶振型采用固定不变荷载模式的模态Pushover方法存在不足。本文提出将结构的第一振型荷载模式改进为两阶段加载模式,高阶振型荷载模式保持固定不变,对结构进行改进的模态Pushover分析。
     2.建议了一种计算钢筋混凝土框架结构动力弹塑性位移反应的简便方法。通过对5个不同高度的钢筋混凝土框架结构在四类场地上80条地震动作用下的动力和静力弹塑性位移反应进行统计分析,给出了结构由静力弹塑性方法得到的目标位移估计动力时程方法得到的目标位移的修正公式。结果表明:场地条件对钢筋混凝土框架结构静力弹塑性位移反应和动力时程位移反应之间的关系影响显著;对于II类和III类场地,可以直接采用结构的静力弹塑性方法计算结果替代动力时程计算结果;对于I类场地和IV类场地,须采用修正公式对结构的静力弹塑性结果进行修正。
     3.通过对4个不同高度的钢筋混凝土结构,分别进行了中等硬度场地上15条地震动作用下的非线性动力时程分析和不同荷载模式下的静力弹塑性分析,求解了结构的几个重要反应指标,包括能力曲线、顶端位移角及层间位移角、以及塑性铰分布,探讨了不同荷载模式对钢筋混凝土低层和高层结构反应指标的影响程度,建议了适用于钢筋混凝土低层和高层结构的Pushover荷载模式。
     4.提出基于模态Pushover分析的结构滞回耗能计算方法。首先采用模态Pushover分析计算结构各阶模态单自由度体系的特征参数,然后计算结构各阶模态单自由度体系对应的滞回耗能,并将其进行线性组合进而确定结构的滞回耗能,并与结构通过动力时程分析计算得到的滞回耗能进行比较,从而给出一种物理概念简单、计算操作方便的确定结构滞回耗能的方法。另外,为了便于计算结构各阶模态单自由度体系的滞回耗能,本文选取了国内外四类场地土上总计320条强震记录作为地震记录数据库,在统计分析的基础上,给出了对应于不同场地土和不同烈度区的单自由度体系等强度滞回耗能设计谱。
How to select the adequate procedure for seismic analysis and design of structures is an essential problem in earthquake engineering field. With the development of Performance-based Seismic Design, Pushover Analysis procedure has attracted many scientists’and engineers’attentions and been widely used for its conceptual simplicity and computational attractiveness. To overcome the limitation of Pushover Analysis procedure, some improvements on this procedure were performed in this paper, including the improvement on Modal Pushover Analysis, the revision of target displacement from the pushover analysis for reinforced concrete frame, the correlation of structural response parameters with different lateral load patterns, and the computation of the structural hysteretic energy based on Modal Pushover Analysis etc. The main contents of this dissertation are as follows.
     1. There is an important assumption that the pushover load patterns keep unchanged even after the structure yields in Modal Pushover Analysis procedure. Recognized the adoption of invariable lateral force distributions in the Modal Pushover Analysis procedure, an improved modal pushover analysis procedure is presented in this paper to estimate the seismic demands of structures, considering the redistribution of inertia forces. It is suggested that after establishing the idealized bilinear curve, a pushover analysis is once again conducted for the first mode in two phases: before and after the structure yields. For the two phases, the structural elastic natural mode and the floor displacement vector at the initial yielding point are used as the displacement shape vector, respectively.
     2. The approximately estimating method of displacement of reinforced concrete (RC) frame from static pushover analysis (POA) is developed with that from non-linear response history analysis (RHA). Based on the statistic analyses of the RHA and POA results for five RC frames with different height under 80 ground motions recorded at four site conditions, the revised formula of displacements from POA is presented from RHA. The results show that the site soil condition has an important effect on the relation between RHA and POA response results. And the POA results for I and IV site condition should be revised with the formula given in this study while the POA results for II and III site condition can be approximately considered as same to the RHA results.
     3. The RHA under 15 ground motions recorded on the medium site condition and POA with different lateral load patterns are performed for four RC structures with different height. Several important response quantities are obtained from the RHA and POA, including capacity curves, top displacement ratios and story drift ratios, and location of plastic hinges. The influence of different load patterns on the structural performance demands is discussed for the low- and the high-wise structures. And the rational load patterns for the low- and the high-wise structures are also suggested.
     4. A simple procedure is presented in this paper for estimating hysteretic energy demands of MDOF systems based on the modal pushover analysis (MPA). Firstly, the characteristic parameters of the modal SDOF systems of structures are computed, and the hysteretic energy is calculated for the modal SDOF systems, then the hysteretic energy demand of structures is obtained by combining these modal demands. In addition, with statistic results of nonlinear analysis of SDOF for 320 ground motions recorded at four site conditions, the equal-strength hysteretic energy design spectra are presented for different site condition and intensity regions.
引文
[1]白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法研究述评[J].建筑结构, 1997, 4: 54-58.
    [2]蔡元奇,朱以文,黄建中.评估结构抗震性能的能量方法[J].地震工程与工程振动, 2003, 23(4): 64-68.
    [3]程光煜,叶列平.弹性SDOF系统的地震输入能量谱[J].工程抗震与加固改造, 2006, 28(5): 1-8.
    [4]戴国莹.新建筑抗震设计规范简介[J].建筑结构, 2001, 31(10): 67-71.
    [5]邓胜江.建筑结构平面静力弹塑性反应分析方法的评估与改进[J],工学硕士学位论文,长沙:湖南大学, 2004.
    [6]丁丽娜,林皋,李博宁.结构高度对静力弹塑性分析结果的影响[J].世界地震工程, 2005, 21(6): 146-149.
    [7]公茂盛,谢礼立.绝对和相对输入能量谱对比及延性系数的影响研究[J].地震学报, 2005, 27(6): 666-676.
    [8]龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法[J].地震工程与工程振动, 2005, 25(3): 18-23.
    [9]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程, 2004, 20(4): 47-51.
    [10]何政,欧进萍.钢筋混凝土双向压弯构件非线性静力分析及参数影响[J].哈尔滨建筑大学学报, 2000, 33(4): 1-7.
    [11]侯钢领,何政,吴斌,欧进萍.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计[J].地震工程与工程振动, 2001, 21(3): 29-35.
    [12]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动, 2004, 24(3): 89-97.
    [13]胡冗冗,王亚勇.地震动瞬时输入能量与结构最大位移反应关系研究[J].建筑结构学报, 2000, 21(1): 71-75.
    [14]胡冗冗,王亚勇.基于瞬时输入能量的SDOF弹塑性结构最大位移反应分析[J].世界地震工程, 2002, 18(4): 155-158.
    [15]胡冗冗,王亚勇.地震动瞬时输入能量谱探讨[J].工程抗震, 2004, (1): 9-13.
    [16]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析[J].工程力学, 2003, 20(3): 31-37.
    [17]李刚,刘永.不同加载模式下不对称结构静力弹塑性分析[J].大连理工大学学报, 2004, 44(3): 350-355.
    [18]李刚,刘永.三维偏心结构的Pushover分析[J].计算力学学报, 2005, 22(5): 529-533.
    [19]李鸿晶,宗德玲.关于工程结构抗震设防标准的几个问题的讨论[J].防灾减灾工程学报. 2003, 23(2): 100-105.
    [20]刘清山,梁兴文,黄雅捷.对结构静力弹塑性分析方法的几点改进[J].建筑科学, 2005, 21(4): 28-33.
    [21]刘哲锋.地震能量反应分析方法及其在高层混合结构抗震评估中的应用.工学博士学位论文[D],湖南大学, 2006.
    [22]刘哲锋,沈蒲生,胡习兵.地震总输入能量与瞬时输入能量谱的研究[J].地震工程与工程振动, 2006, 26(6): 31-36.
    [23]卢文生,吕西林.模态静力非线性分析中模态选择的研究[J].地震工程与工程振动, 2004, 24(6): 32-38.
    [24]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究[J].地震工程与工程振动, 2005, 25(1): 59-66.
    [25]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动, 2004, 24(1): 39-48.
    [26]欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动, 1999, 19(1): 21-31.
    [27]潘龙,孙利民,范立础.基于推导分析的桥梁地震损伤评估模型与方法[J].同济大学学报, 2001, 29(1): 10-14.
    [28]钱稼茹,罗文斌.静力弹塑性分析—基于性能位移抗震设计的分析工具[J].建筑结构, 2000, 30(6): 23-26
    [29]屈成忠,谢礼立.性态点的数值解法[J].世界地震工程, 2003, 19(1): 21-24.
    [30]史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分配的计算分析[J].西安建筑科技大学学报, 2005, 37(2): 174-179.
    [31]沈蒲生,朱建华.基于Pushover方法的框筒结构在水平地震作用下的层间耗能研究[J].工程抗震与加固改造, 2006, 28(3): 1-6.
    [32]孙景江.钢筋混凝土结构地震反应分析和试验的若干研究[D],工学博士学位论文,哈尔滨:中国地震局工程力学研究所, 2001.
    [33]孙景江,姚大庆,王威.利用等位移原则估计高层结构的非弹性地震反应(一)[J].地震工程与工程振动, 2004, 24(4): 41-45.
    [34]孙景江,王威,姚大庆.利用等位移原则估计高层结构的非弹性地震反应(二)[J].地震工程与工程振动, 2004, 24(5): 39-45.
    [35]孙景江.建筑结构抗震研究若干问题介绍及讨论[C].邢台地震40周年学术研讨会文集, 2006, 3: 291-296.
    [36]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例[J].世界地震工程, 2004, 20(1): 45-53.
    [37]汪梦甫,周锡元.高层建筑结构抗震弹塑性简化方法的研究及其应用[J].计算力学学报, 19(4): 430-435.
    [38]汪梦甫,周锡元.关于结构静力弹塑性分析(Push-over)方法中的几个问题[J].结构工程师, 2002, (4): 17-22
    [39]汪梦甫,周锡元.高层建筑结构静力弹塑性分析方法的研究现状与改进策略[J].工程抗震, 2003, (4): 12-15.
    [40]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报, 2003, 36(11): 44-49.
    [41]汪梦甫,汪加武.考虑土-结构相互作用高层框架结构静力弹塑性分析方法的研究[J].工程抗震与加固改造, 2005, 27(1): 7-11.
    [42]汪梦甫,王锐[J].基于位移的结构静力弹塑性分析方法的研究.地震工程与工程振动, 2006, 26(5): 73-80.
    [43]王威. Pushover分析方法及等位移原理应用研究[D].工学硕士学位论文,哈尔滨:中国地震局工程力学研究所, 2002.
    [44]王威,孙景江.基于改进能力谱方法的位移反应估计[J].地震工程与工程振动, 2003, 23(6): 37-43.
    [45]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报, 2000, 21(1): 21-28.
    [46]魏巍,冯启民.几种push-over分析方法对比研究[J].地震工程与工程振动, 2002, 22(4): 66-73.
    [47]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报, 1996, 18(2):20-32.
    [48]肖明葵,刘纲,白绍良.抗震结构的滞回耗能谱[J].世界地震工程, 2002, 18(3): 110-115.
    [49]肖明葵,刘纲,白绍良.滞回恢复力模型中求折点的一种方法[J].重庆大学学报, 2002, 25(1): 13-16.
    [50]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].工学博士学位论文,重庆大学, 2004.
    [51]肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程, 2006, 22(3): 89-94.
    [52]肖明葵,马占杰.结构抗震性能评估的改进模态能力谱法[J].重庆大学学报, 2007, 30(2): 115-119.
    [53]解宁,李承铭.浅谈结构延性设计与静力弹塑性分析[J].山西建筑, 2003, 29(1): 28-29.
    [54]谢礼立,马玉宏.基于抗震性态的设防标准研究[J].地震学报, 2002, 24(2): 200-209.
    [55]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究[J].世界地震工程, 2005, 21(2): 142-147.
    [56]杨溥,李英民,王亚勇.结构静力弹塑性分析(push-over)方法的改进[J].建筑结构学报, 2000, 21(1): 44-51
    [57]杨溥,李东,李英民,赖明.抗震结构静力弹塑性分析(Push-over)方法的研究进展[J].重庆建筑大学学报, 2000, 22: 87-92
    [58]杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析(Push-over)方法的改进[J].建筑结构学报, 2000, 21(1): 44-51.
    [59]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报, 2000, 21(1): 37-43.
    [60]叶列平,伍文杰.基于能量准则的SDOF阻尼减震结构最大地震位移[J].清华大学学报, 2001, 41(12): 72-74.
    [61]叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法[J].工程抗震, 1998, (4): 10-14.
    [62]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进[J].合肥工业大学学报, 2000, 23(2): 149-153
    [63]叶献国,种迅,李康宁,周锡元. Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报, 2001, 24(6): 1019-1024.
    [64]易伟建,蒋蝶.一种基于滞回耗能的改进pushover分析方法[J].自然灾害学报, 2007, 16(3): 104-108.
    [65]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学, 2003, 20(4): 46-49
    [66]翟长海.最不利设计地震动及强度折减系数研究[D].工学博士学位论文,哈尔滨工业大学, 2004.
    [67]翟长海,谢礼立,张茂花[J].恢复力模型对等延性地震抗力谱的影响分析.哈尔滨工业大学学报, 2006, 38(8): 1228-1230.
    [68]翟长海,谢礼立,吴知丰.基于台湾集集地震的结构滞回耗能影响分析[J].哈尔滨工业大学学报, 2006, 38(1): 59-62.
    [69]翟长海,谢礼立.钢筋混凝土框架结构超强研究[J].建筑结构学报, 2007, 28(1): 101-106.
    [70]张令心,孙景江,张宪丽,江近仁.钢筋混凝土框架-剪力墙结构拟三维非线性地震反应分析[J].世界地震工程, 2001, 17(2): 22-28.
    [71]张敏政.地震工程的研究和应用--回顾与展望[J].国际地震动态. 2004, 9: 4-13.
    [72]宗德玲.基于Push-over桥梁抗震能力评估方法研究[D].工学硕士学位论文,南京工业大学,南京, 2004.
    [73]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001) [S],中国建筑工业出版社, 2001.
    [74]钟华,袁贤讯.静力弹塑性分析(Push-over)方法的应用与评价[J].建筑结构, 2002, 3: 48-49
    [75]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用[J].地震工程与工程振动, 2004, 24(1): 30-38
    [76]朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解[J].工程抗震与加固改造, 2005, 27(5): 1-4.
    [77]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报, 2002, 35(5): 47-51.
    [78] Akiyama H. Earthquake Resistant Limit State Design for Buildings [M]. University of Tokyo Press, Japan, 1985.
    [79] Anthoine A. A Simple Displacement Control Technique for Pushover Analyses [J]. Earthquake Engineering and Structural Dynamics, 2006, 35: 851-866.
    [80] Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Buildings [S]. ATC-40, California, 1996.
    [81] Arya AS. Inelastic and Reserve Energy Analysis of Multistory Buildings [C]. Proceedings of the 5th World Conference on Earthquake Engineering, Italy, 1974.
    [82] Aydinoglu MN. An Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-mode Seismic Performance Evaluation [J]. Bulletin of Earthquake Engineering, 2003, 1: 3-36.
    [83] Baik SW, Lee DG, and Krawinkler H. A Simplified Model for Seismic Response Prediction of Steel Frame Structures [C]. Proceedings of the 9th World Conference on Earthquake Engineering, Japan, 1988, 5: 375-379.
    [84] Bazzurro P, and Cornell CA. Seismic Hazard Analysis for Non-linear Structures, I: Methodology [J]. Journal of Structural Engineering, 1994, 120(11): 3320-3344.
    [85] Bazzurro P, and Cornell CA. Seismic Hazard Analysis for Non-linear Structures, II: Applications [J]. Journal of Structural Engineering, 1994, 120(11): 3345-3365.
    [86] Berg GV, and Thomaides SS. Energy Consumption by Structures in Strong Motion Earthquakes [C], Proceedings of the 2nd World Conference on Earthquake Engineering, Japan, 1960.
    [87] Bertero VV, Anderson JC, Krawinkler H, and Miranda E. Design Guidelines for Ductility and Drift Limits [R]. Berkeley, CA: Report No. PEER 1991/15, Pacific Earthquake Engineering Research Center, University of California, 1991.
    [88] Blume JA. A Reserve Energy Technique for the Earthquake Design and Rating of Structures in the Inelastic Range [C]. Proceedings of the 2nd World Conference on Earthquake Engineering, Japan, 1960.
    [89] Borzi B, Calvi GM, and Elnashai AS. Inelastic Spectra for Displacement-based Seismic Design [J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 47-61.
    [90] Bracci JM, Kunnath SK, and Reinhorn AM. Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structures [J]. Structural Engineering, 1997, 123(1): 3-10.
    [91] Browing J, Li YR, Lynn AC, and Moehle JP. Performance Assessment for a Reinforced Concrete Frame Building [J]. Earthquake Spectra, 2000, 16(3): 541-555.
    [92] Building Seismic Safety Council. NEHRP Guidelines for the Seismic Rehabilitation of Buildings [S]. FEMA-273, Federal Emergency Management Agency, 1997.
    [93] Chapman MC. On the Use of Elastic Input Energy for Seismic Hazard Analysis [J]. Earthquake Spectra, 1999, 15(4): 607-635.
    [94] Chintanapakdee C, and Chopra AK. Evaluation of Modal Pushover Analysis Using Vertically“Regular”and Irregular Generic Frames [R]. Berkeley, CA: Report No. PEER 2003/03, Pacific Earthquake Engineering Research Center, University of California, 2003.
    [95] Chintanapakdee C, and Chopra AK. Evaluation of Modal Pushover Analysis Using Generic Frames [J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 417-442.
    [96] Chopra AK, and Goel RK. Capacity-Demand-Diagram Methods Based on Inelastic Design Spectrum [J]. Earthquake Spectra, 1999, 15(4): 636-656.
    [97] Chopra AK, and Goel RK. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems [R]. Berkeley, CA: Report No. PEER 1999/02, Pacific Earthquake Engineering Research Center, University of California, 1999.
    [98] Chopra AK, Goel RK and Chintanapakdee C. Statistics of SDF-system Estimate of Roof Displacement for Pushover Analysis of Buildings [R]. Berkeley, CA: Report No. PEER 2001/16, Pacific Earthquake Engineering Research Center, University of California, 2001.
    [99] Chopra AK, and Goel RK. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Buildings: Theory and Preliminary Evaluation [R]. Berkeley, CA: Report No. PEER 2001/03, Pacific Earthquake EngineeringResearch Center, University of California, 2001.
    [100] Chopra AK, and Goel RK. A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 561-582.
    [101] Chopra AK, and Goel RK. Statistics of Single-Degree-of-Freedom Estimate of Displacement for Pushover Analysis of Buildings [J]. Journal of Structural Engineering, ASCE, 2003, 459-468.
    [102] Chopra AK, Goel RK, and Chintanapakdee C. Evaluation of a Modified MPA Procedure Assuming Higher Modes as Elastic to Estimate Seismic Demands [J]. Earthquake Spectra, 2004, 20(3): 757-778.
    [103] Chopra AK, and Chintanapakdee C. Inelastic Deformation Ratios for Design and Evaluations of Structures: Single-Degree-of-Freedom Bilinear Systems [J]. Journal of Structural Engineering, ASCE, 2004, 130(9): 1309-1319.
    [104] Chopra AK, and Goel RK. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-plan Buildings [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(8): 903-928.
    [105] Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering (Second Edition) [M].北京,清华大学出版社,影印本, 2005.
    [106] Chopra AK. Estimating Seismic Demands for Performance-based Engineering of Buildings [C]. EE-21C, Plenary Session, Keynote, 2005.
    [107] Collins KR, Wen YK, and Foutch DA. Dual-level Seismic Design: a Reliability-based Methodology [J]. Earthquake Engineering and Structural Dynamics, 1996, 25(12): 1433-1467.
    [108] Decanini LD, and Mollaioli F. Formulation of Elastic Earthquake Input Energy Spectra [J]. Earthquake Engineering and Structural Dynamics, 1998, 27: 1503-1522.
    [109] Decanini LD, and Mollaioli F. An Energy-based Methodology for the Assessment of Seismic Demand [J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 113-137.
    [110] Eberhard M, and Sozen MA. Behavior-based Method to Determine Design Shear in Earthquake-resistant Walls [J]. Journal of Structural Engineering, ASCE, 1993, 119(2): 619-640.
    [111] Elghadamsi FE, and Mohraz B. Inelastic Earthquake Spectra [J]. Earthquake Engineering and Structural Dynamics, 1987, 15: 91-104.
    [112] Elnashi AS. Advanced Inelastic Static (Pushover) Analysis for Earthquake Applications [J]. Journal of Structural Engineering, 2001, 12(1): 51-69.
    [113] Enrique HM, Kwon OS, and Aschheim MA. An Energy-based Formulation forFirst- and Multiple- Mode Nonlinear Static (Pushover) Analyses [J]. Journal of Earthquake Engineering, 2004, 8(1): 69-88.
    [114] Fajfar P, and Fischinger M. Non-linear Seismic Analysis of RC Buildings: Implications of a Case Study [J]. European Earthquake Engineering, 1987, 1: 31-43.
    [115] Fajfar P, and Fischinger M. N2-A Method for Non-linear Seismic Analysis of Regular Structures [C]. Proceedings of the 9th World Conference on Earthquake Engineering, Japan, 1988, 5: 111-116.
    [116] Fajfar P, Vidic T, and Fischinger M. Seismic Demand in Medium- and Long- Period Structures [J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 1133-1144.
    [117] Fajar P, and Krawinkler H. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings [J]. Elsevier Applied Science, New York, 1992.
    [118] Fajar P, and Vidic P. Consistent Inelastic Design Spectra: Hysteretic and Input Energy [J]. Earthquake Engineering and Structural Dynamics, 1994, 23: 523-537.
    [119] Fajfar P, and Gaspersic P. The N2 Method for the Seismic Damage Analysis of RC Buildings [J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 31-46.
    [120] Fajfar P. Capacity Spectrum Method based on Inelastic Demand Spectra [J]. Earthquake Engineering and Structural Dynamics, 1999, 28: 979-993.
    [121] Fajfar P. A Nonlinear Analysis Method for Performance Based Seismic Design [J]. Earthquake Spectra, 2000, 16(3): 573-592.
    [122] Freeman SA, Nicoletti JP, and Tyrrell JV. Evaluation of Existing Buildings for Seismic Risk [C]. A Case Study of Puget Sound Naval Shipyard, Bremerton, Washington. Proceedings of the 1st U.S. National Conference on Earthquake Engineering, 1975.
    [123] Freeman SA. The Capacity Spectrum Method as a Tool for Seismic Design [C]. Proceedings of the 11th European Conference on Earthquake Engineering, Paris, 1998.
    [124] Gaspersic P, Fajfar P, and Fischinger M. An Approximate Method for Seismic Damage Analysis of Buildings [C]. Proceedings of the 10th World Conference on Earthquake Engineering, Balkema, Rotterdam, 1992, 375-379.
    [125] Ghosh S, and Collins KR. Merging Energy-based design criteria and Reliability-based Methods: Exploring a New Concept [J]. Earthquake Engineering and Structural Dynamics, 2006, 35: 1677-1698.
    [126] Gilmore AT, and Jirsa JO. Energy Demands for Seismic Design against Low-cycle Fatigue [J]. Earthquake Engineering and Structural Dynamics, 2007, 36: 383-404.
    [127] Gluck J. An Energy Dissipation Factor as Structural Design Criterion for Strong Earthquake Motion [C]. Proceedings of the 5th World Conference on Earthquake Engineering, Italy, 1974.
    [128] Goel RK, and Chopra AK. Periods Formulas for Moment-resisting Frame Buildings [J]. Journal of Structural Engineering, 1997, 123(11): 1454-1461.
    [129] Goel RK, Lynn AC, and May VV. Evaluation Current Procedures and Modeling for Seismic Performance of Reinforced Concrete Buildings [C]. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand, 2000, Paper No. 2060.
    [130] Goel RK, and Chopra AK. Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings [J]. Earthquake Spectra, 2004, 20(1): 225-254.
    [131] Goel RK, and Chopra AK. Extension of Modal Pushover Analysis to Compute Member Forces [J]. Earthquake Spectra, 2005, 21(1): 125-139.
    [132] Goel RK. Evaluation of Modal and FEMA Pushover Procedures Using Strong-motion Records of Buildings [J]. Earthquake Spectra, 2005, 21(1): 653-683.
    [133] Goel SC, and Berg GV. Inelastic Earthquake Response of Tall Steel Frames [J], Journal of the Structural Division, ASCE, 1968.
    [134] Gupta A, and Krawinkler H. Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures [R]. Report No.132, John A. Blume Earthquake Engineering Center, CA, 1999.
    [135] Gupta A, and Krawinkler H. Estimation of Seismic Drift Demands for Frame Structures [J]. Earthquake Engineering and Structural Dynamics, 2000, 29: 1287-1305.
    [136] Gupta B. Enhanced Pushover Procedure and Inelastic Demand Estimation for Performance-based Seismic Evaluation of Buildings [D]. Ph.D. Dissertation, University of Central Florida. 1999.
    [137] Gupta B, and Kunnath SK. Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures [J]. Earthquake Spectra, 2000, 16(2): 367-391.
    [138] Hachem. Bispec User Manual [R]. Pacific Earthquake Engineering Research Center, CA,“http://www.ce.berkeley.edu/~hachem/bispec/index.html.”
    [139] Hadjian AH. A Re-evaluation of Equivalent Linear Models for Simple Yielding Systems [J]. Earthquake Engineering and Structural Dynamics, 1982,10: 759-767.
    [140] Han SW, and Chopra AK. Approximate Incremental Dynamic Analysis Using the Modal Pushover Analysis Procedure [J]. Earthquake Engineering and Structural Dynamics, 2006, 35: 1853-1873.
    [141] Housner GW. Limit Design of Structures to Resist Earthquakes [C]. Proceedings of 1st World Conference on Earthquake Engineering, Berkeley, California, 1956.
    [142] Housner GW. The Plastic Failure of Frames during Earthquakes [C]. Proceedings of the 2nd World Conference on Earthquake Engineering, Japan, 1960.
    [143] Ibarra LF, Medina RA, and Krawinkler H. Hysteretic Models that incorporate strength and stiffness deterioration [J]. Earthquake Engineering and Structural Dynamics, 2005, 34: 1489-1511.
    [144] Iwan WD, and Gates NC. Estimating Earthquake Response of Simple Hysteretic Structures [J]. Journal of Structural Engineering, ASCE, 1979, 105: 391-405.
    [145] Iwan WD. Estimating Inelastic Response Spectra from Elastic Spectra [J]. Earthquake Engineering and Structural Dynamics, 1980, 8: 375-388.
    [146] Jain AK, and Pal S. Probabilistic Amplification Factors for Response Spectra [J]. Journal of Structural Engineering, ASCE, 1991, 117: 2464-2476.
    [147] Jennings P. Equivalent Damping for Yielding Structures [J]. Journal of Engineering Mechanics Division, ASCE, 1968, 94: 103-116.
    [148] Kato B, and Akiyama H. Earthquake Resistant Design for Steel Buildings [C]. Proceedings of the 6th World Conference on Earthquake Engineering, India, 1977.
    [149] Kato B, and Akiyama H. Seismic Design of Steel Buildings [J]. Journal of the Structural Division , ASCE, 1982.
    [150] Kilar V, and Fajfar P. Simple Pushover Analysis of Asymmetric Buildings [J]. Earthquake Engineering and Structural Dynamics, 1997, 26: 233-250.
    [151] Kokusho T, Motoyama R, and Motoyama H. Wave Energy in Surface Layers for Energy-based damage evaluation [J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 354-366.
    [152] Krawinkler H, and Rahnama M. Effects of Soft Soils on Design Spectra [C]. Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, 1992, 10: 5841-5846.
    [153] Krawinkler H, and Seneviratna GP. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation [J]. Engineering Structures, 1997, 20:452-464.
    [154] Kunnath SK, and Kalkan Erol. Evaluation of Seismic Deformation Demands Using Nonlinear Procedures in Multistory Steel and Concrete Moment Frames [J]. ISET Journal of Earthquake Technology, Paper No.445, 2004, 41(1):159-181.
    [155] Lawson RS, Vance V, and Krawinkler H. Nonlinear Static Pushover Analysis– Why, When, and How [C]? Proceedings of the 5th U.S. National Conference on Earthquake Engineering, Chicago, 1994, 1: 283-292.
    [156] Leger P, and Dusault S. Seismic Energy Dissipation in MDOF Structures [J], Journal of Structural Engineering, ASCE, 1992, 118(5).
    [157] Mackie K, and Stojadinovic B. Seismic Demands for Performance-based Design of Bridges [R]. Berkeley, CA: Report No. PEER 2003/16, Pacific Earthquake Engineering Research Center, University of California, 2003.
    [158] Mahin SA, and Bertero VV, An Evaluation of Inelastic Seismic Design Spectra [J]. Journal of the Structural Division , ASCE, 1981.
    [159] Mahin SA, and Lin J, Construction of Inelastic Response Spectra for Single Degree of Freedom Systems [R]. Report No. UCB/EERC-83/17, Earthquake Engineering Research Center, University of California, Berkeley, 1983.
    [160] Manfredi G. Evaluation of Seismic Energy Demand [J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 485-499.
    [161] Mckevitt WE, Anderson DL, Nathan ND, and Cherry S. Towards a Simple Energy Method for Seismic Design of Structures [C]. Proceedings of the 2nd U.S. National Conference on Earthquake Engineering, 1979.
    [162] Mezzi M, Comodini F, Lucarelli M, and Parducci A. Pesudo-energy Response Spectra for the Evaluation of the Seismic Response from Pushover Analysis [C]. Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, Switzerland, 2006.
    [163] Miranda E. Nonlinear Response Spectra for Earthquake Resistant Design [C]. Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, 1992, 10: 5835-5840.
    [164] Miranda E. Evaluation of Site-dependent Inelastic Design Spectra [J]. Journal of Structural Engineering, ASCE, 1993, 119: 1319-1338.
    [165] Miranda E, and Bertero VV. Evaluation of Strength Reduction Factors for Earthquake-resistant Design [J]. Earthquake Spectra, 1994, 10: 357-379.
    [166] Miranda E. Estimation of Inelastic Deformation Demands of SDOF Systems [J]. Journal of Structural Engineering, ASCE, 2001, 127(9):1005-1012.
    [167] Miranda E, and Garcia JR. Evaluation of Approximate Methods to EstimateMaximum Inelastic Displacement Demands [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 539-560.
    [168] Moehle JP. Displacement-based Design of RC Structures Subjected to Earthquakes [J]. Earthquake Spectra, 1992, 8(3): 403-428.
    [169] Mulas MG, Coronelli Dario, and Martinelli L. Multi-scale Modelling Approach for the Pushover Analysis of Existing RC Shear Walls- Part I: Model formulation [J]. Earthquake Engineering and Structural Dynamics, 2007, 36: 1169-1187.
    [170] Mulas MG, Coronelli Dario, and Martinelli L. Multi-scale Modelling Approach for the Pushover Analysis of Existing RC Shear Walls - Part II: Experimental verification [J]. Earthquake Engineering and Structural Dynamics, 2007, 36: 1189-1207.
    [171] Mwafy AM, and Elnashai AS. Static Pushover versus Dynamic Collapse Analysis of RC Buildings [J]. Engineering Structures, 2001, 23: 407-424.
    [172] Newmark NM, and Hall WJ. Earthquake Spectra and Design [R]. Berkeley, CA, EERI, 1982.
    [173] Ordaz M, Huerta M, and Reinoso E. Exact computation of input-energy spectra from Fourier amplitude spectra [J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 597-605.
    [174] Papanikolaou VK, and Elnashai AS. Evaluation of Conventional and Adaptive Pushover Analysis I: Methodology [J]. Journal of Earthquake Engineering, 2005, 9(6): 923-941.
    [175] Papanikolaou VK, and Elnashai AS. Evaluation of Conventional and Adaptive Pushover Analysis II: Comparative Results [J]. Journal of Earthquake Engineering, 2006, 10(1): 127-151.
    [176] Parducci A, Comodini F, Lucarelli M, and Mezzi M. Energy-based Nonlinear Static Analysis [C]. Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, Switzerland, 2006.
    [177] Paret TF, Sasaki KK, Eilbeck DH, and Freeman SA. Approximate Inelastic Procedures to Identify Failure Mechanisms from Higher Mode Effects [C]. Proceedings of the 11t h World Conference on Earthquake Engineering, Mexico, Paper No.966, 1996.
    [178] Park YJ, and Ang AH. Mechanistic Seismic Damage for Reinforced Concrete [J]. Journal of Structure Engineering, ASCE, 1985, 111(4): 77-90.
    [179] Peng MH, Elghadamsi FE, and Mohraz B. A Simplified Procedure for Constructing Probabilistic Response Spectra [J]. Earthquake Spectra, 1989, 5: 393-408.
    [180] Porter KA. An Overview of PEER’s Performance-based Earthquake Engineering Methodology [C]. Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, 2003.
    [181] Priestley MJ, and Calvi GM. Towards a Capacity-design Assessment Procedure for Reinforced Concrete Frames [J]. Earthquake Spectra, 1991, 7: 413-437.
    [182] Reinhorn, AM, Kunnath, SK, and Rodolfo VM. IDARC-2D Version 4.0: A Computer Program for the Inelastic Damage Analysis of Buildings [R]. Buffalo, NY: Technical Report NCEER-96-0010, National Center for Earthquake Engineering Research, 1996.
    [183] Riddell R, Hidalgo P, and Cruz E. Response Modification Factors for Earthquake Resistant Design of Short Period Buildings [J]. Earthquake Spectra, 1989, 5: 571-590.
    [184] Riddell R, and Garcia JE. Hysteretic Energy Spectrum and Damage Control [J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 1791-1816.
    [185] Rosenblueth E. Seismic Design Requirements in a Mexican 1976 Code [J]. Earthquake Engineering and Structural Dynamics, 1979, 7: 49-61.
    [186] Sasaki KK, Freeman SA, and Paret TF. Multi-mode Pushover Procedure (MMP)-a Method to Identify the Effects of Higher Modes in a Pushover Analysis [R]. Proceedings of the 6th U.S. National Conference on Earthquake Engineering, 1998.
    [187] Soni RY, Krishna J, and Chandra B, Energy Approach to Earthquake Resistant Design [C], Proceedings of the 6th World Conference on Earthquake Engineering, India, 1977.
    [188] Sun Jingjiang, Tetsuro Ono, Zhao Yangang, and Wang Wei. Lateral Load Pattern in Pushover Analysis [J]. Earthquake Engineering and Engineering Vibration, 2003, 2(1): 99-107.
    [189] Tarquis F, and Roesset JM. Inelastic Response Spectra for Narrow Band Earthquake [C]. Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, 1992, 2: 645-650.
    [190] Tembulkar JM, and Nau JM, Inelastic Modeling and Seismic Energy Dissipation. Journal of Structural Engineering, ASCE, 1987, 104(6).
    [191] Tysh SJ, Ming WL, and Ying CK. An Upper-bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-rise Buildings [J]. Engineering Structures, 2004, 26: 117-128.
    [192] Uang CM, and Bertero VV. Use of Energy as a Design Criterion inEarthquake-Resistant Design [R]. Report No. UCB/EERC-88/13, Earthquake Engineering Research Center, University of California, Berkeley, 1988.
    [193] Uang CM, and Bertero VV. Evaluation of Seismic Energy in Structures [J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 77-90.
    [194] Vamvatsikos D, and Cornell DV. Incremental Dynamic Analysis [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 491-514.
    [195] Veletsos AS, and Newmark NM. Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions [C]. Proceedings of the 2nd World Conference on Earthquake Engineering, Japan, 1960, 895-912.
    [196] Veletsos AS, Newmark NM, and Chelapati CV. Deformation Spectra for Elastic and Elasto-Plastic systems to Ground Shock and Earthquake Motions [C]. Proceedings of the 3rd World Conference on Earthquake Engineering, New Zealand, 1965.
    [197] Vidic T, Fajfar P, and Frschinger M. Consistent Inelastic Design Spectra: Strength and Displacement [J]. Earthquake Engineering and Structural Dynamics, 1994, 23: 507-521.
    [198] Ye L P, and Otani S. Maximum Seismic Displacement of Inelastic Systems Based on Energy Concept [J]. Earthquake Engineering and Structural Dynamics, 1999, (6): 1483-1499.
    [199] Zahrah TF, and Hall WJ. Seismic Energy Absorption in Simple Structures [R]. Structural Research Series, University of Illinois, Urbana, 1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700