城市桥梁地震碰撞分析及抗震性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市桥梁是城市交通网络的枢纽工程,建设成本高,一旦遭到地震破坏,不仅会导致严重的交通瘫痪和巨大的经济损失,而且其震后修复极其困难,因此,城市桥梁的抗震防灾问题日益受到学术界和工程界的高度重视。近代几次大地震表明,地震时桥梁大多因发生碰撞而引发破坏、落梁甚至坍塌等严重灾害。因此,本文系统开展城市桥梁地震碰撞分析及抗震性能评估,以期建立城市桥梁防碰撞设计与抗震性能评估方法,提高城市桥梁的抗震安全性,具有重要的理论意义和工程价值。主要创新工作与成果有:
     (1)地震作用下城市桥梁防邻梁碰撞临界安全距离的影响因素及计算方法研究。针对城市高架桥,采用基于随机振动理论和虚拟激励法,详细分析了分别考虑和同时考虑地震动空间差动效应和土-基础相互作用效应对防邻梁碰撞临界安全距离的影响;针对城市立交曲线桥,采用数值模拟试验,详细分析了不同地震动输入方向、曲率半径和邻梁周期比等对防邻梁碰撞临界安全距离的影响;从而建立了城市桥梁防邻梁碰撞临界安全距离的计算方法。
     (2)地震作用下城市桥梁防墩梁碰撞临界安全距离的影响因素及计算方法研究。针对城市多层立交桥,将墩梁碰撞形式分为三类,第一类是上、下层均为直桥,第二类是下层为直桥、上层为曲线桥,第三类是上、下层均为曲线桥。通过数值模拟,详细分析了地震动输入方向、上下层结构斜交角度、曲线桥曲率半径以及上下层桥梁周期比等对防墩梁碰撞临界安全距离的影响,并通过回归分析给出了影响规律的数学表达式,从而建立了城市桥梁防墩梁碰撞临界安全距离的计算方法。
     (3)强震作用下城市桥梁邻梁和墩梁碰撞响应分析及控制研究。以天津市快速路工程中的某大型立交桥为研究对象,详细分析了城市立交曲线梁桥在强震作用下的邻梁和墩梁碰撞响应及其特征以及地震动输入方向等对邻梁和墩梁碰撞响应的影响,同时分析了邻梁和墩梁碰撞对桥梁结构地震响应的影响以及在邻梁和墩梁碰撞部位安装粘滞阻尼器对碰撞响应的控制效果,从而建立了城市桥梁防地震碰撞设计方法。
     (4)城市桥梁抗震性能评估方法研究。针对城市桥梁,详细分析了混凝土强度和配箍方式等对桥墩截面抗震性能的影响,提出了桥墩截面抗震性能评估计算公式;考虑桥墩与基础和上部结构的不同嵌固条件,详细分析了桥墩构件在不同烈度地震作用下的损伤等级,提出了桥墩构件抗震性能评估流程;应用增量动力分析方法,分析了桥梁结构整体抗震性能,提出了侧移比性能指标,分析了不同烈度地震作用下桥梁结构的失效概率,从而建立城市桥梁从桥墩截面、桥墩构件和桥梁结构三个层面上的抗震性能评估新方法。
Urban bridges, which are of high construction cost, are the key projects of modern traffic network. If one urban bridge is damaged during earthquake, transportation paralysis will occur immediately, causing huge economic loss. What’s more, the damaged bridges will be also very difficult to repair or be reconstructed. Therefore, research topics such as the earthquake-resistant design and damage prevention of urban bridges have been drew great attention all over the world. It has been observed from several modern major earthquakes that most serious damages of the urban bridges in earthquakes were caused by pounding destruction and falling beams. Therefore, in this thesis, a systematic study on seismic pounding analysis and performance evalution of urban bridges are carried out. Practical methods of seismic pounding prevention design and seismic performance evalution of urban bridges are proposed for improving the seismic safety of urban bridges. The primary research work and achievements in this dissertation are included as follows.
     (1) The formulae to calculate the critical safe distance between adjacent beams to avoid pounding during an earthquake are established. Based on the random vibration theory and pseudo excitation method, the influences of ground motion spatial effect and the soil-foundation interaction on the critical safe distance between adjacent beams to avoid pounding on the viaduct in the urban expressway are analyzed, and the formula to calculate the critical safe distance is deduced. For the interchange curved bridge, a large number of numerical simulations are carried out to study the influences of the different input direction of the ground motion, the curvature radius and the period ratio of the adjacent beam on the critical safe distance between adjacent beams to avoid pounding, based on which a simplified formula to calculate the critical safe distance between adjacent beams are put forward.
     (2) The formulae to calculate the critical safe distance between the pier and the beam to avoid pounding for urban bridges during an earthquake are proposed. The pounding between the pier and the beam for urban bridges can be classified into three types. The first type is the pounding between the upper straight layer and the lower straight layer; the second type is the pounding between the upper straight bridge and the lower curved bridge; the third type is the pounding between two curved bridges. Through a large number of numerical simulations, the influences of the different input direction of the ground motion, the curvature radius and the period ratio of the beam on the critical safe distance between piers and beams are analyzed. The formulae to calculate the critical safe distance between the pier and the beam to avoid pounding are derived through the regression analysis.
     (3) The pounding response of the adjacent beams or the pier and beam on urban bridges under high-intensity earthquake are investigated. Based on an example large urban bridge, which is part of Tianjin expressway, the pounding response feature of the curved girder bridges under is high-intensity earthquake studied, as well as the influencing regularities of the different input direction of the ground motion. The influence of the pounding response on the displacement of supports and the column’s bending moment and shear is also studied. Furthermore, the control effect on the pounding response of urban bridges through installing viscous damper at the possible pounding part is studied. Accordingly, some applicable engineering measures for avoiding pounding between adjacent beams or the pier and beam are proposed.
     (4) A procedure for seismic performance evaluation of urban bridges is proposed in three levels, i.e. pier cross section level, pier level and bridge level. In the pier cross section level, the influences of stirrup configuration and concrete strength on the section seismic performance are studied. And the evaluation formula of section seismic performance is deduced; in the pier level, the damage grade of bridge pier for horizontal seismic is analyzed and the evaluation process for pier’s seismic performance was proposed through considering the different link ways between the bridge pier and the foundation or the upper structures. In the bridge level, a procedure for seismic performance evaluation of urban bridges was proposed based on the incremental dynamic analysis. The index of the ratio of lateral displacements is derived. The failure probability of bridge structure for different grade of horizontal seismic is also analyzed.
引文
[1]康仲远.中外大城市灾例对比研究系列报告[J].灾害学, 1996(3).
    [2]刘季.美国加州桥梁震害及其抗震加固[J].工程抗震, 1997(2).
    [3]王军文,李建中,范立础.连续梁桥纵向地震碰撞反应参数研究[J].中国公路学报, 2005, 18(4): 42-47.
    [4] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridge[M]. USA, New York: John Wiley and Sons INC., 1996.
    [5]岳福青.地震作用下隔震高架桥梁的碰撞反应及控制[D].天津:天津大学, 2007.
    [6] DesRoches R, Muthukumar S. Effect of pounding and restrainers on seismic response of multiple-frame bridges[J]. Journal of Structural Engineering, 2002, 128(7): 860-869.
    [7] Pantelides C P, Ma X. Linear and nonlinear pounding of structural systems[J]. Computers & Structures. 1998, 66(1): 79-92.
    [8] Wang Jiachen, Carr A, Cooke N, Moss P. Effects of spatial variation of seismic inputs on bridge longitudinal response[C]. Proc. Of 13th World conference on earthquake engineering, Vancouver, B.C. Canada, 2004.
    [10] Chouw N, Hao H. Reduction of pounding responses of bridges girders with soil-structure interaction effects to spatial near-source ground motions[C]. Proc. Of 13th World conference on earthquake engineering, Vancouver, B.C. Canada, 2004.
    [11] Giovanna Z, Hao H, Claudio Modena. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 1325-1345.
    [12] Jankowski R, Wilde K, Fuzino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering and Structural Dynamics. 1998, 27(5): 487-502.
    [13] Kim S H, Lee S W. Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations[J]. Journal of Structural Engineering and Mechanics. 2000, (10): 621-633.
    [14] Saadeghvaziri M A, Yazdani-Motlagh A R, Rashidi S. Effects of soil–structure interaction on longitudinal seismic response of MSSS bridges[J]. J. of Soil Dynamics and Earthquake Engineering. 2000, (20): 231-242.
    [15] GHOBARAH A. Seismic Evaluation of Existing RC Structures[J]. Progress in
    [16] Structural Engineering and Materials, 2000, 2(1).
    [17] FEMA. FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings[R].Washington, D.C., 1997.
    [18] FEMA. FEMA 274, NEHRP commentary on the guidelines for the seismic rehabilitation of buildings[R].Washington D C, 1997.
    [19] Williams M S, Sexsmith R G. Seismic Damage Indices for Concrete Structures: A state-of-the-Art Review[J]. Earthquake Spectra, 1995, 11(2): 319-349.
    [20]刘伯权,白绍良.钢筋混凝土柱在等幅对称位移循环加载的低周疲劳性能[J].重庆建筑学报, 1996, 2.
    [21] Banon H., Biggs J M., Irvine H.M. Seismic damage in reinforced concrete frames[J]. Journal of Structural Engineering, ASCE, 1981, 107(9): 1713-1729.
    [22]杜修力,刘永生.强震持时对钢筋混凝土结构地震累积破坏的影响[J].地震工程与工程振动, 1992, 12(3): 65-70.
    [23]范立础.桥梁抗震[M].上海:同济大学出版社, 1997.
    [24] Housner G W. Behavior of structures during earthquakes[C]. Proc. Am. Soc. Civ. Eng. 85, EM4, 109-129 (1959).
    [25] Park Y J, Ang A H S. Mechanistic Seismic Damage Model for Reinforced Concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739.
    [26]王东升,冯启民,凌贤长等.桥梁非线性地震反应分析若干问题研究现状[J].地震工程与工程振动, 2002, 22(1): 61-66.
    [27] ATC. ATC-40, Seismic evaluation and retrofit of concrete buildings[R]. Redwood City, CA, 1996.
    [28]卢文生,吕西林.模态静力非线性分析中模态选择的研究[J].地震工程与工程振动, 2004, 24(6): 32-38.
    [29] Freeman S A. Development and Use of Capacity Spectrum Method [C], Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle, CD-ROM. Oalkland,CALIF. , EERI,1978.
    [30]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].北京:科学出版社,2004.
    [31]潘龙,张妍,孙利民等.钢筋混凝土桥墩非线性Pushover分析方法[A].中国土木工程学会桥梁及结构工程学会第十四届年会论文集[C].北京:工程力学杂志社, 2000.
    [32] SEAOC. Vision 2000. Conceptual framework for performance—based seismic design[R]. Sacramento, 1995.
    [33]周云.摩擦耗能减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [34]郭子雄.基于变形的抗震设计理论及应用研究[D].上海:同济大学,2000.
    [35]尹华伟,汪梦莆,周锡元.结构静力弹塑性分析的研究和改进[J].工程力学,2003(8).
    [36] Hasan R, Xu L, Grierson D E. Pushover analysis for performance-based seismic design [J]. Computers & Structures, 2002, 80(31): 2483-2493.
    [37]周骥.底层柔性结构静力弹塑性分析[D].哈尔滨:哈尔滨工业大学,2002.
    [38] Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of Existing Buildings for Seismic Risk - A Case Study of Puget Sound Naval Shipyard[A], 1975 Proceedings of U.S. National Conference on Earthquake Engineering, Berkeley, U.S.A., 113-122.
    [39]熊向阳.建筑结构弹塑性静力分析push-over方法的研究[D].上海:同济大学,2001.
    [40] Chopra AK, Goel R K. Capacity-Demand-Diagram Methods Based on Inelastic Design Spectrum [R]. Earthquake Spectra, Vol. 15, No. 4, pp. 37-656,1999.
    [41] Fajfar P, Gagpersic P. The N2 Method for the Seismic Damage Analysis of R/ C Buildings. Earthquake Engineering and Strcutural Dynamics, 1996, 25: 31-46.
    [42] Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra[J]. Earthquake Engineering and Structural Dynamics, 1999, 28.
    [43]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [44] ASCE.FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings[R]. Washington D C, 2000.
    [45]韩建平,吕西林.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动, 2007, 8: 452-456.
    [46] Mochle J P. Nonlinear analysis for performance-based earthquake engineering[J]. Struct. Design Tall Spec. Build, 2005, 14(5): 385-400.
    [47] Aschheim M A, Tjhin T. The scaled non—linear dynamic procedure: a practical technique for overcoming limitations of the nonlinear stat procedure[J]. Journal of Earthquake Technology, 2004, 41(1): 127-140.
    [48] Pecknold D A. Inelastic Structural Response to 2D Ground Motion[J].Proceedings, ASCE, 1974, 100(EM5): 949-963.
    [49] Aktan A E, Pecknold D A. Response of a Reinforced Concrete Section to Two-Dimensional Curvature Histories[J]. ACI Journal, Proceedings, 1974, 71(5): 246-250.
    [50] Lai S, Will G, Otani S. Model for Inelastic Biaxial Bending of Concrete Members[J]. Journal of Structural Engineering, ASCE, 1984, 110(ST11), 2563-2584.
    [51] Spacone E, Ciampi V, Filippou F C. Mixed formulation of nonlinear beam finite element[J]. Computer & Structure, 1996, 58(1): 71-83.
    [52] Spacone E, Filippou F C, Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: part II. Applications[J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 727-742.
    [53] McKenna F, Fenves G L. The OpenSEES command language manual. Pacific Earthquake Engineering. Research Center, University of California, Bekerley, CA, 2001
    [54]凌炯.面向对象开放程序OpenSEES在钢筋混凝土结构非线性分析中的应用与初步开发[D].重庆大学, 2004.
    [55]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非线性地震反应分析[D].重庆大学, 2005.
    [56] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures[R]. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Bekerley, CA, 1991.
    [57] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal, 1982, 79(2): 13-27.
    [58] Kent D C, Park R. Flexural members with confined concrete [J]. Journal of the Structural Division, ASCE, 1971, 97(7): 1969-1990.
    [59]李忠献,岳福青.城市桥梁地震碰撞反应研究与发展[J].地震工程与工程振动, 2005, 25(4): 91-98.
    [60] Jeng V, Kasai K, Maison B F. A spectral difference method to estimate building separations to avoid pounding[J]. Earthquake Spectra, 1992, 8(2): 201-223.
    [61] Hong H P, Wang S S, Hong P. Critical building separation distance in reducing pounding risk under earthquake excitation[J]. Structural Safety, 2003, 25(3):287-303.
    [62] Filiatrault A, Cervantes M. Separation between buildings to avoid pounding during earthquakes[J]. Canadian Journal of Civil Engineering, 1995, 22(1):164-179.
    [63] Penzien J. Evaluation of building separation distance required to prevent pounding during strong earthquakes[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(8): 849-858.
    [64] Kasai K, Jagiasi A R, Jeng V. Inelastic vibration phase theory for seismic pounding mitigation[J]. Journal of Structural Engineering-ASCE, 1996, 122(10):1136-1146.
    [65] Lin J H, Weng C C. Spectral analysis on pounding probability of adjacent buildings[J]. Engineering Structures, 2001, 23(7): 768-778.
    [66] Hao H. A parametric study of the required seating length for bridge decks during earthquake[J]. Earthquake Engineering and Structural Dynamics, 1998, 27(1):91-103.
    [67] Ruangrassamee A. Kawashima K. Relative displacement response spectra with pounding effect[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(10):1511-1538.
    [68] Chouw N, Hao H. Study of SSI and non-uniform ground motion effect on pounding between bridge girders[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7):717-728.
    [69]王军文,李建中,范立础.非规则梁桥伸缩缝处的碰撞对地震反应的影响[J].土木工程学报, 2006, 39(1): 54-59.
    [70]王东升,冯启民.基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析模型[J].工程力学, 2004, 21(4): 81-85.
    [71]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报, 2000, 21(1): 29-36.
    [72]邹立华,赵人达.土—基础相互作用隔震体系地震随机响应分析[J].计算力学学报, 2005, 22(2): 252-256.
    [73]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动, 2003, 23(4): 124-130.
    [74]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报, 2000, 21(1): 29-36.
    [75] Tongaonkar N P, Jangid R S. Seismic response of isolated bridges withsoil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(4): 287-302.
    [76] Ruan K K, GrassameeA. Ralative Displacement Response Spectra with Pounding Effect[J]. Earthquake Engineering and Strutural Dynamics. 2001, 30(10): 1511-1538.
    [77]聂利英,李建中,胡世德等.曲线梁桥非线性分析及抗震性能评估[J].同济大学学报(自然科学版), 2004, 32(10): 1360-1364.
    [78]王东升,冯启民.基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析模型[J].工程力学, 2004, 21(4): 81-85.
    [79] []陈学喜,朱晞,高学奎.地震作用下桥梁梁体的碰撞响应分析[J].中国铁道科学, 2005, 26(6): 75-79.
    [80] Rahul R, Soong T T. Parametric Study and Simplified Design Of Tuned Mass Dampers[J]. Engineering Structures, 1998,20(3):193-204.
    [81]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [82]单修政,徐世芳.高架路桥的震害、震害原因及抗震措施[J].灾害学, 2000.12, 15(4): 55-60.
    [83]刘洪兵,王君杰,孙利民等.钢筋混凝土桥墩截面能力的概率分析[J].工程力学, 2005.12, 22(6): 104-111.
    [84]钮忠华.考虑变化轴力的钢筋混凝土截面非线性分析[D]:重庆大学, 2004.
    [85] Menegotto M, Pinto P E. Slender RC Compressed Members in Biaxial Bending[J]. Journal of Structural Engineering, ASCE, 103(ST3): 587-605.
    [86]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社, 2001.
    [87] Williams M S. Suggested.Improvement to Performance-based Seismic Damage Indices for Concrete Structures: State-of-art Review [J]·Earthquake Spectra, 1995 (1): 319-349·
    [88] Priestley M J N, Calvi G M, Kowalsky M J. Direct displacement-based design of structures[M]. Pavia, ITALY: IUSS Press, 2007.
    [89] Mander J B, Priestley M J N, Park R. The oretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    [90] Park R, Priestley M J N, Gill W D. Ductility of Square-Confined Concrete Columns[J]. Journal of the Structural Division, 1982, 108(4): 929-950.
    [91] Mander J B, Priestley M J N, Park R. Observed Stress-Strain Behavior of Confined Concrete[J]. Journal of Structural Engineering, 1988, 114(8):1827-1849.
    [92] Priestley M J N, Park R. Strength and Ductility of Concrete Bridge Column Under Seismic Loading[J]. ACI Structural Journal, 1987, 84(1): 61-76.
    [93] Braga F, Gigliotti R, Laterza M. Analytical Stress--Strain Relationship for Concrete Confined by Steel Stirrups and/or FRP Jackets[J]. Journal of Structural Engineering, 2006, 132(9): 1402-1416.
    [94] Pauley T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings [M]·New York: John Wiley&Sons, 1992.
    [95] Waston S, Zahn S A, Park R. Confining Reinforcement for Concrete Columns[J]. Structural Engineering, ASCE, 1994, 120 (6): 1798-1824.
    [96]刘庆华.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26 (3): 245-249.
    [97]杨新宝.钢筋混凝土桥梁抗震性能评估与加固[D].上海:同济大学, 1997.
    [98]刘艳辉.基于性能抗震设计理论的城市高架桥抗震性能研究[D].四川:西南交通大学, 2008
    [99]周定松.钢筋混凝土框架结构基于性能的抗震设计方法[D].上海:同济大学, 2000.
    [100]谢楠,陈英俊.钢筋混凝土桥墩的延性抗震分析[J].工程力学, 2000, 2(A02): 452-456.
    [101] Zheng Y, Usami T, Ge H. Seismic response predictions of multi-span steel bridges through pushover analysis[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(8): 1259-1274.
    [102] Antoniou S, Pinho R. Development and verification of a displacement-based adaptive pushover procedure[J]. Journal of Earthquake Engineering, 2004, 8(5): 643-661.
    [103] Antoniou S, Rovithakis A, Pinho R. Development and verification of a fully adaptive pushover procedure[C]. In: 12th European Conference on Earthquake Engineering. London, UK., 2002. 1–10. No. 822.
    [104] Pinho R, Casarotti C, Antoniou S. A comparison of single-run pushover analysis techniques for seismic evaluation of bridges[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(10): 1347-1362.
    [105] Paraskeva T S, Kappos A J, Sextos A G. Extension of modal pushover analysis to seismic evaluation of bridges[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(10): 1269-1293.
    [106] Paraskeva T S, Kappos A J. Further development of a multimodal pushoveranalysis procedure for seismic evaluation of bridges[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 211-222.
    [107] Isakovi T, Fischinger M. Higher modes in simplified inelastic seismic analysis of single column bent viaducts[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(1): 95-114.
    [108] Isakovic T, Fischinger M. Higher modes in simplified inelastic seismic analysis of single column bent viaducts[J]. Earthquake Engineering and Structural Dynamics, 2007, 35(1): 95-114.
    [109] Isakovi T, Lazaro M P N. Applicability of pushover methods for the seismic analysis of single-column bent viaducts[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(8): 1185-1202.
    [110] ATC. ATC-58, 25% Complete Draft,Guidelines for seismic performance evaluation of buildings[S]. Redwood City, 2005.
    [111] Zareian F. Simplified performance-based earthquake engineering[D]. Stanford University, 2006.
    [112] Zareian F, Krawinkler H. Evaluation of probability of collapse and design for collapse safety[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(13): 1901-1914.
    [113] Krawinkler H, Zareian F. Prediction of collapse - how realistic and practical is it, and what can we learn from it?[J]. The Structural Design of Tall and Special Buildings, 2007, 16(5): 633-653.
    [114]李宁.基于MPA和IDA的偏心结构性态评估分析方法[D].哈尔滨:哈尔滨工业大学, 2009.
    [115]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [116]赵岩.桥梁抗震的线性/非线性分析方法研究[D].哈尔滨:哈尔滨工业大学, 2003.
    [117]翟长海,谢礼立.估计和比较地震动潜在破坏势的综合评述[J].地震工程与工程振动.2002,22(5):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700