汽车发动机悬置系统动力响应分析与隔振率优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机是汽车的主要振源之一,研究发动机动力总成悬置系统的动力响应分析与隔振率优化对改善悬置系统设计以提高对汽车NVH (Noise, Vibration and Harshness,简称NVH)的抑制性能具有重要意义。本文以某国产载重车为研究对象,对车辆发动机动力总成悬置系统的动力响应分析和以提高隔振率为目标的优化设计进行了研究。主要研究工作包括以下几个方面:
     首先,论述了国内外对汽车发动机动力总成悬置元件、悬置系统优化设计方面的研究进展,介绍了汽车发动机动力总成悬置系统设计的基本理论与方法;介绍了发动机动力总成悬置系统的模态分析与解耦度计算和改善悬置系统模态频率与解耦度的优化设计理论与方法,通过对ANSYS软件的编程二次开发,实现(该载重)汽车发动机动力总成悬置系统的模态频率和解耦度优化。
     其次提出了发动机动力总成悬置系统按预定频率严格解耦设计理论,给出了悬置系统严格解耦的条件,指出一般情况下悬置系统难以严格解耦的原因,并以严格解耦理论为基础给出了新的改善模态频率和解耦度的优化方法。从严格解耦方程又导出了两个重要的结论,算例验证了该理论与方法正确性和高效性。这对相关行业悬置系统设计提供了重要思路和的理论依据,对悬置系统优化设计具有指导意义和实用价值。
     接着,给出了来自发动机的悬置系统激励力,利用ANSYS建立了包含动力总成-悬置元件-车架等的悬置系统多体动力学分析模型,利用ANSYS的加载、约束和响应分析功能,进行了(该载重)汽车发动机动力总成悬置系统模态分析基础上的动力学响应分析。
     最后,介绍了在悬置系统动力响应分析基础上的隔振率计算,给出了以提高悬置系统隔振率为目标的优化设计模型与求解方法。探讨了影响悬置系统隔振率的因素与机理。最终利用ANSYS软件及其APDL编程功能,实现了(该载重)汽车发动机动力总成悬置系统的动力响应分析与隔振率优化。优化计算结果验证了该优化模型与优化方法的正确性和有效性。
     本项研究密切结合实际,具有较好的理论与应用价值。
Engine vibration is one of the main sources of vehicle vibration. It is important to study the dynamic response analysis and optimization of Vibration isolation rate, which is the key theory method to improve vehicle's comfort and NVH (Noise, Vibration and Harshness) performance. Taking a domestic truck as the research object, the dynamic response analysis and the isolation rate optimization for vehicle engine powertrain mounting system was studied
     The main research work in this paper focuses on the following aspects:
     Firstly, this paper discusses the current development of the mount components for automobile engine power assembly, optimization design of suspension system both domestically and abroad, and introduces the basic theory and method of the automobile engine powertrain mounting system design. Moreover, this paper introduces the engine powertrain mounting system modal analysis and the decoupling degree calculation and improves the suspension system modal frequency and optimization design theory of decoupling degree and method. At the same time, through the ANSYS software programming secondary development, this paper realize the load) auto engine powertrain mounting system modal frequency and decoupling degree optimization
     Secondly, this paper Puts forward the design theory of engine powertrain mounting system vibration strictly decoupling with the scheduled frequency, and gives the conditions of mounting system strictly decoupling. In the sequent, this paper points out the reasons of difficult to strictly decoupling for the mounting system usually, and based on the theory of strict decoupling, a new optimization method was given aimed to improve modal frequency and decoupling degree. From the strict decoupling equation, two important conclusions ware deduced. Examples verified the correctness and efficiency of the theory and method. The proposed theory provides an important thought and basis theory for optimization design of suspension system to relevant industry and has a guiding significance and practical value for mounting system optimization design.
     In the sequent, exciting force was given for engine mounting system, and the multibody dynamics analysis model containing power assembly-suspension element-frame of suspension system was set up by using ANSYS. Using the software ANSYS's function of loading constraints and response analysis, analysis of the dynamic response analysis was fulfilled for auto engine powertrain mounting system based on the modal.
     Finally, it presents the calculation of vibration isolation rate of mounting system based on the analysis of the dynamic response, and the optimization design model and solving method was suggested in order to improve the vibration isolation rate of mounting system. We discuss the factors and mechanism influencing vibration isolation rate of suspension system. Finally, by using ANSYS software and its APDL programming function, auto engine powertrain mounting system dynamic response analysis and optimization of vibration isolation rate was achieved. Results of optimization show that the optimization model and optimization method are correct and effective
     Therefore, this study comes from practice, and has good theory significance and practical application value.
引文
[1]王立公.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].吉林工业大学,1996.
    [2]范让林.汽车动力总成悬置系统隔振特性的分析及液压阻尼式橡胶悬置隔振技术研究[D].吉林工业大学,1995.
    [3]吕振华,梁伟.汽车发动机液阻悬置动特性仿真与试验分析[J].汽车工程2002,24(2):105-111.
    [4]史文库.轿车动力总成液压悬置隔振性能及对整车舒适性影响的研究[D].吉林工业大学,1996年4月.
    [5]王利荣,吕振华.汽车动力总成液阻型橡胶隔振器的研究发展[J].汽车车程,2001,23(5):323-328.
    [6]Yu Y H, Naganathan N G and DukkiPati R V. (2001). A literature review of automotive engine mount SystemS, Mechanism and Machine Theory, Vol36, PP123-142.
    [7]Yu Y H, Peelamedu S.M., Naganathan, N. G, and DukkiPati R.V, (2001). Automotive Vehicle Engine Mounting Systems:A Survey, Transactions of the ASME, Journal of Dynamic System, Measurement, and Control, Vol.123, pp186-94.
    [8]Anon. Engine Mounting [J]. Automobile Engineering,1953,3:43-97.
    [9]H.C.Hassison.Engine Installation [J]. Automobile Engineering,1956,10:46-50.
    [10]Samuel P. Taylor. Design and simulation of high-performance hybrid electric vehicle powertrains [D].West Virginia University,2001.4.
    [11]孙登兴.汽车发动机悬置技术研究[D].重庆:重庆大学,2005.7.
    [12]Metzeler, Freudenberg Inc. Advanced rubber technology[J].Automotive Engineering,1991,16(3): 36-39.
    [13]范让林,吕振华.汽车动力总成隔振难点与被动悬置改进技术[J].汽车技术,2009(5)18-21.
    [14]吕振华,范让林,冯振东.汽车动力总成隔振悬置布置的设计思想论析[J].内燃机工程2004,24(3):37-43.
    [15]李小汉译.汽车发动机的液压悬置[J].国外汽车,1986,5:14-17.
    [16]Richard A. Muzechuk. Hydraulic Mounts-Improved Engine Isolation[J], SAE Paper 840410.
    [17]吕振华,上官文斌,梁伟等.液阻型橡胶隔振器动态特性实验方法及实测分析[J].中国机械工程,2003,15(2):182-186.
    [18]上官文斌,液阻悬置惯性通道阻尼特性的实验与计算分析[J].振动工程学报,2006,19(3):376-381.
    [19]A.R.Solomon.Engine Mount System Focusing to Reduce Vehicle Shake[J]. SAE Paper 973727.
    [20]Golnaraghi MF, Jazar.Development and analysis of a simplified nonlinear model of a hydraulic engine mount[J].Journal of Vibration and Control,2001,7(4):495-526.
    [21]A.J. Hillis, A.J.L. Harrison, D.P. Stoten. A comparison of two adaptive algorithms for the control of active engine mounts[J].Journal of Sound and Vibration,286(2005):37-54.
    [22]Jun Hwa Lee,Rajendra Singh.Critical analysis of analogous mechanical models used to describe hydraulic engine mounts[J].Journal of Sound and Vibratior 311(2008):1457-1464.
    [23]Brach,R.M. and Haddaw,A.G On the dynamic response of hydraulic engine mounts[J]. SAE paper 931321.
    [24]B.Riley,M. Bodie J. Hoying. Active vibration and noise cancellation control of four cylinder engine[J].SAE Paper 951299.
    [25]A.R.Solomon.Engine Mount System Focusing to Reduce Vehicle Shake[J]. SAE Paper 973727.
    [26]Peter Burgess.Lexus RX300-luxury on the off-road[J].Automotive Engineering,2001,26(1): 74-78.
    [27]王立公,冯振东.汽车动力总成液力悬置—一种新型隔振元件的结构发展[J].汽车程,1994,16(6):340-347.
    [28]吕振华,上官文斌.基于液-固耦合有限元仿真的液阻悬置集总参数模型动特性分析[J].机械强度,2004,26(1):29-37.
    [29]上官文斌,吕振华.液阻型橡胶隔振器非线性特性仿真分析[J].振动工程学报,2003,16(4):393-398.
    [30]郑瑞清.主动控制电致伸缩液压悬置隔振特性仿真[J].长春:吉林大学学报,2004,35(1):100-105.
    [31]史文库,郑瑞清,骆海涛.发动机电致伸缩液压悬置隔振特性的仿真研究[J].系统仿真学报,2005,17(10):2504-2507.
    [32]史文库,蔡俊.主动控制式电磁液压悬置隔振性能研究[J].噪声与振动控制,2006,3:28-31.
    [33]史文库,洪哲浩,赵涛.汽车动力总成悬置系统多目标优化设计及软件开发[J].吉林学学报(工学版),2006,36(9):654-658.
    [34]侯勇,赵涛.动力总成悬置系统解耦设计[J].汽车工程,2007,29(12):1094-1097.
    [35]J.Christopherson, G. Nakhaie Jazar. Dynamic behavior comparison of passive hydraulic engine mounts.Part 2:Finite element analysis[J].Journal of Sound and Vibration 290(2006)1071-1090.
    [36]Taeskok jeong, Rajendra singh. Analytical methods of decoupling the automotive engine torque roll axis[J].Journal of Sound and Vibration,2000,234(1):85-114.
    [37]R.Matthew Brach.Automotive Powerplant Isolation Strategies.SAE Paper 971742.
    [38]Michael M.Methods for the reduction of noise and vibration in vehicles using an appropriate engine mount system[J].SAE Paper 942414.
    [39]Tetsuya Arai,Takao Kabozuka.Development of an Engine Mount Optimization Meth Using Modal Parameters[J]. SAE Paper 932898.
    [40]Stephen R.Johnson,Jay W.Subhedar.Computer Optimization of Engine Mount Systems[J]. SAE Paper 790974.
    [41]James E.Bernard.Engine Mount Optimization[J].SAE Paper 830257.
    [42]Demic.M.A Contribution to the Optimization of the Position and the Characteristics of Passenger Car Powertrain Mounts[J]. International Journal of Vehicle Design,1990,11(1):87-103.
    [43]A.R.Crowther.Torsional finite elements and nonlinear numerical modelling vehicle powertrain dynamics[J].Journal of Sound and Vibration,284(2005):825-849.
    [44]徐石安.发动机悬置的设计及其优化[J].汽车工程,1983,5(3):25-27.
    [45]钱振为,徐石安,陈立明.汽车发动机悬置系统结构动态参数的选择与子系统之间的配[J].汽车工程,1988,10(4):56-64.
    [46]上官文斌,蒋学锋.发动机悬置系统的优化设计[J].汽车工程,1992,14(2):103-110.
    [47]Tetsuya Arai,Takao Kabozuka.Development of an Engine Mount Optimization Method Using Modal Parameters[J]. SAE Paper 932898.
    [48]John Bretl.Optimization of Engine Mounting Systems to Minimize Vehicle Vibration [J]. SAE Paper 931322.
    [49]N.Suresh, S.Shankan,N.Manokar.Optimum Design of Engine and Body Mounts at Total System Level Using Unconstrained Minimization[J]. SAE Paper 950584.
    [50]Tsuneo Tanak.The Optimization of Engine Vibration Reduction by Simulatior Analysis [J]. SAE Paper 962203.
    [51]A.R.Solomon.Reduced Shake Engine Mount Systems[J].Automobile Engineering 1998,23(2): 23-35.
    [52]Li-Rong Wanga,Jia-Cai Wang,Ichiro Hagiwara.An integrated characterist simulation method for hydraulically damped rubber mount of vehicle engine[J]. Journal of Sound and Vibration, 286(2005):673-696.
    [53]程序,张建润,王志新.汽车发动机悬置系统动力设计[J].东南大学学报,1995,25(2):109-111.
    [54]温任林,颜景平.汽车发动机悬置系统多目标优化的研究[J].东南大学学报,1996 26(6A):105-110.
    [55]樊兴华,陈金玉,黄席樾.发动机悬置系统多目标优化设计[J].重庆大学报,2001,24(2):41-44.
    [56]周舟,王晓光,李波灏.基于MSC Adams/View的动力总成悬置系统匹配设计[J].计算辅助程,2006,9:211-213.
    [57]陈树勋,尹国保,黄锦成,韦齐峰,李志强.基于等效分析模型的发动机悬置系统优化方法[J].工程力学(收录)
    [58]Chen shuxun, Yin guobao, Huang jincheng, Wei qifeng, Li zhiqiang. An equivalent model for modal analysis of engine mounting system. Electronic&mechanical engineering and information technology. Emeit-2012,12
    [59]陈树勋,李志强,韦齐峰.汽车发动机悬置系统的严格解耦与优化设计研究[J].工程力学,收录.
    [60]李志强,陈树勋,韦齐峰.发动机悬置系统解耦方法研究[J].动力学与控制,收录.
    [61]李志强,陈树勋,韦齐峰.汽车动力总成悬置系统振动解耦计算方法研究[J].计算力学学报,收录.
    [62]李勤,卢汉奎,陈树勋.关于发动机悬置系统分析的一种高效建模方法.装备制造技术,2011,(06):48-49.
    [63]陈树勋,吴松,尹国保,李志强.发动机悬置系统模态分析与优化[J].科技创新导报.2010,(10):90-91.
    [64]卢汉奎,李勤,陈树勋.动力总成悬置系统基于ANSYS的参数化优化设计,装备制造技术,2011,(07):31-34.
    [65]孙国春,史文库,田彦涛.振动主动控制技术的研究与发展[J].机床与液压,2004(3):1-6.
    [66]何渝生.汽车噪声控制[M].机械工业出版社,1999.
    [67]顾仲权,马扣根.振动主动控制[M].国防工业出版社,1997年6月.
    [68]石传龙.Vela轿车动力总成悬置系统优化设计研究[D].天津:天津大学,2008.7.
    [69]周昌水.汽车发动机悬置优化技术研究[D].重庆:重庆大学,2006.6.
    [70]王峰.汽车动力总成悬置系统振动分析及优化设计[D].上海:上海交通大学,2008.7.
    [71]A.Carrella.On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J].Journal of Sound and Vibration,315(2008):712-720.
    [72]胡春林.基于减振目标的动力总成悬置系统振动特性与控制研究[D].天津:天津大学2008.7.
    [73]王金杰,马彪,李和言.轻型履带装甲车辆动力传动总成悬置参数匹配研究[J].噪声与振动控制,2009,1:94-96.
    [74]徐石安.汽车动力总成弹性支承隔振的解耦方法[J].汽车工程,1995,17(4):198-204.
    [75]夏海.汽车发动机总成悬置系统分析与稳健优化[D].合肥:合肥工业大学,2009.5.
    [76]A.Stenti,D.Moens, P.Sas, W.Desmet.A three-level non-deterministic modeling methodology for the NVH behavior of rubber connections [J]. Journal of Sound and Vibration,9(2009):1-19
    [77]P. Charles, Jyoti K.Sinha, F.Gub, L. Lidstone, A.D.Ball.Detecting the crankshaft torsional vibration of diesel engines for combustion related Diagnosis [J]. Journal of Sound and Vibration, 321(2009):1171-1185
    [78]侯勇,赵涛.动力总成悬置系统解耦设计[J].汽车工程,2007,29(12):1094-1097.
    [79]Jae-Yeol Park, Rajendra Singh.Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system[J].Journal of Sound and Vibration,313(2008):841-857.
    [80]X.Zhang, S.D. Yu. Torsional vibration of crankshaft in an engine-propeller nonlinear dynamical system[J].Journal of Sound and Vibration,319(2009):491-514.
    [81]吕振华.汽车动力总成悬置系统隔振设计分析方法[J].中国机械工:程,2003,14(3):265-269.
    [82]阎红玉,徐石安,动力总成-悬置系统的能量法解耦及优化设计[J].汽车工程,1993,15(6):321-328.
    [83]Roger Williams, Fraser Henderson, Mark Allman-Ward et al. Using an Interactive NVH Simulator for Target Setting and Concept Evaluation in a New Vehicle Programme[J].SAE 2005-01-2479.
    [84]李建康,郑立辉,宋向荣.汽车发动机悬置系统动刚度模态分析[J].汽车工程,2009,31(5):457-461.
    [85]时培成.汽车动力总成悬置系统隔振分析与优化研究[D].合肥工业大学2010,12.
    [86]Vanderplaats, G. N. Structural Optimization-Past, Present, Future. AJAA Journal,1982, (20): 992-1000.
    [87]凌道盛,李芳.工程结构优化设计发展综述.工程设计学报.2002,9(5):229-235.
    [88]Ohkubo S, Nakajima T, Asai K..Total optimization of truss considering shape, material&sizing variables. Comput. Struct. Eng.1989,247-256.
    [89]Eschenauer H A,Olhoff N.Topology optimization of continuum structures:A review.Applied Mechanics Reviews.2001,54(4):331-389.
    [90]上官文斌,黄天平,徐驰等.汽车动力总成悬置系统振动控制设计计算方法研究[J],振动工程学报,2007,20(6):577-583.
    [91]肖杰,雷雨成,汤涤军.基于能量法解耦的动力总成悬置系统优化设计[J].车用发机,2006,(3):61-63.
    [92]王峰.汽车动力总成悬置系统振动分析及优化设计[D].上海交通大学,2008,7.
    [93]德国BOSCH公司(作者),魏春源(译者),汽车工程手册[M].北京:北京理工大学出版社;,2009.4.
    [94]李帆.不确定性系统的解耦控制与稳定裕度分析[D].西安 西北业大学,2001,12.
    [95]王淑娟.基于Lancaster结构的二阶系统解耦算法研究及其应用[D].哈尔滨工程大学,2009 6.
    [96]王峰,靳永军,张建武.基于整车模型的动力总成悬置振动仿真及优化[J].振动与击,2008,27(4):134-138.
    [97]方明霞,冯奇.汽车非线性动力系统振动特性分析[J].同济大学学报(自然科学版)2007(11):1525-1529.
    [98]庞剑,谌刚,何华.汽车噪声与振动—理论与应用[M].北京,北京理工大学出版社2006,6.
    [99]周冠南,蒋伟康,吴海军.基于总传递力最小的发动机悬置系统优化设计[J].振动冲击,2008(8):56-58.
    [100]赵艳杰,陈翀.基于Matlab的动力总成悬置系统参数优化设计[J].机械设计,2009(8):62-65.
    [101]吴杰,上官文斌.基于6σ的动力总成悬置系统鲁棒优化设计[J].振动与冲击,2008(8)64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700