新型免疫增强剂T肽对术后残瘤生长的抑制作用及相关分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是威胁人类生命的主要疾病之一,发生率呈现逐年上升的趋势。手术、放疗、化疗等是目前治疗肿瘤患者的主要手段,近年来通过提高自身免疫系统的天然防御机制达到抗肿瘤的免疫治疗手段同样受到了人们的重视。我国对肿瘤的早期筛查还不普及,相当多的肿瘤患者一旦确诊,就已经处于中晚期,大多数已经发生严重的局部浸润和远处转移。对于实体癌患者来说,手术切除瘤体是首选的治疗措施。目前手术能最大限度地减低肿瘤负荷,但除净肿瘤细胞的可能性较小,相当一部分病人只能进行姑息性手术。因此许多肿瘤患者手术后,仍然存在术后的残余瘤灶和远处转移的微小瘤灶的客观现实。一些临床观察和动物实验研究表明,手术后残余肿瘤组织的生长速度往往更快,盲目采取手术切除肿瘤,会使残余肿瘤细胞生长速度大大提高,加速肿瘤转移和复发。手术后给予患者放化疗措施,使病人经受手术和放化疗毒副作用的双重打击,不堪忍受。事实上有许多中晚期癌症病人进行手术后,生存期限可能会更短、生活质量更差。肿瘤患者手术后的治疗,消除残存的肿瘤灶和避免肿瘤复发,是医学工作者的重要关注点。
     目前抗癌药物临床前药效评价模型主要包括小鼠移植瘤模型、缺少T细胞免疫的裸鼠移植瘤模型以及既缺少T细胞免疫也缺少B细胞免疫的SCID鼠模型。无论是免疫功能正常的小鼠模型,还是免疫功能有缺陷的裸鼠或SCID鼠模型,现存的动物评价模型对免疫抗癌药物的筛选和评价均存在一定的限制。因为肿瘤所处的微环境是一个深度免疫抑制区,是免疫细胞进入肿瘤内部、杀伤肿瘤细胞的屏障;且存在于肿瘤微环境内部的免疫细胞,其功能也会发生明显的改变,尤其是巨噬细胞。因此设计合理的免疫药物临床前药效评价动物模型对于免疫药物的筛选和评价十分重要。手术切除破坏了肿瘤微环境的平衡,可能为免疫增强剂发挥抗癌作用提供机会。临床上,免疫治疗逐渐用于术后免疫干预,那么,建立更贴近临床的动物模型是我们工作的第一步。
     在本研究中,我们成功的建立了一种新型的肿瘤药效学研究模型---小鼠术后残瘤模型,即将小鼠皮下已经生长至一定体积的移植瘤手术切除部分瘤组织,无菌条件下缝合,再进行抗癌药物的体内药效学评价。在该模型建立的基础上,我们首先进一步证明了手术后肿瘤复发速度大大加快;继而我们观察了T肽抑制小鼠移植瘤术后残瘤生长的药效学实验,并得到了理想的实验结果。为了更近似的模拟临床上肿瘤患者的实际情况,我们在小鼠单瘤术后残瘤模型的基础上加以改进,在右侧皮下接种有移植瘤的小鼠左侧腋下也皮下接种肿瘤,但只将右侧肿瘤手术切除部分瘤组织,左侧肿瘤不进行手术,再进行药效学评价。术后单瘤残瘤模型和双瘤模型更符合临床实际情况,有利于免疫药物的体内抗肿瘤药效学评价。
     脾脏是体内最重要的免疫器官之一。美国Tufts大学Najjar教授,于1970年发现一种来源于脾脏的四肽物质具有显著地抗肿瘤、抗病毒活性,并命名为Tuftsin,因其具有促进巨噬细胞的吞噬活性,又称为天然吞噬作用促进肽。其分子量为500,一级结构为苏-赖-脯-精。研究证实Tuftsin能激活粒细胞、单核细胞以及巨噬细胞,通过提高它们的趋化、游离、吞噬和CTL作用,增强体内淋巴系统的细胞免疫活性,产生抗肿瘤效应。Tuftsin是四肽结构,进入体内很快被体内的羧肽酶B等降解失去活性,成为抗癌新药的可能性较小。本实验室与其他公司合作通过对其结构进行改造得到了新的Tuftsin衍生物,命名为T肽,即通过赖氨酸将Tuftsin连接得到的化合物。T肽保持了原有四肽的功能、提高了其抗酶解能力、延长了体内半衰期。探讨T肽是否具有更强的抗癌效应,是本实验室进行研究的初衷。
     在药效和机理研究实验中,我们首先观察了T肽对S180、H22、Lewis、B16-BL6等四种鼠源移植瘤以及HT-29结肠癌、HepG2肝癌、MCF-7乳腺癌、BGC-823胃癌等四种人源移植瘤手术后残瘤生长的抑制作用。实验结果显示,T肽可以明显抑制小鼠移植瘤术后残瘤的生长,最高抑制率达到80%; T肽对裸鼠移植瘤术后残瘤生长的抑制作用稍有降低,最高抑制率达到60%以上;而T肽对SCID鼠移植瘤术后残瘤生长的抑制作用最低,抑制率为45%。小鼠模型机体免疫系统正常,既有T淋巴细胞,也有B淋巴细胞,T肽可以明显抑制小鼠移植瘤术后残瘤的生长;裸鼠模型缺少胸腺,缺少T淋巴细胞,B淋巴细胞功能稍有缺陷,而T肽对裸鼠移植瘤术后残瘤生长的抑制作用明显低于对小鼠残瘤生长的抑制作用,说明T肽对B淋巴细胞和T淋巴细胞的功能均产生影响;SCID鼠模型既缺少T淋巴细胞的免疫功能,也缺少B淋巴细胞的免疫功能,但仍有巨噬细胞、自然杀伤细胞等免疫细胞发挥功能,T肽对SCID鼠移植瘤术后残瘤生长的抑制作用比对裸鼠残瘤生长的抑制作用又进一步降低,说明T肽对巨噬细胞、自然杀伤细胞的功能也有明显影响。我们进一步建立了小鼠双瘤模型---即在小鼠右侧肩部和左侧腋下均接种肿瘤,当肿瘤生长至一定体积时,手术切除右侧肩部的部分瘤组织,术后24h给药;实验结果显示,T肽不仅可以抑制术后残留的生长,对双瘤模型未手术瘤生长的抑制率也达到70%。进而,我们又设计了假手术实验,结果显示,手术应激对T肽发挥抗肿瘤作用的影响并不显著。在体内药效学实验结果的基础上,我们又通过MTT、流式检测、ELISA、免疫组化、RT-PCR、Western Blot等研究了T肽的作用机理。在体外药效学实验中,T肽可以明显促进巨噬细胞的生长速度以及吞噬功能;ELISA、RT-PCR等实验证实了T肽对TNF-α、NO等因子的影响;免疫组化、Western等证实了T肽对MIP-1α以及VEGF等的影响。以上结果预示着T肽有潜力成为预防术后残瘤生长的新药。
     综上所述,我们成功建立了一种新型体内抗肿瘤药效学评价模型-术后残瘤模型,研究了T肽对术后残瘤生长的抑制作用;并以该模型为基础,探索T肽的抗癌作用机理,发现T肽对巨噬细胞吞噬功能的影响;该模型的建立为免疫制剂抗肿瘤药物的体内药效学评价提供有力帮助。
As an important disease threat anthropohealth, the incidence of cancer rises every year. Surgery, radiotherapy and chemotherapy are major methods for clinical patients with malignancy. Currently, although immunotherapies for the treatment of cancer are now gaining wider acceptance as viable alternative therapies for treating certain tumor types, such was not always the case. Surgery is still the main curative therapeutic modality for many solid tumors, and reduces the primary tumor burden maximumly. But the process of surgery could increase the risk of recurrence and metastases of residual cancer cells to other sites. Furthermore, there is severe toxicity of radiotherapy and chemotherapy as postoperative therapies, that patients can’t suffer from. It is well known that major surgery are associated with severe alterations of the host defense mechanisms, making the patients hightly susceptible inflammatory responses, which intimately correlated with tumor recurrence. A few studies indicated that surgical removal of tumors is insufficient to conquer the profound immunosuppression in patients. Thus, immunotherapy as a promising approaches is used for postoperative cancer patiens.
     The immunomodulator tuftsin is a nature tetrapeptide (Thr-Lys-Pro-Arg)derived from spleen,isolated at Tufts University by Najjara and co-workers in 1970s. It binds specifically to macrophages, monocytes, and polymorpho-nuclear leukocytes and stimulates them to evoke immunomodulatory activity and tumoricidal properties. The features of tuftsin, coupled with its low toxicity, make the peptide an attractive candidate for immunotherapy. A few studies have reported that tuftsin prevented spontaneous tumor development, after administered for 6 months at the dose of 10μg once a week. However, tuftsin, short half-life (CL = 0.34 L/h,t1/2 = 2.8 h) was degraded in vivo by carboxypeptidase B easily. So tuftsin is less likely to be a novel medicine. In our laboratory in cooperation with a company, the structure of tuftsin has been transformed to obtain a new tuftsin derivative, named T-peptide (TP), which maintained the original function of tetrapeptide, increased anti-enzyme capacity and stability, andextended in vivo half-life.
     Currently, preclinical oncological evaluation models, including murine xenografts models, nude murine xenograft models that are short of T lymphocytes, and SCID murine xenograft models that are short of T and B lymphocytes, all confine the anticancer evaluation of many immunoagents. Because tumor microenvironment is a deep immunodepression area, in which functions of many immunocytes can be inhibited or changed, such as Type M1 and Type M2 macrophages. Currently, immunotherapy is used for postsurgerical intervention. It is important that a kind of murine model is established, which is close to clinical status and used for the pharmacodynamic evaluation of immunoagents.
     B ased on the studies mentioned above, we successfully established a novel murine pharmacodynamics model---mice with a postsurgery residual tumor. Our present studies demonstrated surgery had a promoting effect on tumor growth, if postsurgery residual tumor still remained in body. As a immunotherapeutic drugs, the effect of TP on traditional murine xenograft model and directly killing tumor cells was not conspicuous. Because of some anticancer effects of TP administated before tumors grew out and no effects administrated after tumor volumes reached 150mm3,the experiments suggested that many factors possibly confined TP to play actions, such as immune escape, tumor microenvironment, cytokines and immunosuppression. Before the formation of tumor environment,TP could activate macrophages,T lymphocyte,NK, etc. to play anticancer effects. Perhaps, tumor environment as a screen or a black hole, limited drugs to penetrate tumor tissue and to reach all of the tumor cells, in which the anticancer functions of immunocytes were severely inhibited. Based on the studies of traditional murine models in vivo, we researched the anticancer effects of TP on murine mice with postsurgery residual tumors. The results displayed better effcts that the inhibition rate reached above 80% maximally, and almost no toxicity.
     C ompared with clinical conditions,many tumor patients may have postsurgery residual tumors and metastasis that is not discovered. TP can apparently inhibit the growth of postsurgery residual tumors,and can it inhibit the growth of distant metastasis? We designed another murine model with a postsurgery residual tumor on right and a nonsurgery tumor on left. Suprisingly,TP is also able to inhibite the growth of nonsurgery tumor on left. The effects of surgery on nonsurgery tumors may be attributed to a number of factors, including immunodepression after surgical stress, action of cytokines or changes of tumor microenvironment.To deplete the inflence of surgery stress on the anticancer effects of TP, we designed a murine model with a pseudosurgery tumor mentioned above. The results certified surgery stress did not apperently affect the anticancer action of TP.
     T he anticancer effects might be related to the postoperative interaction of TP and immunocytes that result in the changes of immune state and the production of cytokines, such as Tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Based on anticancer pharmacodynamic action of TP in vitro and in vivo, we furtherly studied the effects of TP on T lymphocytes and macrophages by flow cytometry, RT-PCR, immunohistochemistry, ELISA, and so on. As one of the most important and perplexing immunocytes residing in tumor microenvironment for long terms, macrophage gradually formed its distinct phenotypes and functions, being type M2 macrophage, i.e. tumor- associated macrophages. TAMs are also associated with increased angiogenesis in cancer tissues. Macrophage inflammatory protein 1α(MIP-1α) is from the CC (cysteinecystein) chemokine subfamily, known to be secreted from monocytes, activated macrophages, lymphocytes, and other cell types. Meanwhile, MIP-1αrelates with tumor metastases and angiogenesis.We are interested in the decrease in MIP-1αof tumor tissues and the increase expression of spleen tissues by RT-PCR and immunohistochemistry analysis.The results indicated TP might inhibite the functions of TAMs, but promote phagocytosis of macrophages.And then,we also measured the level of mouse vascular endothelial growth factor (VEGF)in tumor and Ana-1 cells by Western blotting.
     In conclusion,we successfully established a novel murine model with a postsurgery residual tumors for anticancer pharmacodynamics evaluation. And we researched the anticancer effects of TP on this novel murine model in vivo and in vitro. On the basis of the new model, we studied the mechanisms of TP on macrophages, TAMs and T leukomonocytes. The results and the known low toxicity are clues that TP might be a promising candidate drug for the treatment of clinical patients with postsurgery residual tumors or micrometastasis.
引文
1. Daniel S.Martin, M.Earl Bails, Bernard Fisher, Emil Frei. Role of murine tumor model in cancer treatment research. Cancer Res. 1986;46:2189-2192.
    2. Woodhouse, R. J. Animals in medical research: controversy in Europe and the United States. NY J. Med., 1984;11:574-577.
    3. Goldin, A., and Schabel, F. M. Clinical aspects derived from animal chemotherapy studies. Cancer Treat. Rep., 1981;65: 11-19.
    4. Martin, D. S., Stolfi, R. L., and Sawyer, R. C. Commentary on“Clincal predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy”. Cancer Treat. Rep., 1984;68:1317-1318.
    5. Houghton, J. A., and Houghton, P. J. Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma. Eur. J. Cancer Clin. Oncol., 1983:19: 807-815.
    6. Ahmed, N. K. Enzymes of the denovo and salvage pathways for pyrimidine biosynthesis in normal colon, colon carcinoma, and xenografts. Cancer (Phila.), 54: 1370-1373,1984.
    7. Schabel, F. M., Jr. Animal models as predictive systems. In:Cancer chemotherapy fundamental concepts and recent advances. Chicago: Year Book Medical Publishers, 1975: 323-355.
    8. Schabel, F. M., Griswold, D. P., Jr., Corbett, T. H., Laster, W. R., Jr., Mayo, J. G., and Lloyd, H. H. Testing therapeutic hypothesis in mice and man:observations on the therapeutic activity against advanced solid tumors of mice treated with anticancer drugs that have demonstrated potential clinical utility for treatment of advanced solid tumors of man. Methods Cancer Res., 1979:17B: 3-51.
    9. Pantelouris EM.Absence of thymus in a mouse mutant.Nature,1968,271:370-371.
    10. Flanagan SP. 'Nude', a new hairless gene with pleiotropic effects in the mouse[J]. Genet Res,1966,8(3):295-309.
    11. Goldie, J. H. Relevance of drug resistance in cancer treatment strategy. In:F. M. Muggia (ed.), Cancer Chemotherapy I.pp:1-30. The Hague: Martinus Nijhoff, 1983.
    12.《新世纪癌的化学预防与药物治疗》韩锐,孙燕主编.人民军医出版社,2003.228-236.
    13. Guillermo Mazzolini,Oihana Murillo,Catalina Atorrasagasti,et al. Immunotherapy and immunoescape in colorectal cancer[J].World J Gastroenterol,2007, 13(44):5822-5831.
    14. Berendt M,North RJ,et al.The cell mediated suppression of anti-tumor immunity.An explanation for progressive growth of an immunogenic tumor[J].Exp Med,1980;151:69–80.
    15. Mantovani A,et al.Inflammation and cancer:the macrophage connection[J]. Buenos Aires, 2007, 67 (Supl.II):32-34.
    16. Albert Mantovani. Inflammation by remote control[J]. Cancer,2005,9(435):752-753.
    17. D Savitha,K.Raghavendra Rao,S.P.Girish,et al.Effect of surgical stress on neutrophil function[J]. Indian J Physiol Pharmacol,2008,52(3):302-306.
    18. Liang JT,Shieh MJ,Chen CN.et al.Prospective evaluation of laparoscopy-assisted colectomy versus laparotomy with resection for managenment of complex polyps of the sigmoid colon[J].World J Surg,2002,26(3):377-383.
    19. Janice A.Neil.Perioperative care of the immunocompromised patient [J].Aorn J,2007,3(85):544 -560.
    20. Robert A. Good.et al.Relations between Immunity and Malignancy[J].Nat. Acad. Sci. 1972, 69(4):1026-1032.
    21. Lake RA,Robinson BWS.Immunotherapy and chemotherapy-a practical partnership[J].Nat Rev Cancer,2005,5(5):397-405.
    22. Tjemsland L, S?reide JA, Matre R and Malt UF. Pre-operative [correction of Properative] psychological variables predict immunological status in patients with operable breast cancer[J].Psychooncology.,1997,6(4):311-320.
    23. Delman KA Zager JS,Bennett JJ,et al.Efficacy of multiagent herpes simplex virus amplicon-mediated immunotherapy as adjuvant treatment for experimental hepatic cancer[J].Ann Surg,2002,236(3):337-343.
    24. Gary Rorbert Smith,Sotiris Missailidis.Cancer inflammation and the AT1 and AT2 recepters[J]. J of inflammation ,2004,1(30): 1-12.
    25. Arthur M.Sutherland.The psychological impact of postoperative cancer [J].Bull.N.Y.Acad. Med. 1957,3:428-4458.
    26. David G DeNardo,and Lisa M Coussens.Balancing immune response:crosstalk between adaptive and innate immune cells during breast cancer progression[J].Review Inflammation and breast cancer,2007,9:212-311.
    27. Tang ZY,Ye SL,Liu YK,et al.A decade's studies on metastasis of hepatocellular carcinoma[J].J Cancer Res Clin Oncol,2004,130(4):187-196.
    28. Guo Hao Wu,Yan Wei Zhang,and Zhao Han Wu.Modulation of postoperative immune and inflammatory response by immune-enhancing enteral diet in gastrointestinal cancer patients[J]. World J Gastroentero,2001,7(3):357-362.
    29. O’Reilly MS,Holmgren L,Shing Y,et al.Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J].Cell,1997,79:315- 328.
    30. Alemany, R., C. Balague, and D. T. Curiel. 2000. Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18:723–727.
    31. Biederer, C., S. Ries, C. H. Brandts, and F. McCormick. 2002. Replicationselective viruses for cancer therapy. J. Mol. Med. 80:163–175.
    32. Ko, D., L. Hawkins, and D. C. Yu. Development of transcriptionally regulatedoncolytic adenoviruses. Oncogene , 2005:24:7763–7774.
    33. Danna EA,Sinha P,Gilbert M,et al.Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease[J].Cancer Rev,2004,64(6):2205 - 2211.
    34. Zanon,C.,Bortolini M , Chiappino I. , Simone P. , Bruno F. ,et al. Cytoreductive surgery combined with intraperitoneal chemohyperthermia for the treatment of advanced colon cancer[J]. World J. Surgery. 2006.( 30) 11.
    35. Najjar, V. A. & Nishioka, K., 1970. Nature 228: 672-673.
    36. Kenji Nishioka, George F. Babcock, Joseph H. Phillips, et al. Antitumor effect of tuftsin[J]. Molecular and cellular Bio. 1981;41:13-18.
    37. Najjar, V. A., 1974. Advances in enzymology (Meister, A., ed.), Vol. 41, pp. 129-178, John Wiley and Sons Inc., New York.
    38. Victor A. Najjar, Danuta Konopinska, Manas K. Chaudhuri, Donald E. Schmidt and Lisa Linehan. Tuftsin, a natural activator of phagocytic functions including tumoricidal activity[J]. Molecular andcellular Bio. 1981;41:3-12.
    39. Najjar, V. A., 1980. Macrophages and lymphocytes, PartA, Eds. M. R. Escobar & H. Friedman , Plenum Press, New York, pp. 131-147.
    40. Najjar, V. A, & Schmidt, J. J., 1980. Lymphokine Reports, Ed. E. Pick, Vol. 1, Academic Press Inc., New York, pp. 157 - 159.
    41. Fridkin, M., Stabinsky, Y., Zakuth, V. & Spirer, Z., 1977. Biochim. Biophys. Acta 496:203 - 211.
    42. McBride, J. K. & Stuart, A., 1977. The macrophage and cancer, symposium of the European reticuloendothelial society, Ed. K. James, W. McBride & A. Stuart, University of Edinburgh, Edinburgh.
    43. Klebanoff, S. J. & Clark, R. A., 1978. The Neutrophils: functions and clinical disorders, Ed. S. J. Klebanoff & R. A. Clark, North-Holland Publishing Co., New York.
    44. Smit EF, Carney DN, Harford P, Sleijfer DT, Postmus PE. (1989) A phase II study of oral etoposide in elderly patients with small cell lung cancer.Thorax 44:631-3.
    45. Dollery C. Etoposide. In: Dollery C, ed. Therapeutic drugs. London, UK: churchill living stone 1999:E103- E108 .
    46. Williams SD, Birch R, Einhorn LH, Irwin L, Greco FA, Loehrer PJ. Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N. Engl. J. Med. 1987,316:1435-40.
    47. Chu DZ,Tuftsin crease survival murin peritoneal carcinomatosis[J].J Biol Response Mod, 1990 ,9:284.
    48. Baker CC et al.J Surg Res 1980,36:499.
    49.任师颜.β-微球蛋白的研究进展【J】.国外医学,1993, 2:67.
    50. Hideyasu Oh, Hitoshi Takagi, Atsushi Otani, Shinji Koyama, Seiji Kemmochi,et al.Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF):A mechanism contributing to VEGF-induced angiogenesis[J].PNAS,2002,99(1):383-388.
    51. Krzysztof Laudanski, Carol Miller-Graziano, Wenzhong Xiao, Michael N. Mindrinos, Daniel R. Richards,et al.Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways[J].PNAS,2006,103(42):15564–15569.
    52. Craig W. Vander Kooi, Manuel A. Jusino, Benjamin Perman, David B. Neau, Henry D,et al. Structural basis for ligand and heparin binding to neuropilin B domains[J].PNAS 2007, 104 :6152-6157.
    53. Masood A. Khan and Mohd Owais. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model. J of antimicrobial chemotheropy 2006;58:125-132.
    54. Khan MA, Faisal SM, Haque W et al. Immunomodulator tuftsin augments antifungal activity of Amp B against experimental murine Candidiasis. J Drug Target 2002; 10: 185–92.
    55. Khan MA, Nasti TH, Saima K et al. Co-administration of immunomodulator tuftsin and liposomised nystatin can combat less susceptible Candida albicans infection in temporarily neutropenic mice. FEMS Immunol Med Microbiol 2004; 41: 249–58.
    56. Tredan O,Galmarini CM,Patal K,et al.Drug resistance and the solid rumor microenvironment [J]. J Nat Cancer Ins,2007,99:1441-1454.
    57. Cecile Le Saout,Sandie Mennechet,Naomi Taylor,Javier Hernandez,et al. Memory-like CD8+ and CD4+ T cells cooperate to break peripheral tolerance under lymphopenic conditions [J] .PNAS ,2008,49(105):19414-19419.
    58. B Lu and OJ Finn.T-cell death and cancer immune tolerance[J].Cell death and differentiation , 2008, 15:70-79.
    59. Gregory Lizee,Mayra A.Cantu,and Patrick Hwu,et al.Less Yin,More Yang: Confronting the barriers to cancer immunotherapy[J].Clin Cancer Res 2007;13(18): 5250-5255.
    60. J.F.M.Jacobs,P.G.Coulie,C.G.Figdor,et al.Targets for active immunotherapy against pediatric solid tumor[J].Cancer Immunol Immunother,2009,58:831-841.
    61. Boon T,Cerottini JC,Van den Eynde B,et al.Tumor antigens recognized by T lymphocytes[J].Annu Rev Immunol,1994,12:337-365.
    62. Yilun Wu, Zongyu Zheng,Yihua Jiang,Leonard Chess,and Hong Jiang.The specificity of T cell regulation that enables self-nonself discrimination in the periphery[J]. PNAS, 2008, 2 (106) :534-539.
    63. Vermorken JB,Claossen AM,Van Tinteren H,et a1.Active specific immunotherapy for stage II and stage IH human colon cancer:a randomisel trail[J].Lancet,1999,353(9150):345-350.
    64. Robert F. Stengel, Raffaele Ghigliazza, Nilesh Kulkarni and Olivier Laplace.Optimal control of innate immune response[J].Optim. Control Appl. Meth., 2002; 23: 91–104.
    65. Jose-Ignacio Arias, María-Angeles Aller and Jaime Arias. Surgical inflammation: a pathophy siological rainbow[J]. Journal of Translational Medicine 2009, 7:1-15.
    66. Masashi Ishikawa, Masanori Nishioka, Norikazu Hanaki, Takayuki Miyauchi, Yutaka Kashiwagi, et al. Perioperative immune responses in cancer patients undergoing digestive surgeries[J]. World Journal of Surgical Oncology 2009, 7: 1-9.
    67. F. Porcheray, S. Viaud, Summary A.-C. Rimaniol, C. Léone, B. Samah, N. Dereuddre Bosquet and D. Macrophage activation switching: an asset for the resolution of inflammation [J]. Clinical and Experimental Immunology 2005;142: 481-489.
    68. Alberto Mantovani, Silvano Sozzani, Massimo Locati,Paola Allavena and Antonio Sica. Macrophage polarization: tumor-associated macrophages as aparadigm for polarized M2 mononuclear phagocytes. Immunology 2002;23(11):549-555.
    69. Stein, M. et al. Interleukin-4 potently enhances murine mannose receptor activity: amarker of alternative immunologic macrophage activation. J. Exp. Med.1992;176, 287–292.
    70. Goerdt, S. et al. Other functions, other genes: alternative activation of antigen- presenting cells. Immunity 1999;10, 137–142.
    71. Hamilton, T.A. Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In The Macrophage,2nd Edition (Bourke, B.L., C., ed.), Oxford University Press, Oxford, UK (in press) (2002).
    72. Nan Wu, Yan-Hua Wang, Hai-Sheng Zhao, Dong-Ning Liu, Xi Ying, Zheng-Qin Yin and Yi Wang.α-Crystallin downregulates the expression of TNF-αand iNOS by activated rat retinal microglia in vitro and in vivo[J]. Ophthalmic Res 2009;42:21–28.
    73. Mosser DM. ,et al. The many faces of macrophage activation[J]. J Leukoc Biol. 2003;73 (2) :209-212.
    74. Mantovani A. , Allavena P., Sica A. Tumor-associated macrophages as a prototypic typeⅡpolarized phagocyte population: role in tumor progression[J]. Eur. J.Cancer 2004;40 (11) :1660-1667.
    75. Elena Cittera, Marzia Leidi, Chiara Buracchi, Fabio Pasqualini and Silvano Sozzani. The CCL3Family of Chemokines and Innate Immunity Cooperate In Vivo in the Eradication of an Established Lymphoma Xenograft by Rituximab[J]. J.Immunol.2007;178:6616-6623.
    76. Mantovani, A. et al. The origin and function of tumor-associated macrophages. Immunol. Today 1992;13, 265–270.
    77. Balkwill, F. et al. Inflammation and cancer: back to Virchow? Lancet 2001;357, 539–545.
    78. Mario P. Colombo and Alberto Mantovani. Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res. 2005;65(20):9113-9116.
    79. Victor A. Najjar, Danuta Konopinska, Manas K. Chaudhuri, Donald E. Schmidt and Lisa Linehan. Tuftsin, a natural activator of phagocytic functions including tumoricidal activity[J]. Molecular and Cellular Biochemistr 1981;41:3-12.
    80. Craig W. Vander Kooi, Manuel A. Jusino, Benjamin Perman, David B. Neau, Henry D. Bellamy, and Daniel J. Leahy. Structural basis for ligand and heparin bindingto neuropilin B domains[J]. Nature 2007;104(15):6152-6157.
    81. Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P, Bouchier-Hayes DJ, Harmey JH (2005) Br J Cancer 92:328–333.
    82. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M, Perret GY (2006) Life Sci 79:2370–2381.
    83. Carrie M. McManus, Celia F. Brosnan and Joan W. Berman. Cytokine Induction of MIP-1 {alpha} and MIP-1{beta} in Human Fetal Microglia[J]. J. Immunol. 1998;160:1449-1455.
    84. Sun Jin Choi, Jose C.Cruz, Fiona Craig, Hoyeon Chung, Rowena D. Devlin, G. David Roodman and Melissa Alsina. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma[J]. Blood. 2000;96:671-675.
    85. Patricia Menten, Alessandra Saccani, Chris Dillen, Anja Wuyts, Sofie Struyf, Paul Proost, Alberto Mantovani, Ji Ming Wang, and Jo Van Damme. Role of the autocrine chemokines MIP-1αand MIP-1βin the metastatic behavior of murine T cell lymphoma[J]. J. Leukoc. Biol. 72: 780–789; 2002.
    86. Balkwill, F., Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet 357, 539–545.
    87. Mantovani, A., Bottazzi, F., Colotta, F., Sozzani, S., Ruco, L. (1992) The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270.
    88. Keane, M. P., Strieter, R.M. The role of CXC chemokines in the regulation of angiogenesis. Chem. Immunol. 1999;72, 42–56.
    1.《新世纪癌的化学预防与药物治疗》韩锐,孙燕主编.人民军医出版社,2003.228-236.
    2. Berendt M, North RJ, et al.The cell mediated suppression of anti-tumor immunity.An explanation for progressive growth of an immunogenic tumor[J].Exp Med,1980;151:69–80.
    3. Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists[J].Clinical & Experimental immunology, 2009, 157:9-19.
    4. Christoph HH,Thomas W,et al.Immunotherapy of cancer:from vision to standard clinical practice[J].Cancer Rev Clin Oncol,2004,130:367-374.
    5. Jerome G, Anne C, Fatima SC, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Scince, 2006, 313():1960-1964.
    6. Jacobs FM, Coulie PG, Figdor CG,et al. Targets for active immunotherapy against pediatric solid tumor[J]. Cancer Immunol Immunother,2009,58:831-841.
    7. Boon T, Cerottini JC, Van den Eynde B, et al. Tumor antigens recognized by T lymphocytes[J]. Annu Rev Immunol,1994,12:337-365.
    8. Yilun Wu, Zongyu Zheng, Yihua Jiang, et al. The specificity of T cell regulation that enables self-nonself discrimination in the periphery[J]. PNAS, 2008,2(106):534-539.
    9. Yasmine B,Guillaume O,et al. Tuning microenviro:induction of regulatory T cells by dentriitic cells[J]. Immunity 2008, 29:362-371.
    10.蒋灿华综述,陈万涛张志愿审校.NK细胞抗肿瘤免疫效应机制研究进展.国外医学肿瘤学分册,2004,31(7):486-489.
    11. Fausto C, Luca A, Andrea A,et al. Systemic cytokine response after emergency and elective surgery for colorectal carcinoma[J]. Int J Colorectal Dis,2009, 24:803-808.
    12. Shih JY, Yuan A, Yang PC, et al. Tumor-associated macrophage:its role in cancer invasion and metastasis[J]. J Cancer Mol, 2006,2(3):101-106.
    13. Frank Macfarlane Burnet(1899-1985),免疫监视,1970.
    14. Karin E, Alexandra E, Lisa MC.Paradoxical roles of the immune system during cancer development[J].Nature,2006,6:24-37.
    15. Guillermo M, Oihana M, Catalina A,et al. Immunotherapy and immunoescape in colorectal cancer[J]. World J Gastroenterol, 2007, 13(44):5822-5831.
    16. Tredan O, Galmarini CM, Patal K, et al. Drug resistance and the solid rumor microenvironment[J]. J Nat Cancer Ins, 2007, 99:1441-1454.
    17. Mantovani A,et al.Inflammation and cancer:the macrophage connection[J]. Buenos Aires,2007,67(Supl.II):32-34.
    18. Albert Mantovani. Inflammation by remote control[J]. Cancer, 2005, 9 (435): 752-753.
    19. Eugene PG, Ahmad RH, Brett AA, et al. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery[J]. JPP,2002,54:159-180.
    20. Gregory L, Mayra AC, Patrick H, et al. Less yin,more yang: confronting the barriers to cancer immunotherapy[J]. Clin Cancer Res 2007; 13(18): 5250-5255.
    21. Tang ZY, Ye SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2004,130(4):187-196.
    22. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [J]. Cell,1997,79:315- 328.
    23. Toshihiro H, Hideo M, Kazuki Y, et al. Surgical oncotaxis-excessive surgical stress and postoperativecomplications contribute to enhancing tumor metastasis,resulting in a Poor Prognosis for cancer patients[J]. Ann Thorac Cardiovasc Surg,2005,1(11):4-6.
    24. Kollmar O, Menger MD, Schilling MK. Macrophage inflammatory protein-2 constributes to liver resection-induced acceleration of hepatic metastatic tumor growth[J]. World J Gastroenterol,2006,12(6):858-867.
    25. Wu GH, Zhang YW, Wu ZH. Modulation of postoperative immune and inflammatory response by immune-enhancing enteral diet in gastrointestinal cancer patients [J]. World J Gastroentero, 2001, 7(3):357-362.
    26. Alan NH, Hiroshi U, Jedd DW. The role of the immune system in early epithel- ial carcinogenesis: B-ware the double-edged sword[J]. Cancer cell,2005, 7: 403 -405.
    27. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer[J]. Nat Med,2007,13:828-835.
    28. Ben-Eliyahu S.The promotion of tumor metastasis by surgery and stress: Immunological basis and implications for psychoneuroimmunology[J].Bra Behav Immun, 2003,17 :s27-s36.
    29. Zhao T, Xia WH, Zheng MQ, et al. Surgerical excision promotes tumor growth and metastasis by promoting expression of MMP-9 and VEGF in a breast cancer model[J]. Exp Oncol,2008,30,1:60-64.
    30. Robert AG, et al.Relations between Immunity and Malignancy[J]. Nat. Acad.Sci.1972,69(4):1026-1032.
    31. Lake RA, Robinson BWS. Immunotherapy and chemotherapy: a practical partnership[J]. Nat Rev Cancer, 2005, 5(5):397-405.
    32. Danna EA, Sinha P, Gilbert M, et al. Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease[J]. Cancer Rev,2004,64(6):2205-2211.
    33. Kirsty C,Newman, Daniel S, et al.Cross-talk with Myeloid accessory cells regulates human natural killer cell Interferon-γresponses to Malaria[J].Int Immunopharmacol,2006,12(2):1120-1133.
    34. Lutsiak MEC,Tagaya Y,Adams AJ,et al.Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells[J].J Immunol 2008,180:5871-5881.
    35. Pardali K,Moustakas A. Actions of TGF-βas tumor suppressor and pro- metastatic factor in human cancer[J].Biochim Biophys Acta,2007,1775:21-62.
    36.刘杰,魏明海,田志刚.Th1/Th2漂移与抗肿瘤免疫[J].国外医学肿瘤学分册,1997,24:168-170.
    37. Dagvadorj J,Naiki Y,Tumurkhuu G,et a1.Interleukin-10 inhibits tumor necrosis factor-αproduction in lipopolysaccharide-stimulated RAW 264.7 cells through reduced MyD88 expression[J].Innate Immunity 2008,14:109-115.
    38. Caprotti R, Brivio F, Fumagalli L, et al. Free-from-progression period and overall short preoperative immunotherapy with IL-2 increases the survival of pancreatic cancer patients treated with macroscopically radical surgery[J]. Anticancer Res. 2008,28(3B):1951-1954.
    39. Tjemsland L, Screide JA, Matre R, et al. Pre-operative [correction of Properative] psychological variables predict immunological status in patients with operable breast cancer[J]. Psychooncology.,1997,6(4):311-320.
    40. Savitha D, Raghavendra RK, Girish SP,et al. Effect of surgical stress on neutrophil function[J]. Indian J Physiol Pharmacol,2008,52(3):302-306.
    41. Smyth MJ,Cmwe NY,Godfrey DI.NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibro-sarcoma[J].Int Immunol,2001,13(4):459—463.
    42. Liang JT, Shieh MJ, Chen CN, et al. Prospective evaluation of laparoscopy- assisted colectomy versus laparotomy with resection for managenment of complex polyps of the sigmoid colon[J]. World J Surg, 2002, 26(3):377-383.
    43. Janice AN. Perioperative care of the immunocompromised patient [J].Aorn J,2007,3(85):544-560.
    44. Litnski GS. Profiles in laparoscopy: Mouret, Dubois, and Periss at: the laparoscopic breakthrough in Europe(1987-1988)[J]. JELS, 1999, 3:163.
    45. Karin E, Lisa MC, et al. The inflammatory tumor microenvironment and its impact on cancer development[J]. Infection, Inflammation and Neoplasia, 2006, 13:118-137.
    46. Lin EY, Gouonevans V, Nguyen AV, et al. Inflammation and cancer: the link grows stronger[J]. Cancer Res.2004,147(202):966-968.
    47. James S, Natalia Y, Zhang T, Gang HY, et al. Antagonism of E2F-1 regulated Bnip3 transcription by NF-κB is essential for basal cell survival[J]. PNAS, 2008, 52(105): 20734-20739.
    48. Eli P, Rinnat MP, Ilan S, et al. NF-κB functions as tumor promoter in flammation- associated cancer[J]. Nature,2004, 23(431):461–466.
    49. David GD, Lisa MC. Balancing immune response:crosstalk between adaptive and innate immune cells during breast cancer progression[J]. Review inflammation and breast cancer, 2007, 9: 212-311.
    50. Delman KA, Zager JS, Bennett JJ, et al. Efficacy of multiagent herpes simplex virus amplicon-mediated immunotherapy as adjuvant treatment for experimental hepatic cancer[J]. Ann Surg, 2002, 236(3):337-343.
    51. Gary RS, Sotiris M. Cancer inflammation and the AT1 and AT2 recepters[J].J of inflammation, 2004,1(30): 1-12.
    52. Arthur MS. The psychological impact of postoperative cancer [J]. Bull.N.Y.Acad. Med. 1957,3:428-4458.
    53.张力,李向阳,卢翔等.胃癌术后免疫化疗的远期疗效评价【J】.中国误诊学杂志,2008,8(8):1765-1768.
    54.熊高风,彭景椴等,肿瘤细胞侵袭研究进展【J】.生物科学进展,2008.39(1):33-36.
    55. Calzascia T, et al. CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity[J]. Proc Natl Acad Sci USA,2008,105:2999–3004.
    56. Wong SB, Bos R, Sherman LA. Tumor-Specific CD4+T Cells Render the tumor environment permissive for infiltration by low-avidity CD8+T Cells[J]. J Immunol, 2008,180: 3122–3131.
    57. Chen WH,Megan SF, Kevin JY, et a1.The role and mechanisms of double negative regulator T cells in the suppression of immune response[J].Cel&Mol Immunology,2004,5(1):328-335.
    58. Kimberly A, Chinanese-Bullock, Sarah TL, et al. Multi-peptide vaccines vialed as peptide mixtures can be stable reagents for use in peptide-based immune therapy[J]. Vaccine, 2009, 27: 1764-1770.
    59. Freda KS, Christian HO, Peter J,et al. DNA vaccines to attack cancer[J]. PNAS, 2004, 101(2):14646-14652.
    60. B.Esmaeli, P Mclaughlin, B.Pro,et al.Prospective trial of targeted radioimmunotherapy with Y-90 ibritumomab tiuxetan(Zevalin) for front-line treatment of early-stage extanodal indolent ocular adnexal lymphoma[J].Annals of Oncology,2009,20:709-714.
    61.胡玲,王洪琦等,中药对肿瘤特异性主动免疫干预的研究思路【J】.中药新药与临床药理, 2008,15(6):435-437.
    62.崔健,赵帆综述,张纪岩,于继云审阅.靶向肿瘤血管的抗体免疫治疗[J].细胞与分子免疫学杂志,2008,24(8):838-840.
    63. Barry W, Hancock MD, Lesley Bruce, et al. The effects of radiotherapy on immunity in patients cured localized carcinoma of the cervix uteri[J].Cancer,1984,53:884-887.
    64. Cecile LS, Sandie M, Naomi T, et al. Memory-like CD8+ and CD4+ T cells cooperate to break peripheral tolerance underlymphopenic conditions[J]. PNAS, 2008,49(105): 19414- 19419.
    65. Lu B, Finn OJ. T-cell death and cancer immune tolerance[J]. Cell death and differ, 2008,15:70-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700