基于MEMS技术的热剪切应力传感器的设计与制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确地对流体中的剪切应力进行测量,在微流控系统、工业流程控制、生物医学应用等许多领域里都有着重要的意义。基于MEMS技术的剪切应力传感器技术是最有前景的一种技术,其中,热剪切应力传感器最易于加工并集成化。
     本文应用有限元分析软件,模拟和分析四种不同(硅片、玻璃、空气腔及真空腔)基底的热场分布,得出结论,采用玻璃基底真空腔结构时,绝热效果最好;并用ANSYS对热剪切应力传感器的流体热场、压力场、速度场以及剪切应力本身进行模拟分析。设计了适合实验室加工的硅基热剪切应力传感器以及玻璃基热剪切应力传感器,提出了采用背面开口制作真空腔,并用铂取代多晶硅作电阻,采用铝作牺牲层,改进了剥离工艺,制作出铂电极最小线宽50μm,厚度100nm的基于玻璃和硅基底的热剪切应力传感器。对完成制作的器件进行了电阻温度系数的标定,测得其值为0.00257/℃,并测试了它们的稳态电热特性,其V-I、P-T曲线表明,在相同工作条件下,玻璃基底的热剪切应力传感器向基底传输的热量明显小于硅基底,更适合于加工热剪切应力传感器,这一结论很好的验证了前面的模拟结果。
The accurate measurement of wall shear stress is of vital importance to a broad application spectrum, such as micro-fluidic control, industrial process control and biomedical applications. As one kind of MEMS-based sensors, which are considered as the most promising techniques for measuring wall shear stress, thermal shear stress sensor can be fabricated and integrated easily.
     This paper used FEA (finite element analysis) method to simulate thermal field of four different (silicon, glass, air cavity and vacuum cavity) substrates, and concluded that the glass substrate with a vacuum cavity has the most effective characteristic of thermal insulation. Meanwhile, the thermal field, pressure field, velocity field, and shear stress of the flow was analyzed using ANSYS. The process for the fabrication of silicon-based shear stress sensor and glass-based shear stress sensor were designed to fit with the conditions of our lab well; the scheme of back-side vacuum cavity and substituting poly-silicon resister with Pt were proposed; Using aluminum as the sacrifice layer, the Lift-Off process was improved; Finally, the glass-based and silicon-based thermal shear stress sensor, whose Pt electrodes had the minimum width 50μm and thickness 100μm, were fabricated successfully. The TCR (temperature coefficient of resistance) of Pt film was tested at 0.00257/℃, and their steady electro-thermal characteristics were also studied. Their V-I and P-T curves showed that the sensor with glass substrate had greatly reduced the heat transferred to the substrate, which testified the above simulation results.
引文
[1] Schmidt M. A., Howe R. T., Senturia S. D., et al. Design and Calibration of a Microfabricated Floating-Element Shear-Stress Sensor. Trans. Electron Dev., ED-35, 1988: 750-757
    [2] Padmanabhan A., Goldberg H. D., Schmidt M. A., et al. A Wafer-Bonded Floating-Element shear-Stress Microsensor with Optical Position Sensing by Photodiodes. J. MEMS, 1996, 5: 307-315
    [3] Tseng, F. -G. and Lin C. -J., Polymer MEMS-Based Fabry-Perot Shear Stress Sensor. IEEE Sensors J., December 2003, 3(6): 812-817
    [4] Lin C. -J. and Tseng, F. -G., A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance, Sensors and Actuators A., 2004, 114: 163-170
    [5] Horowitz S., Chen T., Chandrasekaran V., et al. A Micromachined Geometric Moire Interferometric Floating-Element Shear Stress Sensor. AIAA Paper 2004-1042, 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2004
    [6] Oudheusden B., Huijsing J. Integrated flow friction sensor. Sensors Actuators A 1988, 15: 135-44
    [7] Goldberg H. D., Breuer K. S., Schmidt M. A. A silicon wafer-bonding technology for microfabricated shear-stress sensors with backside contacts. Technical Digest, Solid-State Sensor and Actuator Workshop, 1994: 111-5
    [8] Huang J. -B., Liu C., Jiang F., et al. Fluidic Shear-Stress Measurement using Surface-Micomachined Sensors. IEEE, 1995, 0-7803-2624-5
    [9] Huang J. -B., Ho C. -M., Tung S., et al. Micro Thermal Shear Stress Sensors with and without Cavity underneath. IEEE, 1995, 0-7803-2615-6
    [10] Huang J. -B., Tung S., Ho C. -M., et al. Improved Micro Thermal Shear-Stress Sensor. IEEE Transactions on Instrumentation and Measurement, April 1996, 45(2)
    [11] Liu C., Huang C. -B., Zhu Z., et al. A Micromachined Flow Shear-Stress Sensor Based on Thermal Transfer Principles. J. MEMS, 1999, 8: 90-99
    [12] Xu Y., Jiang F., Lin Q., et al. Underwater Shear-Stress Sensor. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2001
    [13] Wang X. -Q., Han Z., Jiang F., et al. A fully integrated shear-stress sensor. In: Proceedings of Transducers 99, 1999: 1074-7
    [14] Sheplak M., Chandrasekaran V., Cain A., et al. Characterization of a micromachined thermal shear-stress sensor. AIAA J., 2002, 40(6): 1099-104
    [15] Naqwi A. A. and Reynolds W. C. Dual Cylindrical Wave Laser-Doppler Method for Measurement of Skin Friction in Fluid Flow. Report No. TF-28, Stanford University, 1987
    [16] Fourguette, D., Modarress, D., Taugwalder F., et al. Miniature and MOEMS Flow Sensors. AIAA Paper 2001-2982, 2001
    [17] Fourguette D., Modarress, Wilson, et al. An Optical EMS-Based Shear Stress Sensor for High Reynolds Number Applications. AIAA Paper 2003-0742, 2003
    [18] T. von Papen, H. D. Ngo, E. Obermeier, et al. A MEMS surface fence sensor for wall shear stress measurement in turbulent flow areas. Digest of technical papers, in: Proceedings of the 11th International Conference on Solid-State Sensors and Actuators Transducers’01), vol. II, Munich, Germnay, 10-14 June 2001: 1476-1479
    [19] T. von Papen, U. Buder, H. D. Ngo et al. A second generation MEMS surface fence sensor for high resolution wall shear stress measurement. Sensors and Actuators A., 2004, 113: 151-155
    [20] Schober M., Obermeier E., Pirskawetz S. et al. A MEMS Skin-Friction Sensor 593-599
    [21] Chandrasekaran V., Cain A., Nishida T., et al. Dynamic Calibration Technique for Thermal Shear Stress Sensors with Variable Mean. Flow. Experiment in Fluids, 2005, 39: 56-65
    [22] Shajii J., Ng K. -Y., and Schmidt M. A. A Microfabricated Floating-Element Shear Stress Sensor using Wafer-Bonding Technology. Journal of Microelectromechanical Systems, June 1992, 1(2)
    [23] Jiang F., Tai Y. -C., Gupta B., et al. A SURFACE-MICROMACHINED SHEAR STRESS IMAGER. IEEE, 1996, 0-7803-2985-6/96
    [24] Soundararajan G., Rouhanizadeh M., Yu H., et al. MEMS Shear Stress Sensors for Microcirculation. Sensors and Actuators A., 2005, 118: 25-32
    [25] Huang A., Lew J., Xu Y., et al. Microsensors and Actuators for Macrofluidic Control. IEEE Sensors Journal, August 2004(4)
    [26] Pan T., Hyman D., Mehregany M., et al. Characterization of Microfabricated Shear Stress Sensors. IEEE, 1995, CH34827-95
    [27] Gupta B., Goodman R., Jiang F. et al. Analog VLSI System for Active Drag Reduction. IEEE, 0272-1732-96
    [28] Iliescu C., Jing J., Tay F. -E. H., et al. Characterization of masking layers for deep wet etching of glass in an improved HF/HCL solution. Surface & Coating Technology, 2005, 198: 314-318
    [29]周鸿仁,刘秀蓉,徐蓓娜.直流磁控溅射铂电阻薄膜.电子科技大学学报, 1997. 12(6)
    [30]孔令英.影响磁控溅射膜质量的工艺因素.半导体技术, 1997, 22(5): 21-23
    [31]刘大震等. PCR生物芯片微反应腔的制作及其热分.,微纳电子技术, 2003(7)
    [32]席文柱等.硅基PCR生物芯片微型加热器及温度传感器的研究.微纳电子技术, 2003(8)
    [33]闫卫平,朱剑波等.金属薄膜加热器的研究.传感技术学报, 2004(4)
    [34]张旭,杨承,黄成军等.主动式生物芯片技术.微电子学, 2003, 33: 324-330
    [35]唐伟忠.薄膜材料制备原理技术及应用.北京:冶金工业出版社, 1998: 333-350
    [36]刑婉丽,程京.生物芯片技术.北京:清华大学出版社, 2001
    [37]郑伟涛.薄膜材料与薄膜技术.北京:化学工业出版社, 2004: 122-124
    [38]薛增泉,昊全德,李洁.薄膜物理.北京:电子工业出版社, 1991: 116-117
    [39] Haritonidis J. -H., The measurement of wall shear-stress. In: Gad-el-Hak M, editor. Advances in fluid mechanics. Berlin: Springer, 1989: 229-61
    [40] Kim I. -C., Lee S. -J., Charaterization of a miniature thermal shear-stress sensorwith backside connections. Sensors and Actuators A., 2006, 128: 305-311
    [41] Ho C. -M., Tai Y. -C., Microelectromechanical systems (MEMS) and fluid flows. Annu Rev Fluid Mech., 1998,30: 579-612
    [42] Stewartson K., Flow between two rotating coaxial discs. Proc. Camb. Philos. Soc., 1953, 49: 333-341
    [43] Brown G. L., Davey R. F., The calibration of hot films for skin friction measurement, Rev. Sci. Instrum, 1971, 42(11): 1729-1731
    [44] Chow E. M., Chandrasekaran V., Partridge A. et al. Process compatible Microelectromech. Syst., Dec. 2002, 11(6): 631-640
    [45] Goldberg H. D., Breuer K. S., Schmidt M. A., A silicon wafer-bonding technology Sensors and Actuator Workshop, Hilton Head, Carolina, June 13-16 1994: 111-115
    [46] Winter K. G., An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers. Progress in the Aeronautical Sciences, 1977, 18: 1-57
    [47] Haritonidis, J. H., The Measurement of Wall Shear Stress. Advances in Fluid Mechanics Measurements, Ed. by M. Gad-El-Hak, Springer-Verlag, 1989: 229-261
    [48] Fernholtz H. -H., Janke G., Schober M. et al., New Developments and Applications of Skin-Friction Measuring Techniques. Meas. Sci. Technol., 1996, 7: 1396-1409
    [49] Sheplak M., Padmanabhan A., Schmidt M. A. et al., Dynamic Calibration of a Shear Stress Sensor using Stokes Layer Excitation. AIAA Journal, 200, 39(5)1: 819-823
    [50] Pan T., Hyman D., Mehregany M. et al. Microfabricated Shear Stress Sensors. Part 1: Design and Fabrication. AIAA J., 1999, 37: 66-72
    [51] Hyman D., Pan T., Reshotko E. et al. Microfabricated Shear Stress Sensors. Part 2: Testing and Calibration. AIAA J., 1999, 37(6): 73-78
    [52] Ho C. -M. and Tai Y. -C., Microelectromechanical Systems (MEMS) and Fluid Flows. Annu. Rev. Fluid Mech., 1998, 37: 579-612
    [53] Cain A., Chandrasekaran V., Nishida T. et al. Development of a Wafer-Bonded Silicon Nitride Membrane Thermal Shear-Stress Sensor with Platinum Sensing Element. Technical Digest, Solid-State Sensor and Actuator Workshop, 2000: 300-303
    [54] Yoshino T., Suzuki Y., Kasagi N. et al. Optimum Design of Micro Thermal Flow Sensor and Its Evaluation in Wall Shear Stress Measurement. Int. Conf. EMS'03, 2003: 193-196
    [55] Chandrasekaran V., Cain A., Nishida T. et al. Dynamic Calibration Technique for Thermal Shear Stress Sensors with Variable Mean Flow. AIAA Paper 2000-0508
    [56] Ling S. -C. and Hubbard, P. -G., The Hot-Film Anemometer: A New Device for Fluid Mechanics Research. J. Aero. Sci., 1956, 23: 890-891
    [57] Jiang F., Tai Y. -C., Gupta B. et al. A Surface-Micromachined Shear-Stress Imager. Proc. IEEE Micro Electro Mechanical Systems Meeting, San Diego, CA., 1996: 110-115
    [58] Huang J. B., Jiang F., Tai Y. -C. et al. A Micro- Electro- Mechanical- System- Based Thermal Shear-Stress Sensor with Self-Frequency Compensation. Measurement Science and Technology, Aug. 1999, 10(8): 687-696
    [59] Sheplak M., Cattafesta L., Nishida T., MEMS shear stress sensors: promise and progress. AIAA., 2004-2606
    [60] Naughton J. -W., Sheplak M., Modern developments in shear-stress measurement. Progress in Aerospace Sciences., 2002, 38: 515-570

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700