圬工拱桥计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圬工拱桥是一种历史悠久的桥梁结构型式。它以坚固耐久、外形美观、载重潜力大、维修费用省、取材方便、所需技术工种较少、施工技术简单、建造成本低等特点而著称。但由于圬工拱桥所用材料的特殊性,其自身的发展受到很大的限制。不久前湖南凤凰桥的垮塌给世人敲响了桥梁建设的警钟,同时也广泛引起了广大桥梁建设者对圬工拱桥建设的注意。现行的圬工拱桥的计算方法,绝大多数还是以传统拱轴理论为依托,将拱上建筑视为荷载的形式加载至主拱圈上。这种传统的计算方法未能很好的体现拱上建筑与主拱圈的联合作用,即未能很好的体现拱上建筑与主拱圈作为一个整体承受荷载的效果。有限元方法的问世很好的弥补了这一传统计算方法的缺陷,通过建立理论模型,将主拱圈与拱上建筑构成一个统一的整体承受外部荷载,这不仅能更加科学的分析主拱圈的受力特性。也弥补了传统计算理论无法按照实际施工工况逐步分析结构受力的缺点。使得对于圬工拱桥的受力特性的分析,更加全面、更加接近工程实际。
     鉴于本文重点在于研究圬工拱桥计算方法,故首先介绍了圬工拱桥的发展史、传统设计理论的研究概况及目前各种设计理论及设计方法。重点介绍了传统理论中无铰拱的计算方法。通过对传统计算方法的阐述,分析了各种设计理论及方法的不足,结合实际工程中圬工拱桥的坍塌案例进而提出圬工拱桥设计理论研究的实际意义。
     由于圬工材料不是均质材料,且将有限元方法应用于圬工拱桥这种特定的桥型并不是较为常见的计算方法,故文中以洛泽河桥为工程实例,分别采用传统悬链线拱轴理论、MIDAS/CIVIL有限元计算程序及桥梁博士计算程序对其进行了静动力及温度效应的分析。并将传统悬链线拱轴理论、MIDAS/CIVIL梁单元、桥梁博士在恒载作用以及温度效应下的分析结果进行了对比,以确定MIDAS/CIVIL梁单元对圬工拱桥计算分析的准确性,得出了悬链线拱轴理论可以对圬工拱桥受力特性进行初步控制,但不能很好反映分步施工情况下,圬工拱桥实际受力情况的结论。随后,以三种不同的单元(梁单元、壳单元、实体单元)对洛泽河桥进行了有限元分析,将三者的分析结果进行了对比。发现对于大跨径圬工拱桥,要精确分析实际受力情况,最适宜的分析方法还是采用实体单元进行仿真分析。
     随后,根据前述计算所得出的结论并结合传统悬链线拱轴理论,对不同跨径不同矢跨比的等截面圬工拱桥进行了有限元模拟分析,得出了不同跨径及矢跨比情况下,如何合理选择主拱圈材料及截面的结论。
Masonry arch bridge is sort of bridge with a long history. It is peculiar for its feature that it's beautiful, firm and durable, low-cost in maintenance and repair, convenient in collecting construction materials, simple in construction technique, low cost in construction, and it need less categories of technique workers than the other kind of bridges. However, since the materials used in masonry arch bridge are particular, the application of the bridge is restricted. It's the collapse of Fenghuang bridge in Hunan, which just happened not long ago, that brings about a big bomb in the field of bridge construction and makes lots of bridge constructor focus their attention on the construction of masonry arch bridge. Majority of the present calculating methods are based on the traditional ones, which regarded the structure above the main arch as a sort of load that worked on the main arch. Thus the coactions of the structure above the main arch and the main arch, which means that the structure above the main arch and the main arch should be regarded as an integration to bear load, couldn't be well reflected according to the traditional calculating method. By establishing theoretical models in finite element method whose emerging greatly fill up the blank of the traditional calculating method, which make the main arch and the structures above the main arch integrated to bear external load, the mechanical characteristics of the main arch under the external load can be analyzed more properly and scientifically. The FEM also make up that the traditional calculating method couldn't analyze the bridge step by step according to the construction stage, which make the analyzing course more effective and could be widely applied in the actual projects.
     Since this paper focus on discussing calculating method of the arch bridges, the history of masonry arch bridge's development and the general situation of research in the theory of traditional design methods have been expressed in the very beginning. By elaborating the traditional calculating method, both the advantages and the disadvantages of varieties of the present design theories and methods are represented in this text, which mostly introduced the calculating method of the arch with no articulations. Combined with the cases that bridge collapse in the actual projects ,it is proposed that it make sense to research on design theory and calculating method of masonry arch bridges.
     As masonry materials are not homogeneous, and the finite element method has not been widely applied in this typical bridge. Therefore, as for instance, traditional catenary arch axis theory (calculating method), midas/civil FEM calculating program and doctorbridge calculating program are used to analyze the Luozehe bridge under static load , dynamic load and temperature effect. On one hand, the analyzing results in different methods had been compared afterwards in order to check if the analyzing method used in the element of beam is accurate. And then it is found out that the calculating result of traditional catenary arch axis theory could play a role of preliminary control of the mechanical characteristics of main arch. But it could not well express the mechanical characteristics of main arch step by step as the construction stage. On the other hand, three different elements-beam, shell, solid are used to establish totally different models to calculate the static and dynamic effect of Luozehe bridge. By comparing the result from three different models, it is confirmed that only the simulation analyzing method used solid element can exactly reveal the mechanical characteristics of main arch of big span masonry arch bridge.
     And then according to the conclusions made above, masonry arch bridges with uniform sections, under different span of different ratio of rise to span are simulated in FEM program. And how to choose proper materials and sections under different spans of different ratios of rise to span is quantified.
引文
[1]范立础主编.桥梁工程.人民交通出版社.1993.
    [2]宋海斌.大跨圬工拱桥计算方法和理论初步探讨.2001.9
    [3]Boothby,T.E.Domalik.,D.E.and Dalal,V(1998).Service load response of masonry arch bridges.J.Struct.Eng,124(1),17-23.
    [4]胡崇武.大跨度石拱桥设计与施工关键技术研究.2005.3
    [5]王世槐.圬工拱桥.北京:人民交通出版社.1988.
    [6]Thomas E.Boothy,Daniel E.Domalik,Vikram A.Dalal,Sevice load Response of Masonry Arck Bridges,Journal of Structural Engineering,1998.7
    [7]陆德庆主编.中国石桥.人民交通出版.1992
    [8]夏永旭主编.板壳力学中的加权值法.西北工业大学出版社.1994
    [9]左成平、秦荣.样条加权残值配点法分析大跨度钢筋混凝士无铰拱内力的几何非线性影响.第三届全国加权残值法会议论文集.1993
    [10]钟新谷,曾庆元.加权残值法在钢筋混凝土拱桥非线性有限元分析中的应用.计算力学学报.1999.(4).
    [11]刘志辉,蒲嘉薇,乔为国.大跨石拱桥结构计算及承载力评定.甘肃科技,2007.(2).
    [12]Alex Rong.Structural Analysis of an Ancient Arch Bridge Using modern Technology.Structures 2004.ASCE 2004:1-8.
    [13]Stern.G(2001).Constructions with Small-Diameter Round wood.Forest Products Journal.VOI.51,No.4,E.
    [14]胡崇武,周卫.丹河石拱桥设计施工与科研特点[J],公路,2001,(2).
    [15]胡崇武,范立础.大跨度分步施工石拱桥仿真分析[J].中国公路学报,2002,(2).
    [16]王国鼎,钟圣斌.桥梁计算示例集-拱桥,人民交通出版社,2000.10
    [17]钱令希.赵州桥承载力分析.土木工程学报,1987.39-48.
    [18]王志辉.半圆石拱桥施工过程的承载力分析.2006年9月.第14卷.第3期.76-79.
    [19]胡崇武,范立础.大跨度石拱桥拱上结构联合作用分析与研究.公路交通科技.2005.1
    [20]田云跃.乌巢河大桥施工的主要措施.中南公路工程.1991.4
    [21]田云跃.湖南轻型石拱桥的变迁.湖南交通科技.1995.3
    [22]田云跃.石拱桥施工中塌垮原因及设计、施工改进意见.湖南交通科技.1992.2
    [23]项海帆主编.高等桥梁结构理论.人民交通出版社.2001
    [24]洪锦如编著.桥梁结构计算力学同济大学出版社.1998
    [25](美)约翰M.比格斯著.结构动力学.人民交通出版社.1982
    [26]公路桥涵设计规范(合订本).人民交通出版社.1995
    [27]公路桥涵施工技术规范.人民交通出版社.2001
    [28]公路桥涵设计通用规范(JTG D60-2004).人民交通出版社.2004.5
    [29]顾懋清,石绍甫.公路桥涵设计手册-拱桥(上).人民交通出版社.2000.7
    [30]胡崇武,刘士林,周卫,等.146米石拱桥设计与研究[A].中国土木工程学会桥梁及结构工程学会第十三届年会论文集[C].上海:同济大学出版社,1998.280-284.
    [31]公路施工手册,桥涵上下册.人民交通出版社.2000
    [32]胡大琳.拱式、拱上结构钢筋混凝土拱桥极限承载能力分析.西安公路学院学报.1994.12
    [33]Molins,C.and Roca,P.(1998).Load capacity of multi-arch bridges.Arch bridges,A.Sinopoli,Ed,Balkema,Rotterdam,The Netherlands,213-222.
    [34]胡崇武,等.The Longest Span Stone Arch Bridge in the World.ARCH'01.Paris.2001.
    [35]沈蒲生编著.结构分析的计算机方法.湖南科学技术出版社.1994
    [36]吴家龙编著.弹性力学.同济大学出版社.1996
    [37]虞建成.系杆拱桥空间内力分析.华东公路.1998.12
    [38]黄黎丽,严国敏.冰岛的一座组合拱桥.国外桥梁.1997.3
    [39]夏永旭主编.板壳力学中的加权值法.西北工业大学出版社.1994
    [40]栗一凡主编.材料力学.高等教育出版社.1993
    [41]龙驭球,包世华编.结构力学.高等教育出版社.1998
    [42]邵容光主编.结构设计原理.人民交通出版社.1995
    [43]丹河大桥施工监控报告.山西省交通科学研究院.2000.12
    [44]顾安邦,刘忠,周永兴.万县长江大桥混凝土时效和几何、材料等非线性因素影响分析.重庆交通学院学报.1999.4
    [45]贺拴海,李子青,张翔,魏崇向著.现代桥梁结构分析.陕西人民出版社.1993
    [46]王祖城,汪家才主编.弹性和塑性理论及有限元法.冶金工业出版社.1983
    [47]0.C.监凯维奇著.有限元.科学出版社.1985
    [48]Thomas E.Boothby,M.ASCE,and Paul J.Fanning.Load Rating of Masonry Arch Bridges:Refinements.Journal of Bridge Engineering,May 2004.304-306.
    [49]李瑞遐编著.有限元与边界元法.上海科技教育出版社.1993
    [50]蒋友谅编著.非线性有限元.北京工业学院出版社.1988
    [51]Fanning,P.J,and Boothby,T.E.(2003).Experiment-based assessment of Masonry arch bridges.Proc.Inst.Civ.Eng.Bridge Eng.156(BE3),109-116.
    [52]Hughes,T.G.and Blackler,M.J.(1997).A review of U.K.masonry arch assessment methods.Proc.Inst.Civ.Eng.Struct.Build,122,305-315.
    [53]G.R.Henry.Jointless Bridges-the knows and the unknowns,Concrete international,1994(4).
    [54]G.P.Paterson.The UK Department of Transport view on continuity-integral bridge,《Continuous and integral bridges》,E&FN SPON,1993.
    [55]W.H.Robinson and A.G.Tucker.Test Results for Lead-Rubber Bearings for WM.Clayton Building,Toe Toe Bridge and Waiotukuouna bridge.Bulletin of the New Zealand National,Society for Earthquake Engineering.Vol.14,1981.3
    [56]A.G.Tarics,Composite seismic Isolator and Method,International workshop on USA of Rubber Based Bearing for Earthquake Protection of Building,Shantou China,May 17-19,1994.
    [57]姚玲森.桥梁工程[M].北京:人民交通出版社,1985.
    [58]范立础.桥梁工程[M].北京:人民交通出版社,1987.
    [59]欧阳旺云.道路、桥梁施工与计算实例[M].北京:中国建材工业出版社,1996.
    [60]Masao Lizuka,A macroscopic model for Predicting Large-deformation behaviors of laminated rubber bearings,Engineering Structures 22(2000)323-334.
    [61]Climent Molins,Pere Roca,Capacity of Masonry Arches And Spatial Frames,Journal of Structural Engineering,1998.6.
    [62]毛瑞祥,程翔云主编.公路桥涵设计手册-基本资料.人民交通出版社.1997.5
    [63]李宗禄.等截面悬链线圬工拱桥计算程序.广西交通科技.1997.9
    [64]林阳子,黄侨,任远.《拱桥拱轴线的优化与选形》.公路交通科技.2007.3
    [65]张洪俊.SAP2000桥梁结构分析应用方法与实例[M].北京:人民交通出版社,2005
    [66]郑晓燕,吴文清,王发国.考虑温度自约束应力的圬工拱桥温度应力计算.合肥工业大学学报,1999.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700