随机投影的观测方法及其在超宽带信号采样中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代信号处理中,人们对信息需求量的不断增长使得携带信息的信号带宽变得越来越宽,对信号数字化带来了极大的挑战。因此对超宽带信号的数据获取方法研究已成为信号处理领域中一个非常重要的研究内容。如果根据Nyquist采样定理对超宽带信号采样,鉴于现有ADC(Analog-to-Digital Converter)芯片的工艺水平,单个ADC芯片所获得的样本无法同时具有高采样率和高分辨率的性质。在本文中,我们针对超宽带信号的数据获取方法展开研究探讨,一方面,在具有信号先验的合作性环境下,研究了基于压缩感知理论,利用主动式雷达的先验知识,低速率获取超宽带回波信号的方法。为了有效地应用压缩感知理论对超宽带雷达信号进行低速获取,分别对雷达回波信号的稀疏表示方法和模拟信号的随机观测方法进行了研究。另一方面,在无法获得信号先验的非合作环境下,研究超宽带信号的高速率高分辨率获取方法。
     1.我们从模拟信息转换器(Analog-to-Information Converter, AIC)入手,研究其构成组件和等效的观测矩阵。然后将其应用于雷达回波信号的低速获取,提出了基于AIC结构的雷达回波信号获取系统。在构造了回波信号的稀疏字典的前提条件下,所提出的系统可以实现对回波信号的随机观测与优化重构。该系统的应用场景是使用主动式雷达对静态点目标进行探测,因此可以根据感兴趣目标的特点确定回波信号的数学模型。在通常使用的主动式探测模型中,由多个目标回波构成的回波信号可以表示为发射信号移位形式的线性叠加。因此,把发射信号离散化后进行能量归一化处理,利用处理后信号的多个时移形式构成字典,可达到稀疏表示回波信号的目的。这样,通过构造回波信号的稀疏字典,可以满足应用压缩感知理论对雷达回波信号进行低速观测的前提条件,保障回波信号低速观测后能够被高概率地成功重构。
     2.考虑到AIC结构对信号的稀疏变换矩阵缺乏普适性,为了在理论上得到对信号变换具有普适性的观测矩阵,即不论稀疏表示处理采用的基函数具有何种时长特性,对系数向量的观测矩阵(即信号的观测矩阵与信号变换矩阵的乘积)都具有良好的性质,提出了基于随机投影的并行采样结构(Parallel Sampling StructureBased on Random Projection, PSRP)。在该多通路结构中,每个通道对信号进行随机调制、积分与采样,得到信号的一个观测数据。由于PSRP结构的等效观测矩阵具有良好性能,因此,把该结构用作观测结构对雷达回波信号进行观测时,与基于AIC结构的雷达回波获取系统相比,为了达到同等的重构质量,采用所提出的PSRP结构的系统需要的观测数量会大大减少。而且后者的噪声鲁棒性能更优。
     3.为了在实践中降低观测系统的复杂度,使其与常规的A/D转换电路具有兼容性,提出了直接欠采样率随机感知(Direct Sub-Nyquist Random Sampling, DSRS)方法,通过调整常规基于Nyquist定理的A/D电路的采样时序即可实现对信号的随机观测。除了需要重新设计采样时钟,传统采样电路的其他部分并不需要重新设计就可以用于压缩感知框架下的信号观测处理。利用DSRS结构对信号进行观测处理,大大降低了压缩感知框架下信号采集系统的尺寸、重量、耗能以及成本。把该结构用于超宽带雷达接收系统对回波信号进行观测,仿真实验验证了在一定的条件下,该结构可以在压缩感知的框架下实现对信号随机观测的目的。
     4.在非合作性环境下,研究了超宽带信号的高速率高分辨率采样方法。对一般的超宽带信号,我们仍然沿用传统的信号模型,即待采样信号是带限的。为了同时达到高速率和高分辨率,本文中超宽带信号的采样使用了所提出的基于随机投影的并行采样结构,即PSRP结构。使用M通道的PSRP结构进行信号采样时,由于每个通道中ADC的速率是整个结构采样速率的1/M,因此每个通道可使用低速率、高分辨率的ADC芯片,该结构的输出是高速率高分辨率的信号样本。不同于基于压缩感知的采样系统,该系统既没有利用信号的先验信息,也不把降低采样数量作为目的,所以获取的数据量与未知的信号样本量相同。因此信号重构可通过快速求解一个线性方程组实现。
     为了在并行系统中控制通道数,进而降低系统实现复杂度,对信号需要进行分段处理,分段处理会带来截断误差。为了抑制截断误差,本文给出了两种解决策略。一种是基于软件计算的方法,采用反对称的信号扩展技术,该方法虽然不能彻底消除截断误差,但不会带来硬件设备上的负担。另一种方法是在信号投影采样处理前,采用一个高速的采样保持器(Sampling-and-Hold,S/H)对信号进行预处理,该处理可以完全消除截断误差,但S/H电路会在一定程度上提高系统成本。可以根据实际情况与需要,选择使用反对称扩展技术或高速S/H电路的并行采样系统以满足不同精度的高速率信号获取需求。
In modern signal processing, since the requirement of information amountincreases continually, the band of signal for carrying information becomes wider andwider, which brings a huge challenge for signal discretization. Therefore the research ondata acquisition for ultra wideband (UWB) signal became very important in the area ofsignal processing. If the sampling of UWB signal is implemented based on the Nyquisttheorem, the properties of high speed and high resolution for the samples cannot bepossessed at the same time, considering the technology of current ADC chips. Thispaper studies the data acquisition of UWB signal for two different situations. First,considering a cooperative environment in which some prior knowledge can be obtained,we study the measuring method for the echo signal in UWB active radar based on thetheory of compressed sensing, in which the prior knowledge of active radar is usedappropriately. In order to effectively measure the echo signal of UWB radar at low rate,we focus on the study of the method for representing the echo signal and the measuringmethod for analog signal. Second, for a non-cooperative environment in which no priorknowledge can be obtained besides the signal’s bandwidth, we study the approach tosampling and reconstructing UWB signal with properties of high speed and highresolution.
     1. We start with the analog-to-information converter (AIC) by analyzing itscomponents and equivalent matrices, and then we apply it to measure the echo signal ofUWB radar at low rate. If the echo signal can be sparsely represented in a dictionary, theproposed system can achieve the random measuring of signal and the recovering ofsignal by optimization. The scene of this problem is set to be utilizing an active radar todetect static scattered targets. So the mathematical model of the echo signal can beproperly designed based on the feature of the interested targets. The conventional modelfor active detection is employed in this paper, in which the echo signal containingmultiple target echoes can be represented as the linear summation of the shifted versionof the transmitted signal. A dictionary can be constructed with the shifted versions of aprototype atom which is generated by discretizing and normalizing the transmittedsignal. Therefore, the constructed dictionary can represent the echo signal sparsely. As aresult, the precondition of applying compressed sensing theory on the echo signal inUWB active radar is satisfied, and the successful reconstruction of signal with highprobability can be guaranteed.
     2. Considering the disadvantages of the AIC structure, i.e., the lack of universality forthe transform space of sparse signal representation, in order to get a measurementmatrix with universality for signal representation, that is to say, the equivalentmeasurement matrix for the sparse coefficients vector will have good properties, nomatter how long the duration of the basis functions is, we propose a parallel samplingstructure based on random projection (PSRP). Here the equivalent measurement matrixfor the coefficients vector is the product of the measurement matrix and the transformmatrix for the signal. Each channel of the proposed PSRP structure is composed with arandom modulator, an integrator and an ADC. The output of each channel is ameasurement of input signal. Since the equivalent measurement matrix of the PSRPstructure is with good properties, when the PSPR structure is used as a measuringstructure in a data acquisition system for the echo signal in radar, compared with theacquisition system using AIC structure, the acquisition system using the PSRP structurerequires less number of measurements to achieve the same performance of signalreconstruction. In addition, the latter is more robust to noise.
     3. In order to reduce the complexity of the measuring structure and make itcompatible with the conventional sampling circuit, the direct sub-Nyquist randomsampling (DSRS) method is presented. In the proposed DSRS method, the randommeasurement of signal can be realized by adjusting the trigger time of the conventionalNyquist-based sampling circuit. For a conventional sampling circuit, besides theredesign of sampling clock, there is no need to change the other components to measurea signal based on compressed sensing theory. When the proposed DSRS structure isutilized in the measuring process in the framework of compressed sensing, the size,weight, energy consumption and cost of signal measuring will decrease greatly. Whenthe DSRS structure is employed in the data acquisition system for the echo signal basedon compressed sensing, under certain conditions, it can accomplish the low-ratemeasurement of signal, which is demonstrated by the simulation results.
     4. In non-cooperative (or passive) environment, we research the method for acquiringgeneral UWB signal with high speed and high resolution. For general UWB signal, wefollow the conventional signal model in which the signal to be sampled is assumed to beband-limited. In order to get the high sampling rate and high resolution simultaneously,the sampling of the UWB signal in this paper is achieved by a sampling system with theparallel sampling structure based on random projection (PSRP). When M-channel PSRPstructure is used to sample signal, since the speed of ADC in channel is1/M of thespeed of the whole structure, the low-rate high-resolution ADC chip can be adopted, but the output of the PSRP structure is with properties of high rate and high resolution.Different from the data acquisition system based on compressed sensing, for theproposed system, no prior knowledge on signal besides the signal’s bandwidth is usedand the reduction of sample amount is not the purpose. So the number of themeasurement equals to the number of unknown Nyquist samples. Therefore the signalreconstruction can be accomplished by solving a linear equation, which can beimplemented very fast.
     In order to make the channel number in the PSRP structure as small as possible andmake the complexity of the sampling system as low as possible, the signal is segmentedinto pieces with equal length, which will cause the segmentation error. In this paper, weprovide two strategies to suppress the segmentation error. One is software-basedanti-symmetric signal extension technique which will not bring any burden on hardwareimplement. However, the segmentation error cannot be eliminated completely. Theother is to preprocess the input signal with a high-rate sampling-and-hold circuit, whichcan eliminate the segmentation error completely. But the system cost will increase atsome extent due to the exact device. According to the practical situation and needs, thechoice of parallel sampling system using the ASE technique or the high rate S/H canmeet the different precision of high-rate data acquisition.
引文
[1] Baraniuk R G. More is less: signal processing and the data deluge. Science. Feb.2011,331.717-719.
    [2] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory.2006,52(4).1289-1306.
    [3] Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information. IEEE Transactionson Information Theory.2006,52(2).489-509.
    [4] Candès E. Compressive sampling. Proceedings of the International Congress ofMathematicians. Madrid, Spain, Aug.2006,3.1433-1452.
    [5] Baraniuk R G, Cevher V, Duarte M F. Model-based compressive sensing. IEEETransactions on Information Theory.2010,56(4).1982-2001.
    [6] Candès E, Wakin M. An introduction to compressive sampling. IEEE SignalProcessing Magazine. Mar.2008,25(2).21-30.
    [7] Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAMJournal on Scientific Computing.1998,20(1).33-61.
    [8] Donoho D, Huo X. Uncertainty principles and ideal atomic decomposition. IEEETransactions on Information Theory.2001,47(7).2845-2862.
    [9] Elad M, Bruckstein A M. A generalized uncertainty principle and sparserepresentation in pairs of bases. IEEE Transactions on Information Theory.2002,48(9).2558-2567.
    [10] Hosur S, Tewfik A H. Wavelet transform domain adaptive FIR filtering. IEEETransactions on Signal Processing.1997,45(3).617-630.
    [11] Neelamani R, de Queiroz R, Fan Z, et al. JPEG compression history estimation forcolor images. IEEE Transactions on Image Processing.2006,15(6).1365-1378.
    [12] Skodras A, Christopoulos C, Ebrahimi T. The JPEG2000still image compressionstandard. IEEE Signal Processing Magazine.2001,18(5).36-58.
    [13] Kirolos S, Laska J, Wakin M, et al. Analog-to-information conversion via randomdemodulation. IEEE Dallas Circuits Systems Workshop.2006.71-74.
    [14] Laska J, Kirolos S, Duarte M, et al. Theory and implementation of ananalog-to-information converter using random demodulation. IEEE InternationalSymposium on Circuits and Systems.2007.1959-1962.
    [15] Chen S, Donoho D, Saunders M. Random sampling for analog-to-informationconversion of wideband signals. IEEE Dallas Circuits and Systems Workshop.Dallas, TX, USA, Oct.2006.119-122.
    [16] Baraniuk R, Steeghs P, Compressive radar imaging. IEEE Radar Conference.Waltham, Massachusetts, Apr.2007.
    [17] Tello Alonso M, López-Dekker P, Mallorquí J J. A novel strategy for radar imagingbased on compressive sensing. IEEE Transactions on Geoscience and RemoteSensing.2010,48(12).4285-4295.
    [18] Zhu X X, Bamler R. Tomographic SAR inversion by l1norm regularization-thecompressive sensing approach. IEEE Transactions on Geoscience and RemoteSensing.2010,48(10).3839-3846.
    [19] Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEETransactions on Signal Processing.2009,57(6).2275-2284.
    [20] Duarte M, Davenport M, Takhar D, et al. Single-pixel imaging via compressivesampling. IEEE Signal Processing Magazine. Mar.2008,25(2).83-91.
    [21] Wakin M, Laska J, Duarte M, et al. An architecture for compressive imaging. IEEEInternational Conference on Image Processing (ICIP). Atlanta, Georgia, Oct.2006.
    [22] Gan L, Do T, Tran T D. Fast compressive imaging using scrambled blockHadamard ensemble. Proceedings of European Signal Processing Conference(EUSIPCO). Lausanne, Switzerland, Aug.2008.
    [23] Jacques L, Vandergheynst P, Bibet A, et al. CMOS compressed imaging by randomconvolution. IEEE International Conference on Acoustics, Speech, and SignalProcessing (ICASSP). Taipei, Apr.2009.1113-1116.
    [24] Coskun A F, Su T, Sencan I, et al. Lensfree fluorescent on-chip imaging usingcompressive sampling. Optics&Photonics News.2010,21(12).27.
    [25] Lustig M, Donoho D L, Pauly J M. Sparse MRI: the application of compressedsensing for rapid MR imaging. Magnetic Resonance in Medicine.2007,58(6).1182-1195.
    [26] Trzasko J, Manduca A, Borisch E. Highly undersampled magnetic resonance imagereconstruction via homotopic ell-0-minimization. IEEE Transactions on MedicalImaging.2009,28(1).106-121.
    [27] Schiffner M F, Schmitz G. Rapid measurement of ultrasound transducer fields inwater employing compressive sensing. Proceedings of the IEEE InternationalUltrasonics Symposium (IUS). San Diego, CA, USA, Oct.2010.1849-1852.
    [28] Süzen M, Giannoula A, Durduran T. Compressed sensing in diffuse opticaltomography. Optics Express.2010,18(23).23676-23690.
    [29] Li J, Moon U K. A1.8-V67-mW10-bit100-MS/s pipelined ADC usingtime-shifted CDS technique. IEEE Journal of Solid-State Circuits.2004,39(9).1468-1476.
    [30] Ito T, Ueno T, Kurose D, et al. A10-bit,200-MSPS,105-mW pipeline A-to-Dconverter. The Institute of Electronics, Information and Communication Engineers(IEICE), Electronics Express.2005,2(15).429-433.
    [31] Hernes B, Briskemyr A, Andersen T N, et al. A1.2V220MS/s10b pipeline ADCimplemented in0.13μm digital CMOS. Digest of Technical Papers. IEEEInternational Solid-State Circuits Conference (ISSCC).2004.256-257.
    [32] Lee S, Kim K, Kwon J, et al. A10-bit400-MS/s160-mW0.13-μm CMOSdual-channel pipeline ADC without channel mismatch calibration. IEEE Journal ofSolid-State Circuits.2006,41(7).1596-1605.
    [33] Chen C, Yuan J R. A10-bit500-MS/s124-mW Subranging Folding ADC in0.13μm CMOS. IEEE International Symposium on Circuits and Systems (ISCAS).New Orleans, Louisiana, USA, May2007.1709-1712.
    [34] Baringer C, Jensen J F, Burns L, et al.3-bit,8GSPS flash ADC. EighthInternational Conference on Indium Phosphide and Related Materials.1996.64-67.
    [35] Cheng W, Ali W, Choi M-J, et al. A3b40GS/s ADC-DAC in0.12μm SiGe. Digestof Technical Papers. IEEE International Solid-State Circuits Conference (ISSCC).2004.262-263.
    [36] Zing M G, Berroth M, Gerhardt E, et al. High speed ADC building blocks in90nmCMOS.4th Joint Symposium on Opto-and Microelectronic Devices and Circuits(SODC). Duisburg, Germany, Sep.2006.
    [37] Kertis R A, Humble J S, Daun-Lindberg M A, et al. A20GS/s5-Bit SiGe BiCMOSdual-Nyquist flash ADC with sampling capability up to35GS/s featuring offsetcorrected exclusive-or comparators. IEEE Journal of Solid-State Circuits.2009,44(9).2295-2311.
    [38] Le B, Rondeau T W, Reed J H, et al. Analog-to-digital converters. IEEE SignalProcessing Magazine.2005,22(6).69-77.
    [39] Black W C, Hodges D A. Time interleaved converter arrays. IEEE Journal ofSolid-state circuits.1980, SC-15(6).1022-1029.
    [40] Vogel C. The impact of combined channel mismatch effects in time-interleavedADCs. IEEE Transactions on Instrumentation and Measurement.2005,54(1).415-427.
    [41] Jenq Y-C. Digital spectra of nonuniformly sampled signals: theories andapplications-measuring clock/aperture jitter of an A/D system. IEEE Transactionson Instrumentation and Measurement.1988,37.245-251.
    [42] Dyer K C, Fu D, Lewis S H, et al. An analog background calibration technique fortime-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits.1998, SC-33(12).1912-1919.
    [43] Fu D, Dyer K C, Lewis S H, et al. A digital background calibration technique fortime-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits.1998, SC-33(12).1904-1911.
    [44] Jamal S M, Fu D, Chang N C J, et al. A10-b120-Msample/s time-interleavedanalog-to-digital converter with digital background calibration. IEEE Journal ofSolid-State Circuits.2002, SC-37(12).1618-1627.
    [45] Anderson C R, Venkatesh S, Ibrahim J E, et al. Analysis and implementation of atime-interleaved ADC array for a software defined UWB receiver. IEEETransactions on Vehicular Technology.2009,58(8).4046-4063.
    [46] Velazquez S R, Nguyen T Q, Broadstone S R. Design of hybrid filter banks foranalog/digital conversion. IEEE Transactions on Signal Processing.1998,46(4).956-967.
    [47] Feng L, Namgoong W. An oversampled channelized UWB receiver withtransmitted reference modulation. IEEE Transactions on Wireless Communications.2006,5(6).1497-1505.
    [48] Hoyos S, Sadler B M. Ultra-wideband analog-to-digital conversion via signalexpansion. IEEE Transactions on Vehicular Technology. Sep.2005,54(5).1609-1622.
    [49] Shannon C E. Communication in the presence of noise. Proceedings of the Instituteof Radio Engineers. Jan.1949,37(1).10-21. Reprint as classic paper inProceedings of the IEEE. Feb.1998,86(2).447-457.
    [50] Nyquist H. Certain topics in telegraph transmission theory. Transactions ofAmerican Institute of Electrical Engineers (AIEE). Apr.1928,47.617-644. Reprintas classic paper in Proceedings of the IEEE. Feb.2002,90(2).280-305.
    [51] Whittaker J M. Interpolatory function theory. Cambridge Tracts in Mathematicsand Mathematical Physics, no.33. Cambridge, U.K.: Cambridge Univ. Press.1935.ch. IV.
    [52] Papoulis A. Generalized sampling expansion. IEEE Transactions on CircuitsSystem. Nov.1977,24.652-654.
    [53] Unser M. Sampling-50years after Shannon. Proceedings of the IEEE. Apr.2000,88(4).569–587.
    [54] Mallat S G著,杨力华,戴道清,黄文良等译.信号处理的小波导引(原书第2版),北京:机械工业出版社.2002,09.31-36.
    [55] Unser M, Aldroubi A, Eden M. Fast B-spline transforms for continuous imagerepresentation and interpolation. IEEE Transactions on Pattern Analysis andMachine Intelligence.1991,13(3).277-285.
    [56] Lehmann T M, G nner C, Spitzer K. Survey: interpolation methods in medicalimage processing. IEEE Transactions on Medical Imaging.1999,18(11).1049-1075.
    [57] Schoenberg I J. Contribution to the problem of approximation of equidistant databy analytic functions. Quarterly of Applied Mathematics.1946,4.45-99,112-141,.
    [58] Unser M, Aldroubi A, Eden M. Polynomial spline signal approximations: filterdesign and asymptotic equivalence with Shannon's sampling theorem. IEEETransactions on Information Theory. Jan.1992,38(1).95-103.
    [59] Mallat S G. Multiresolution approximations and wavelet orthogonal bases of L2(R).Transactions of the American Mathematical Society.1989,315.69-87.
    [60] Mallat S G. A theory for multiresolution signal decomposition: the waveletrepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989,11(7).674-693.
    [61] Daubechies I. The wavelet transform, time-frequency localization and signalanalysis. IEEE Transactions on Information Theory.1990,36(5).961-1005.
    [62] Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation.IEEE Transactions on Signal Processing.2002,50(6).1417-1428.
    [63] Blu T, Dragotti P, Vetterli M, et al. Sparse sampling of signal innovations. IEEESignal Processing Magazine.2008,25(2).31-40.
    [64] Goyal V K, Fletcher A K, Rangan S. Compressive sampling and lossy compression.IEEE Signal Processing Magazine.2008,25(2).48-56.
    [65] Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundantrepresentations in image processing. Proceedings of the IEEE.2010,98(6).972-982.
    [66] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representationmodeling. Proceedings of the IEEE.2010,98(6).1045-1057.
    [67] Shi G, Liang L, Xie X. Design of directional filter banks with arbitrary number ofsubbands. IEEE Transactions on Signal Processing.2009,57(12).4936-4941.
    [68]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报.2003,31(12A).1975-1981.
    [69]李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望.电子学报.2009,37(1).146-152.
    [70] Brandenburg K. MP3and AAC explained. Audio Engineering Society.International conference.1999.99-110.
    [71] Candès E, Romberg J. L1-magic. http://www.acm.caltech.edu/l1magic/,2007.
    [72] Shi G, Gao D, Song X, et al. High-Resolution imaging via moving randomexposure and its simulation. IEEE Transactions on Image Processing.2011,20(1).276-282.
    [73] Robucci R, Chiu L K, Gray J, et al. Compressive sensing on a CMOS separabletransform image sensor. IEEE International Conference on Acoustics, Speech andSignal Processing (ICASSP). Las Vegas, Nevada, USA, Apr.2008.5125-5128.
    [74] Choi J Y, Kim M W, Seong W. Compressed sensing metal artifact removal in dentalCT. IEEE International Symposium on Biomedical Imaging (ISBI). Boston, USA,Jun.2009.334-337.
    [75] Shi G, Lin J, Chen X, et al. UWB echo signal detection with ultra-low ratesampling based on compressed sensing. IEEE Transactions on Circuits andSystems-II: Express Briefs.2008,55(4).379-383.
    [76] Herrmann Felix J. Sub-Nyquist sampling and sparsity: getting more informationfrom fewer samples,79th Annual Meeting of Society of Exploration Geophysicists(SEG). Houston, Texas, USA, Oct.2009.
    [77] Moore B. Principal component analysis in linear systems: controllability,observability, and model reduction. IEEE Transactions on Automatic Control.1981,26(1).17-32.
    [78] Hyvarinen A. Fast and robust fixed-point algorithms for independent componentanalysis. IEEE Transactions on Neural Networks.1999,10(3).626-634.
    [79] Huber P J. Projection pursuit. The Annals of Statistics.1985,13(2).435-475.
    [80] Gribonval R, Bacry E. Harmonic decomposition of audio signals with matchingpursuit. IEEE Transactions on Signal Processing.2003,51(1).101-111.
    [81] Safavian S R, Rabiee H R, Fardanesh M. Projection pursuit image compressionwith variable block size segmentation. IEEE Signal Processing Letters.1997,4(5).117-120.
    [82] Mallat S G, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEETransactions on Signal Processing.1993,41(12).3397-3415.
    [83] Candès E, Tao T. Near-optimal signal recovery from random projections: universalencoding strategies?. IEEE Transactions on information theory.2006,52(12).5406-5425.
    [84] Donoho D. For most large underdetermined systems of linear equations theminimal l1-norm solution is also the sparsest solution. Communications on Pureand Applied Mathematics.2006,59(6).797-829.
    [85] Marcia R, Willett R, Harmany Z. Compressive optical imaging: architectures andalgorithms. Optical and Digital Image Processing: Fundamentals and Applications.Wiley,2011. Final revision submitted.
    [86] Romberg J. Imaging via compressive sampling. IEEE Signal Processing Magazine.Mar.2008,25(2).14-20.
    [87] Candès E, Romberg J, Tao T. Stable signal recovery from incomplete andinaccurate measurements. Communications on Pure and Applied Mathematics.2006,59(8).1207-1223.
    [88] Candès E, Romberg J. Sparsity and incoherence in compressive sampling. InverseProblems.2007,23(3).969-985.
    [89] Peyré G. Best basis compressed sensing. IEEE Transactions on Signal Processing.May2010,58(5).2613-2622.
    [90] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundantdictionaries. IEEE Transactions on Information Theory.2008,54(5).2210-2219.
    [91] Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restrictedisometry property for random matrices. Constructive Approximation.2008,28(3).253-263.
    [92] Candès E. The restricted isometry property and its implications for compressedsensing. Comptes Rendus Mathematiquec.2008,346(9-10).589-592.
    [93] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using therestricted isometry property. IEEE Transactions on Information Theory.2011,56(9).4395-4401.
    [94] Needell D, Vershynin R. Uniform uncertainty principle and signal recovery viaregularized orthogonal matching pursuit. Foundations of ComputationalMathematics.2007,9(3).317-334.
    [95] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete andinaccurate measurements. Applied and Computational Harmonic Analysis.2008,26.301-321.
    [96] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signalreconstruction. IEEE Transactions on Information Theory.2009,55(5).2230-2249.
    [97] Donoho D. Neighborly polytopes and sparse solution of underdetermined linearequations. Technical Report, Department of Statistics, Stanford University,2004.
    [98] Donoho D, Tanner J. Counting faces of randomly-projected polytopes when theprojection radically lowers dimension. Journal of the American MathematicalSociety.2009,22(1).1-53.
    [99] Donoho D, Tanner J. Neighborliness of randomly-projected simplices in highdimensions. Proceedings of National Academy of Science.2005,102(27).9452-9457.
    [100] Vavasis S A. Derivation of compressive sensing theorems for the spherical sectionproperty. University of Waterloo, CO769lecture notes,2009.
    [101] Yin W, Zhang Y. Extracting salient features from less data via l1-minimization.SIAG/Optimization Views and News.2008,19(1).11-19.
    [102] Garnaev A, Gluskin E. The widths of a Euclidean ball (Russian). DokladyAkademii Nauk.1984,277.1048-1052.
    [103] Donoho D, Tanner J. Precise undersampling theorems. Proceedings of the IEEE.2010,98(6).913-924.
    [104] Davies M, Gribonval R. Restricted isometry property and lp sparse recoveryfailure. Signal Processing with Adaptive Sparse Structured Representations,Saint-Malo, France, Apr.6-92009.
    [105] Berg E van den, Friedlander M P. Probing the pareto frontier for basis pursuitsolutions. SIAM Journal on Scientific Computing.2008,31(2).890-912.
    [106] Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems. IEEE Journal ofSelected Topics in Signal Processing: Special Issue on Convex Optimization forSignal Processing. Dec.2007.1(4).586-597.
    [107] Hale E T, Yin W, Zhang Y. A fixed-point continuation method for l1-regularizedminimization with applications to compressed sensing. CAAM Technical ReportTR07-07, Rice University.
    [108] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of theRoyal Statistical Society, Series B.1996,58(1).267-288.
    [109] Efron B, Hastie T, Johnstone I, et al. Least angle regression. Annals of Statistics.2004,32(2).407-499.
    [110] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEETransactions on Signal Processing.1993,41(12).3397-3415.
    [111] Blumensath Thomas, Davies Mike. Iterative hard thresholding for compressedsensing. Applied and Computational Harmonic Analysis.2008,27(3).265-274.
    [112] Wipf D, Rao D. An empirical Bayesian strategy for solving the simultaneoussparse approximation problem. IEEE Transactions on Signal Processing.2007,55(7).3704-3716.
    [113] Zhang Z, Rao B D. Sparse signal recovery with temporally correlated sourcevectors using sparse Bayesian learning. IEEE Journal of Selected Topics in SignalProcessing.2011,5(5).912-926.
    [114] Babacan S D, Molina R, Katsaggelos A K. Bayesian compressive sensing usingLaplace priors. IEEE Transactions on Image Processing.2010,19(1).53-64.
    [115] Tropp J A. Random filters for compressive sampling.40th IEEE Conference onInformation Sciences and Systems (CISS). Princeton University, New Jersey, USA.Mar.2006.216-217.
    [116] Tropp J A, Wakin M B, Duarte M F, et al. Random filters for compressivesampling and reconstruction. Proceeding of IEEE International Conference onAcoustics, Speech, and Signal Processing (ICASSP). Toulouse, France, May2006.3.872-875.
    [117] Yu Z, Hoyos S, Sadler B M. Mixed-signal parallel compressed sensing andreception for cognitive radio. Proceeding of IEEE International Conference onAcoustics, Speech, and Signal Processing (ICASSP). Las Vegas, Nevada, USA, Apr.2008.3861-3864.
    [118] Bresler Y. Spectrum-blind sampling and compressive sensing forcontinuous-index signals. IEEE Information Theory and Applications Workshop.Jan.2008.547-554.
    [119] Mishali M, Eldar Y C. Blind multi-band signal reconstruction: compressedsensing for analog signals. IEEE Transactions on Signal Processing. Mar.2009,57(3).993-1009.
    [120] Mishali M, Eldar Y C, Tropp J A. Efficient sampling of sparse wideband analogsignals. IEEE25th Convention of Electrical and Electronics Engineers. Israel, Dec.2008.290-294.
    [121] Mishali M, Eldar Y C. From theory to practice: sub-nyquist sampling of sparsewideband analog signals. IEEE Journal of Selected Topics on Signal Processing,Apr.2010,4(2).375-391.
    [122] Mishali M, Eldar Y C, Dounaevsky O. Xampling: Analog to digital atsub-Nyquist rates. IET Circuits, Devices&Systems. Jan.2011.5(1).8-20.
    [123] Ai H, Guo W, Lu Y, et al. Dual branch compressive sensing for analog signal.IEEE13th International Conference on Communication Technology (ICCT). Jinan,China, Sep.2011.801-805.
    [124]丁鹭飞,耿富录.雷达原理第三版.西安:西安电子科技大学出版社.2002.1-4.
    [125] Abbate A, Koay J, Frankel J, et al. Signal detection and noise suppression using awavelet transform signal processor: application to ultrasonic flaw detection. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control. Jan.1997,44(1).14-26.
    [126]费元春.超宽带雷达理论与技术.北京:国防工业出版社.2011.
    [127] Skolnik M I.雷达系统导论.北京:国防工业出版社.1992.7-8.
    [128] Grant M, Boyd S. CVX: Matlab Software for Disciplined Convex Programming,version1.21. Apr2011. Aviable at http://cvxr.com/cvx/.
    [129] Cline A K, Moler C B, Stewart G W, et al. An estimate for the condition numberof a matrix. SIAM Journal on Numerical Analysis.1979,16(2).368-375.
    [130] Massey J L. Shift-register synthesis and BCH decoding. IEEE Transactions onInformation Theory. Jan.1969,15(1).122-127.
    [131] Savir J, McAnney W H. A multiple seed linear feedback shift register. IEEETransactions on Computers. Feb.1992,41(2).250-252.
    [132] Dickson T O, Laskin E, Khalid I, et al. An80-Gb/s231-1pseudorandom binarysequence generator in SiGe BiCMOS technology. IEEE Journal of Solid-StateCircuits.2005,40(12).2735-2745.
    [133] Knapp H, Wurzer M, Perndl W, et al.100-Gb/s27-1and54-Gb/s211-1PRBSgenerators in SiGe bipolar technology. IEEE Journal of Solid-State Circuits.2005,40(10).2118-2125.
    [134] Giles C R, Kahn J M.1Gbit/s integrate-and-dump filter for digitalcommunication systems. Electronics Letters.1989,25(3).212-214.
    [135] Gentile K. Introduction to zero-delay clock timing techniques. Application Notes(AN-0983). Analog Devices2009.
    [136] Win M Z, Scholtz R A. Ultra-wide bandwidth time-hopping spread-spectrumimpulse radio for wireless multiple-access communications. IEEE Transactions onCommunications.2000,48(4).679-691.
    [137] Corrigan T. ADG9xx wideband CMOS switches: Frequently asked questions.Application Note (AN-952), Analog Devices2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700