三维气动式微重力环境模拟平台的智能控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究空间微重力环境地面模拟系统、验证空间机器人的捕获性能是空间机器人研究计划的一项重要组成部分。本论文介绍了目前各种空间微重力环境模拟系统,分析比较了各种模拟系统的优缺点。为了验证正在研究中的空间机器人的捕获性能,本论文提出了两种模拟纳卫星在空间微重力环境下漂浮运动状态的实验平台方案。论文仅研究垂直地面方向的子模拟系统,并重点研究子模拟系统的智能控制系统模块。
     本论文研究的三维气动式空间微重力环境地面模拟系统具有很强的非线性。其中,主动式模拟系统主要表现为比例阀口气体流动非线性、气体压缩性而引起的非线性以及系统摩擦力所引起的非线性。半主动式模拟系统也是一具有强非线性的复杂系统,其主要表现为气缸推力的随机波动、电机滚珠丝杠系统参数摄动引起的非线性以及系统摩擦力因素引起的非线性。由于气体具有压缩性,模拟系统的刚度比较差、固有频率比较低,系统的抗干扰能力比较差。另外,由于摩擦力的存在,这导致系统的稳态精度和动态性能变差。同时,系统在运行过程中参数会发生变化,这也将导致系统的性能变差。以上原因给控制系统设计带来很大的挑战。传统的控制算法都是基于精确的数学模型,而本研究系统无法精确建模,因此需要研究新的控制方案。
     径向基神经网络具有很强的非线性逼近能力、自组织能力、自学习能力和自适应能力,它已广泛应用于非线性系统辨识和控制中。但是,径向基神经网络是一种新兴的神经网络,还存在很多不足,需要不断对其进行研究和完善。本文通过优化径向基神经网络的学习算法来提高网络的学习精度、收敛速度、稳定性和泛化能力,同时结合传统的控制算法构成混合控制器,并应用于空间微重力环境地面模拟系统中。仿真和实验结果表明,本文提出的控制算法是有效的,系统具有良好的动态响应能力、鲁棒性和自适应能力。
     本论文的主要研究工作如下:
     1.本论文采用主动方案来模拟纳卫星在空间微重力环境下的漂浮运动状态,并对该系统的力学、运动学、气体的流量特性进行了分析和实验。研究结果表明,系统只能响应0-4Hz的抓取力,当抓取力信号频率高于4Hz,系统的动态性能很差。对此,本论文采用了一种改进方案,即半主动式微重力模拟系统,并对该系统的力学、运动学做了一定分析和研究。与主动式模拟系统相比,半主动式模拟系统的动态性能大大提高,可以响应频率高于4Hz的抓取力。
     2.本研究系统的压力传感器受到很强的电磁干扰和机械振动干扰,论文采用了相应适当的信号处理方案,并针对传统Butterworth低通滤波器在响应速度、检波精度、稳定性三者之间的矛盾,重新设置Butterworth滤波器的主导极点。实验结果表明,本论文的改进方案可有效平衡传统Butterworth滤波器三大主要性能之间的矛盾,可以提取压力传感器的有效信号。
     3.针对径向基神经网络隐层函数的参数设置难题,论文提出了一种基于密度法的RPCCL聚类算法,基于密度法的RPCCL聚类算法可自动、准确、快速地提取输入样本的特征点,即确定输入样本的聚类数。本论文还成功将其应用于确定径向基神经网络的隐含层结构中。
     4.针对强非线性系统,论文提出了一种基于共轭梯度下降法的混合PSO算法。该混合PSO算法具有很强的搜索能力,并且能够快速、准确定位全局最优点。与标准PSO算法相比,该算法的收敛速度和学习精度可大大提高。论文还将PSO混合算法成功用于优化径向基神经网络权值中。
     5.论文提出了一种用于径向基神经网络的在线序列学习算法,即基于极限学习机的在线序列算法。本文的在线序列学习算法既可以学习一个接一个的训练样本,也可以学习一块接一块的训练样本。与其它在线序列算法相比,本论文的在线序列算法的学习速度和学习精度可大大提高。
     6.为了提高径向基神经网络的泛化性,本论文提出了一种基于局部泛化误差的主动学习算法。该算法采用主动学习方式来选取网络的下一个训练样本,充分利用了系统的已有知识,可以更有效地选择特征训练样本点,减少了网络的训练样本量,大大提高了网络的泛化性能。
     7.针对三维微重力环境地面模拟系统是强非线性系统,提出了基于径向基神经网络的控制方案。对于主动式微重力模拟系统,采用径向基神经网络来逼近和补偿系统的不确定信息,将它作为前馈补偿使跟踪误差快速收敛,并采用滑模变结构控制来消除径向基神经网络的逼近误差及系统不定随机干扰的影响。实验研究结果表明,这个控制方案是有效的。系统具有较好的动态响应能力、鲁棒性和自适应能力;对于半主动式微重力模拟系统,利用径向基神经网络的学习能力来逼近本研究系统,根据径向基神经网络的学习信息在线调整PID控制器的参数,构造一个具有自调整能力的、稳定的自适应控制器。仿真和实验研究结果表明,这个控制方案也是有效的。
One of the key parts of the space robot research project is to develop microgravity simulation platform on the ground in order to test the performance of space robot. The existing microgravity simulation systems are introduced and compared in this paper. To test the performance of the developing space robot, two experimental platforms are proposed for simulating NANO six-degree of freedom floating satellite. The paper only copes with the subordinate simulation systems in the vertical direction, and it focuses on the intelligent control parts of the subordinate systems.
     The microgravity simulation systems are with strong nonlinearity. The nonlinearity of active simulation system is induced by friction force, compressible air, and the proportional valve. The semi-active simulation system is also a complicated system with strong nonlinearity. Its nonlinearity is introduced by friction force, parameters varying and the random pushing force of air-cylinder. Being air compressible, the inherent frequency of simulation system is very low, which makes the system's anti-disturbance performance much worse. The system's accuracy and dynamic performances become much worse for nonlinear friction force. Also, the parameters of simulation system are variable, which also worsen the control system. It's a great challenge to design control systems for such complicated systems. The traditional algorithms are based on accurate models, yet it's very difficult to develop accurate models for the simulation systems.
     Radial Basic Function Neural Network (RBFNN) is good at self-learning, self-organization and approximating the nonlinear system. It has been widely used in nonlinear system identification and control. Whereas, RBFNN is newly proposed, it should be improved continuously. Some new algorithms for RBFNN are proposed to improve the network's accuracy, stability, generalization performance and converging speed. Hybrid controllers based on RBFNN and traditional algorithms are proposed for the simulation systems. The simulation and experimental results show that these control algorithms are effective. The control systems are with good dynamic performance, robustness and self-adaptive performance.
     The paper focuses on the following parts:
     1. An active pneumatic servo scheme is adopted to simulate a NANO satellite how to float in the space. The mechanics, kinematics and hydromechanics of the active simulation system are analyzed. And some experiments are carried out on the simulation system. The experimental results show that the active system can performs well when the frequency of grasping force is lower than 4Hz. Yet it performs much worse at the frequency of grasping force higer than 4Hz. To meet the requirement of the hi-frequncy grasping force, an improved scheme is adopted in the paper, which is a semi-active microgravity simulation system. The mechanics, kinematics of semi-active system are analyzed. The dynamic performance of the semi-active simulation system is much better than that of active simulation system.
     2. The tense sensor is suffered strong electromagnetic interference and mechanic vibration interference. Some proper signal processing means are proposed for the signal of tense sensor. To balance the contradiction between the test precision, stability and dynamic response time of traditional butterworth low pass filter, the key peak points of butterworth filter are reset. The experimental results show that the new butterworth filter performs much better than the traditional one. It acquires the useful signal of tense sensor successfully.
     3. It's very difficult to determine the parameters of hidden layer of RBFNN. A new clustering algorithm RPCCL based on samples' density is proposed in the paper, which can determine the clustering number automatically, rapidly and accurately. It's also successfully applied in determining the parameters of hidden layer of RBFNN.
     4. A new Hybrid PSO algorithm based on conjugate gradient-descent algorithm is proposed for strong nonlinear system. The proposed hybrid PSO algorithm is good at global searching. It can also determine the best solution accurately and rapidly. Compared with the standared PSO algorithm, the proposed algorithm converges faster and more accurately, and it performs well in optimizing the weights of RBFNN.
     6. A new online sequential learning algorithm based on extreme learning machine is proposed for RBFNN. The learning mode of the proposed algorithm is very flexible, which can learn data not only one-by-one but also chunk -by-chunk. Compared with other online sequential algorithms, the proposed algorithm can converge faster and more accurately.
     7. The generalization performance of RBFNN is analyzed in the paper. To improve its generalization performance, a new active learning algorithm based on local generalization error is proposed. The proposed algorithm takes the localized generalization error as criterion for selecting the next sample. It takes full use of the previous knowledge, which makes the generalization performance of RBFNNmuch better.
     8. Control algorithms based on RBFNN are proposed for the microgravity simulation system. RBFNN is employed to approximate and compensate the uncertainties of active simlation system. It works as a feed-forward compensator to make the tracking error convergence fast. The sliding mode controller is employed to obtain robustness of the system for random disturbance and approximation error of RBFNN. The experimental results show that the control algorithm is effective. It produces good dynamic performance, sound robustness and good self-adaptive capacity. RBFNN is employed to approximate the nonlinear system of semi-active simulation system, and the parameters of PID controller is adjusted online according to the approximating result of RBFNN. The simulation and experimental results also show that the control algorithm is effective.
引文
White G,Xu Y.1993.An active Z gravity compensation system[C].IEEE International Conference on Intelligent Robot System,Vol 2:1181-1187.
    王昊瀛,吴宏鑫,梁斌.1999.空间机器人地面实验系统的一种鲁棒自适应控制方法[J].航天控制.Vol(4):45-50
    Sato Y,Ejiri A,Iida Y.1991.Micro-gravity simulation system using constant-tension suspension for a space manipulator.IEEE International Conference on Robotics Automation.Vol3:1893-1900.
    http://exploration.grc.nasa.gov//.
    戚发轫,朱仁璋,孙金镖等.1999.载人航天器技术[M].北京:国防工业出版社.108-110.
    William B Dye,Anne E Bauer,Brenda Bradford.1998.Medical Support for Marshall Space Flight Center's Nertral Buoyancy Simulator[J].Vol2:1800-1806.
    林旭梅.2006.基于小脑模型的智能控制算法及其在重力补偿系统的应用[D]:[博士].合肥:中国科学技术大学:23-26.
    林旭梅,梅涛.2008.地面失重实验系统的控制器设计[J].中国科技大学学报.Vol 38(5):542-548.
    姚燕生.2006.三维重力补偿方法与空间浮游目标模拟实验装置研究[D]:[博士].合肥:中国科学技术大学:99-102.
    姚燕生.2008.空间操作的地面模拟方法-水浮[J].机械工程学报,Vol 44(3):182-188
    林来兴,张新邦.1996.飞行仿真技术新的发展及其在航天领域中应用[J].计算机仿真,Vol13(1):13-20.
    李季苏,曾海波,李铁寿.2003.多体卫星复合控制物理仿真试验系统[J].航天控制.Vol 21(2):27-32.
    吕从民,席隆,赵光恒等.2003.基于失重飞机的微重力科学实验系统[J],清华大学学报-自然科学版,Vol.43(8):1064-1068.
    张锦江,吴宏鑫.2002.高精度伺服系统低速问题研究[J].自动化学报,Vol28(3):431-434.
    陆盛,周洪.2000.气动自动化系统的优化设计[M].上海:上海科学技术文献出版社,276-282.
    Yamamoto Akiatsu.1990.Model Reference adaptive pnuematic servo with a constant trace algorithm.Journal of Fluid Control,Vol 20(4):30-48.
    李宝仁.1995.数字式电-气压力控制阀及电气位置伺服系统的研究[D]:[博士].哈尔滨:哈尔滨工业大学,62-110.
    Pandian ShunmugHam R,Hayakawa Yasuhiro,Kamoyama Yoshiyueki.1997.Practical Design of
    Adaptive Model-Based Sliding Model Control of Pneumatic Actuators[C].IEEE/ASME International Conference on Advanced intelligent Mechatronics,Vol(1):140-143.
    王崎.1998.气动机器人电-气位置伺服系统的研究[D]:[博士].哈尔滨:哈尔滨工业大学,288-294.
    Su Wu-Chung,Kuo Chun-Yun.2000.Variable Structure Control of a Rodless Pneumatic Servo -actuator with Discontinuous Sliding Surfaces[C].Proceedings of the American Control Conference,Vol 1:1617-1621.
    田华.1993.关于智能控制系统的新探讨[C].控制理论及其应用年会论文集,Vol 1:486-489.
    李士勇等.1990.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,296-301.
    周洪.1988.电-气比例/伺服系统及其控制策略的研究[D]:[博士].杭州:浙江大学,60-65.
    山藤和男,山林义武,石桥昌宏.1987.空气压最适制御[C].日本机械学会论文集,Vol 53(487):757-762
    K S Fu.1971.Learning Control Systems and intelligent Control system:An intersection of Artificial Intelligence and Automatic Control[J],IEEE Trans,on Automation Control,Vol 16(1):70-72.
    孙增圻,张再兴.1994.智能控制的理论和技术[C],第2届全国智能控制专家研讨会(上):27-34.
    吴海,郝庆洲,袁龙根,吴文东,张孝谦.2001.微重力燃烧实验平台NMLC落塔自由落体实验装置的下落加速度特性[C].中国工程热物理学会第十届年会论文集(燃烧学).
    CHEW K K,TOMIZUKA M.1990.Digital control of repetitive errors in disk systems[J],IEEE Trans on Control Systems,Vol10(1):16-20.
    CONG Shuang.1997.An innovation repetitive control system[C],IEEE International Conference on Intelligent Processing Systems:640-644.
    JEONG-SEONG K,DOKIS,ISHIDA M.2002.Suppression of harmonic current in vector control for IPMSM by utilizing repetitive control[C].IEEE International Conference Industrial Technology:264-267.
    Seiichiro Katsura,Kouhei Ohnishi.2007.Force Servoing by Flexible Manipulator Based on Resonance Ratio Control[J],IEEE Trans,on Industrial Electronics,Vol54(1):539-547.
    Kennon Guglielmo,Nader Sadegh.1994.Implementing a Hybrid Learning Force Control Scheme[J],IEEE Trans on Control Sytems,Vol 14(1):72-79.
    夏长亮,李志强,王迎发.2008.无刷直流电机小脑模型网络与PID复合控制[J].电机与控制学报,Vol 12(3),254-259.
    孙强,程明,周鹗.2003.新型双凸极永磁电机调速系统的变参数PI控制[J].中国电机工程学报, Vol 23(6):117-122.
    Nader Sadegh.1993.A Perception Network for Functional Identification and Control of Nonlinear Systems[J].IEEE Transactions on Neural Networks,Vol4(6):982-988.
    Ahmet K Karasoglu,Subramania I,Sudharsanan,Malur K.Sundareshan.1993.Identification and decentralized Adaptive Control Using Dynamical Neural Networks with Application to Robotic Manipulators[J].IEEE Transactions on Neural Networks,Vol4(6):919-30.
    Young H.Kim,Frank L,Lewis.1999,Neural Network Output Feedback Control of Robot Manipulators[J].IEEE Transactions on Robotics and Automation,Vol 15(2):301-309
    S.Matunaga,H.Sawada,M.Asami.2005.Vibration Suppression Experiments of Flexible Payload Transportation by Space Robotic Arm With Redundant DOF[C].IEEE international Conference on Artificial Intelligence,Robotics and Automation in Space,603-608.
    李兴华.1999.空气静压轴承的静特性计算及其实际应用[J].同济大学学报,Vol 27(1):69-74.
    李季苏,牟小刚,张锦江.2004.卫星控制系统全物理仿真[J].航天控制,Vol 22(4):37-42.
    梁为升,徐世杰.2004.空间站姿态控制系统实时仿真研究[J].飞行力学,Vol 22(4):25-28
    K.Arki.Effects of Valve Configuration on a Pneumatic Servo.60th International Fluid power symposium,1981,4:8-10
    董秉纲,孔详言,邓国华.1990,气体动力学[M].北京:高等教育出版社,120-123
    朱春波,2001,基于压力比例阀的气动位置伺服系统控制策略研究[D]:[博士].哈尔滨:哈尔滨工业大学,38-41.
    B Arm,Strong-Heloubry,P Dupont.1994.A Survey of Models,Analysis Tools and Compensation Methods for the Control of Machines with Friction[J].Automatics,Vol 30(7):1083-1138
    孔祥臻,刘延俊.2006.气缸摩擦力的颤振补偿与仿真[J].润滑与密封,Vol(8):130-132
    陈怀琛.2004.数字信号处理教程[M].北京:电子工业出版社
    付青,罗安,刘宇.2005.一种瞬时功率理论谐波检测的低通滤波器设计新方法[J],湖南科技大学学报,自然科学版,Vol20(1):62-66.
    吴振顺,1992.气压传动与控制[M].哈尔滨:哈尔滨工业大学出版社。
    Moody J,Darken C.1989.Fast Learning in Networks of Locally-tuned Processing Units[J].Neural Computation,Vol 1:281-294.
    S.Chen.1995.Nonlinear time series modeling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning[J].Electronic letters,Vol 31(2):117-118.
    S.Elanayar V.T,Y.C.Shin.1994.Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J].Neural Networks,Vol 5(4):594-603.
    S.Fabri,V.Kadirkamanathan.1996.Dynamic structure neural networks for stable adaptive control of nonlinear systems[J].Neural Networks,Vol 7(5):1151-1167.
    D.L.Yu,J.B.Gomm,D.Williams.1999.Sensor fault diagnosis in a chemical process via RBF neural networks[J].Engineering Practice,Vol 7:49-55.
    J.Barry Gomm,Ding Li Yu.2000.Selecting Radial Basis Function Network Centers with Recursive Orthogonal Least Squares Training[J].Neural Networks,Vol 11(2):306-314.
    Shaohua Tan,Jianbin Hao,Joos Vandewalle.1995.Efficient identification of RBF neural net models for nonlinear discrete-time multivariable dynamical systems[J].Neurcomputing,Vol 9(1):11-26.
    Haralambos Sarimveis,Alex Alexandridis,George Bafas.2004.A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms [J].Computers and Chemical Engineering,Vol 28(1-2):209-217.
    杨智民,王旭,庄显义.2000.遗传算法在自动控制领域中的应用综述[J].信息与控制,Vol29(4):329-339.
    姜波,汪秉文.2000.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,Vol 17(1):150-152.
    J Kennedy,R Eberhart.1995.Particle Swarm Optimization[C].IEEE International Conference on Neural Networks:1942-1948.
    R Eberhart,J Kennedy.1995.A New Optimizer Using Particle Swarm Theory[C].International Symposium on Micro Machine and Human Science:39-43.
    Nicolaos B,Karayiannis.1999.Reformulated radial basis neural networks trained by gradient descent Neural Networks,Vol 10(3):457-471.
    张鸿宾.1993.训练多层网络的样本数问题[J].自动化学报,Vol19(1):71-77.
    Niyogo P,Girosi F 1996.On the relationship between generalization error,hypothesis complexity and sample comlexity for radial basis function[J],Neural Computation,Vol(8):819-842.
    K.Z.Mao.2002.RBF neural network center selection based on Fisher ratio class separability measure[J].Neural Networks,Vol13(5):1211-1217.
    Chitra Panchapakesan,Marimuthu Palaniswami an Daniel Ralph.2002.Effects of Moving the Centers in an RBF Network[J].Neural Networks,Vol 13(6):1299-1307.
    L.Xu,A.Krzy_zak,and E.Oja.1993.Rival Penalized Competitive Learning for Clustering Analysis,RBF Net,and Curve Detection[J].IEEE Transaction on Neural Networks,vol.4(4):636-648.
    Yiu-ming Cheung.2005.On Rival Penalization Controlled Competitive Learning for Clustering with Automatic Cluster Number Selection[J].IEEE Transaction on.Knowledge and Data Engineering,Vol 17(11):1583-1588.
    Yiu-ming Cheung.2002.Rival Penalization Controlled Competitive Learning For Data Clustering With Unknown Cluster Number[C],IEEE International Conference on Neural Information Processing,Vol(1):467-471.
    Lei Xu,Krzy_zak,and E.Oja.1992.Unsupervised and Supervised Classifications by Rival Penalized Competitive Learning[C].IEEE ntemational Conference on Pattern Recognition Methodology and Systems,Vol(1):496-499.
    Lei Xu.2003.Data Smoothing Regularization,Multi-Sets-Learning and Problem Solving Strategies[J].Neural Networks,Vol 16(6):817-825.
    Ohn I Ansari N.1997.A novel algorithm to configure RBF networks[C],International Conference on Neural Networks,Vol(3):1809-1814.
    Ji Het,Man Lano.2004.Initialization of Cluster Refinement Algorithms[C],International Conference on Neural Networks,Vol(1):297-302.
    Bianchini M,Frasconi P,Gori M.1995.Learning without local minima in radial basis function networks[J].IEEE Transactions on Neural Networks,Vol 6(3):749-756
    Whitehead B A.1996.Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction[J].IEEE Transactions on Neural Networks,Vol7(4):869-880
    L u Y W,Sundararajan N,Saratchandran P.1998.Performance evaluation of sequential minim al radial basis function(RBF) neural network learning algorithm[J].IEEE Transactions on Neural Networks,Vol 9(6):308-317
    蒙祖强,蔡自兴.2003.一种基于并行遗传算法非线性系统辨识方法[J].控制与决,Vol 18(3):367-374.
    R C Eberhart,Y Shi.1998.Comparison between genetic algorithms and particle swarm optimization.I EEE international conference on Evolutionary Programming,Vol(2):611-619.
    丁宏锴等.2005.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,Vol17(8):1826-829.
    J Kennedy,R Eberhart.1995.Particle Swarm Optimization[C].IEEE international conference.on Neural Networks:1942-1948.
    Shi Y,Eberhart RC.1998.Parameter Selection in Particle Swarm Optimization[C].IEEE International Conference on Evolutionary Programming,Vol(2):591-600.
    Ozcan E,Mohan C,1999.Particle Swarm Optimization[C].IEEE International Conference on Evolutionary,Vol(2):1939-1944.
    Clerc M,Kennedy J.2002.The Particle Swarm Explosion,Stability,and Convergence in Multi-Dimension Complex Space[J].Evolutionary Computation,Vol16(1):58-73.
    Ohn I,Ansari N.1997.A novel algorithm to configure RBF networks[C].IEEE International Conference on Neural Networks,Vol(3):1809-1814.
    王学厚,韩璞,李岩.2008.基于PSO的径向基神经网络在热工系统辨识中的应用[J].华北电力大学学报,Vol 35(1):52-56.
    Lecun Y.Bottou,L;Bengio,Y.1998.Gradient-based learning applied to document recognition[J].Digital Object Identifier,Vol 86(11):2278-2324.
    Hong Tzer Yang,Chao Ming Huang,Ching Lien Huang.1996.Identification of ARMAX model for short term load forecasting an evolutionary programming approach[J].Power Systems,Vol 11(1):403-408.
    Chao-Ming Huang.2006.A particle swarm optimization to identifying the ARMAX model for short-term load forecasting[J].Power Systems,Vol 20(2):1126-1133.
    S L Ho,Shiyou Yang.2006.A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices[J].Magnetic,Vol 42(4):1107-1100.
    David D Lewis,William A Gale.1994.A sequential Algorithm for Training text classifier[C].Proceedings of the 17th Annual ACM-SIGIR Conference,Vol(1):3-12.
    H S Seung,M.Opper,H.Somepolinsky.1992.Query by Committee[C].Proceedings of the 5th Annual Workshop on Computation Learning Theory,Vol(1):287-294.
    Simon Tong,Daphne Koller.2001.Support Vector Machine Active Learning with Applications to Text Classification[J],J Machine Learning Research,Vol(1):999-1006.
    David A.Cohn.1996.Neural Network Exploration Using Optimal Experiment Design[C],Advance in Neural Information Processing System,Vol 9(6):1071-1083.
    Colin Campbell,Nello Cristianini,Alex Smola.2000.Query Learning with Large Margin Classifiers[C].International Conference Machine Learning,Vol(1):111-118
    Platt J.1991.A resource-allocating network for function interpolation[J].Neural Computation.Vol(3):213-225.
    V.Kadir kamanathan,M.Niranjan.1993.A function estimation approach to Sequential learning with neural networks[J],Neural Computation.Vol(5):954-975
    L.Yingwei,N.Sundararajan,ESaartchandran.1998.Performance evaluation of a sequential minimal radial basis function(RBF) neural network learning algorithm[J],Neural Networks.Vol(9):308-318
    G.-B.Huang,ESaratchandran,N.Sundararajan.2004.An efficient sequential learning algorithm for growing and pruning RBF(GAP-RBF) networks[J].System Cyberation.Vol(34):2284-2292
    G.-B.Huang,ESaratchandran N.Sundararajan.2005 A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J].Neural Networks.Vol(16):57-67
    G.-B.Huang,Q-Y.Zhu,C-K Siew.2006.Extreme learning machine:Theory and applications[J].Neural Networks.Vol(17):879-892.
    G.-B.Huang,L.Chen,C.-K.2006.Slew,Universal approximation using incremental constructive feedforward Networks with random hidden nodes[J].Neural Networks,Vol(4):879-892,
    C.R.Rao and S.K.Mitra,1971.Generalized Inverse of Matrices and its Applications[J].New York:Wiley
    Weibing Gao,Hung,J.C.1993.Variable structure control of nonlinear systems:a new approach[J].IEEE Trans on Industrial Electronics,Vol 40(1):45-55.
    F.C.Sun,Z.Q.Sun,and G.Feng.1999.An adaptive fuzzy controller based on sliding mode for robot manipulators[J].IEEE Trans on Systems,Man,and cybernetics-Part B:Cybernetics,Vol 29(4):661-667.
    Yeong-Chan Chang.2005.Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems[J].IEEE Trans on Systems,Man,and cybernetics-Part B:Cybernetics,Vol35(6):1108-1119.
    Anderson R J,Spong M W.1989.Bilateral Confrol Of Teleoperators With Time Delay[J].IEEE Transactions on Automation Control,Vol 34(4):49 4-501.
    Niemeyer G,Slotline J-JE.1991.Stable adaptive teleoperation[J].IEEE Journal of Oceanic Engineering,Vol 16(1):152-162.
    Hirzinger G,Landzetel K and Fagerer C.1994.Telerobotics with large time delays,the ROTEX experience[C].Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems,571- 578.
    Roveta A,Cosmi F and Tosati L M.1995.Teleoperator response in a touch task with different display conditions[J],IEEE Tran on systems,man and cybernetics,Vol 25(5):878-881.
    胡文松.1999.力觉临场感时延稳定性研究及触觉再现装置的研制[D]:[博士].,东南大学.
    Hashtrudi Zaad.2000.Design,implementation and evaluation of stable bilateral teleoperation control architectures for enhanced telepresence[D],The University of British Columbia。
    Liang Y W.2005.Application of VSC reliable design to spacecraft attitude tracking[C].American Control Conference,Vol(2) 919-924.
    Guan P,Liu X J,Liu J Z.2005.Adaptive fuzzy sliding mode control for flexible satellite[J].Engineering Application of Artificial Intelligence,Vol(18):451-459.
    Jovan D B,Li S M.2001.Robust adaptive variable structure control of spacecraft under control input saturation[J].Journal of Guidance,Control and Dynamics,Vol 24(1):14-22.
    Xing G Q,Shabbir A P.2001.Nonlinear attitude state tracking control for spacecraft[J].Journal of Guidance,Control and Dynamics,Vol 24(3):624-626.
    Pandian S R, Hayakawa Y, Kanazawa Y, et al. Practical design of a sliding mode controller for pneumatic actuators[J]. Journal of Dynamic Systems, Measurement, and Control, 1997, Vol 199(4): 666-674.
    
    高为炳, 1996。变结构控制的理论和设计方法[M]. 北京:科学出版社. 116-120.
    Vicente P V, Gerd H. 2001. Chattering Free sliding mode control for a class of nonlinear mechanical systems[J]. International Journal of Robust and Nonlinear Control ,Vol (11):1161-1178.
    kang B P , Ju J L. 1997. Sliding mode Controller with filtered signal for robot manipulators using virtual plant/ controller [J]. IEEE Trans on Mechatronics, Vol 7(3): 277-286.
    H Liu. 1997. Smooth sliding mode control of uncertain systems based on a prediction error[J].International Journal of Robust and Nonlinear Control, Vol 7(4):353-372.
    Bartolini G, Pisano A, Punta E, Usai E.2000.Chattering elimination with second-order sliding mode robust to coulomb friction[J].International Journal of Dynamics System, Measurement and Control ,Vol(122):679-686.
    Huang S J, Huang K S, Chiou K C. 2003. Development and application of a novel radial basis function sliding mode controller[J]. IEEE Trans on Mechatronics, Vol(13): 313-329.
    W.C. Dickson, R. H. Cannon. Experimental Results of Two Free-Flying Robots Capturing and Manipulating a Free-Flying Object. Proc. of the IEEE International Conference on Intelligent Robots and Systems, 1995:51-58.
    Seiichiro Katsura, Kouhei Ohnishi. Force Servoing by Flexible Manipulator Based on Resonance Ratio Control [J] IEEE Trans on Industrial Electronics , 2007,54(1): 539-547.
    Robert M Sanner, Jean-Jacques E Slotine. Gaussian networks for dierect adaptive control[J]. IEEE Trans on Neural Networks, 1992,Vol 3(6): 837-863.
    Carelli R, Cammacho E F, Patifio D. A network based feedforward adaptive controller for robots[J]. IEEE Trans on Systems, Man, Cybernetics, 1995, Vol25(9):1281-1287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700