絮体特性与消毒副产物前驱物去除关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取了具有代表性的混凝剂分别对腐植酸-高岭土模拟水样和黄腐酸-高岭土模拟水样进行了混凝-氯消毒处理,综合考虑混凝和消毒的实验结果,选取了效果较好的PFC和PFC-PDMDAAC对两种水样进行了进一步处理。其中处理腐植酸模拟水样所用的复合混凝剂中Fe203和PDMDAAC的质量比为10:1,处理黄腐酸水样所用的复合混凝剂中其质量比为2:1。采用PFC和PFC-PDMDAAC对两种水样分别进行了混凝-超滤-消毒处理,研究了投加量和pH对混凝-超滤效果的影响,并分析了不同条件下消毒副产物(DBPs)前驱物的去除效果。用Mastersizer2000对混凝过程进行了在线监测,得出了絮体的粒径大小及分形维数的变化规律,分析了絮体的粒径大小、分形维数和残余絮体粒径大小对DBPs前驱物去除效果的影响。主要结论如下:
     (1)引入不同质量比的PDMDAAC对PFC的混凝效果和混凝机理产生了不同的影响。对于腐植酸模拟水样,PDMDAAC的加入并没有增强PFC的混凝效果,而且复合混凝剂与PFC的主要混凝机理都是卷扫网捕;对于黄腐酸模拟水样,PFC-PDMDAAC可以在较低的投加量下达到很好的混凝效果,并且电中和作用比PFC强。(2)对于腐植酸模拟水样,两种混凝剂混凝所产生絮体的特性受投加量和pH的影响相同。高投加量下,PFC和PFC-PDMDAAC产生的絮体粒度更大,结构更密实。絮体的结构特性受pH变化的影响很小,但是絮体的粒径随着pH的升高有明显的变化,酸性条有利于形成更大的絮体。
     (3)对于黄腐酸模拟水样,投加量和pH对两种混凝剂混凝所产生絮体的特性具有不同的影响。随着投加量的增大,PFC混凝所产生絮体的粒径逐渐增大,但是分形维数却基本不变;PFC-PDMDAAC混凝所产生絮体的粒径和分形维数都随着投加量的增大先增大后减小,并在投加量为5mg/L时达到峰值。随着pH的升高,两种混凝剂所形成的絮体粒径均逐渐增大,但是相同条件下PFC更易生成大的絮体;PFC在酸性条件下形成的絮体比碱性条件下的结构更密实,PFC-PDMDAAC在碱性条件下形成的絮体结构较密实。
     (4)在处理腐植酸模拟水样时,PFC和PFC-PDMDAAC的絮体特性对DBPs前驱物去除效果的影响相似。混凝过程中絮体粒径的增大对DBPs前驱物的去除效果并没有产生积极的影响。而在混凝-超滤处理过程中,DBPs前驱物的去除效果随着混凝出水中残余絮体粒径的增大而增强。絮体分形维数越大,混凝和混凝-超滤处理工艺对DBPs前驱物的去除效果越好。
     (5)在处理黄腐酸模拟水样时,PFC和PFC-PDMDAAC的絮体特性对DBPs前驱物的去除效果具有不同的影响。对于混凝工艺,PFC所产生絮体粒径的增大对DBPs前驱物的去除效果影响很小;PFC-PDMDAAC所产生絮体粒径的增大会增强DBPs前驱物的去除效果。对于混凝-超滤过程,DBPs前驱物的去除效果随PFC残余絮体粒径的增大而变差;PFC-PDMDAAC残余絮体粒径的增大使DBPs前驱物的去除效果增强。
     (6)对于两种水样,超滤过程对DBPs的生成潜能产生了不同的影响。采用PFC处理腐植酸模拟水样时,超滤膜可以有效地去除DBPs前驱物;采用PFC-PDMDAAC处理腐植酸模拟水样时,在投加量为21-30mg/L的范围内,超滤过程可以有效地去除DBPs前驱物;在投加量为12mg/L,进水pH为5.0-7.0的范围内,超滤过程增加了DBPs的生成潜势。采用PFC和PFC-PDMDAAC处理黄腐酸模拟水样时,超滤过程都增加了DBPs的生成潜势。
In this study, humic acid (HA) and fulvic acid (FA) were selected as organic matters to investigate the effect of floc characteristics on the removal of disinfection by-products (DBPs) precursors. A series of coagulants were used to treat the test waters containing organics and kaolin, and the treated waters were disinfected using NaCIO as disinfectant. According to the results of coagulation and disinfection, polyferric chloride (PFC) and composite coagulant polyferric chloride (PFC)-polydimethyldiallyammonium chloride (PDMDAAC) were chosen to treat the test waters in the coagulation-ultrafiltration-disinfection process. The mass ratio of Fe2O3 and PDMDAAC in PFC-PDMDAAC was 10:1 in coagulation process of humic acid and 2:1 in coagulation process of fulvic acid. The effects of dosage and pH on the efficiency of coagulation and coagulation-ultrafiltration were investigated and the floc size and fractal dimension were obtained by on-line monitor of coagulation process using Mastersizer2000. The data of chlorine decay were estimated using AQUASIM modeling software to get the concentration of DBPs precursors and the effects of floc size and fractal dimension on the removal of DBPs precursors were studied. The main conclusions are as follows:
     (1) The dominant mechanism and efficiency of composite coagulants with different mass ratios of Fe2O3 and PDMDAAC were different. In HA test water, the coagulation efficiency of PFC was not improved by adding PDMDAAC and the mechanism of PFC-PDMDAAC was also sweep. In FA test water, PFC-PDMDAAC was more efficient than PFC with smaller dosage, and the charge neutralization of PFC was strengthened by PDMDAAC.
     (2) In HA teat water, floc characteristics changed in the same potential as dosage or pH increased for PFC and PFC-PDMDAAC. More compact and larger flocs can be obtained by dosing more PFC or PFC-PDMDAAC. The effect of pH on floc fractal dimension was negligible, while floc size changed evidently as pH increased. Larger flocs were formed at acid ragion.
     (3) In FA test water, floc characteristics changed in the different potentials as dosage or pH increased for PFC and PFC-PDMDAAC. Floc size increased as PFC dosage increase, while the fractal dimension of flocs changed slightly. Fractal dimension and d0.5 both reached the peak values at dosage 5mg/L of PFC-PDMDAAC. Floc size increased as pH increased for both two coagulants and larger flocs were formed by dosing PFC at the same pH condition. More compact flocs were formed at acid region by PFC, while PFC-PDMDAAC formed flocs with large fractal dimension at alkaline region.
     (4) In HA test water, floc characteristics of PFC and PFC-PDMDAAC had the same effect on the removal of DBPs precursors. Removal of DBPs precursors was not enhanced by the increase of floc size in coagulation process. Removal efficiency of DBPs precursors increased with do.5 of the supernatant flocs increased in ultrafiltration process. DBPs precursors were prone to be removed by coagulation and coagulation-ultrafiltration process during which flocs with larger fractal dimension formed.
     (5) In FA test water, floc characteristics of PFC and PFC-PDMDAAC had the different effects on the removal of DBPs precursors. Removal of DBPs precursors was slightly affected by the increase floc size in PFC coagulation process, while the increase of floc size in PFC-PDMDAAC coagulation process could enhance the removal of DBPs precursors. The removal efficiency DBPs precursors decreased with d0.5 of the supernatant flocs increased in PFC coagulation-ultrafiltration process and increased with d0.5 of the supernatant flocs increased in PFC-PDMDAAC coagulation-ultrafiltration process.
     (6) The effect of ultrafiltration on the formation potential of DBPs was different in HA test water and FA test water. DBPs precursors could be effectively removed by ultrafiltration membrane in HA coagulation-ultrafiltration process with PFC as coagulant. When PFC-PDMDAAC was used to treat HA test water, DBPs precursors could be effectively removed by ultrafiltration membrane with dosage 21-30mg/L. Ultrafiltration process enhanced the formation potential of DBPs in pH 5.0-7.0 with PFC-PDMDAAC dosage 12mg/L. For FA test water, the formation potential of DBPs was increased by ultrafiltration for both PFC and PFC-PDMDAAC.
引文
[1]李明,曾光明,张盼月等.强化混凝去除水源水中天然有机物的研究进展.环境科学与技术,2006,2,29(2):109-111.
    [2]Gallard H, yon Gunten U. Chlor ina tion of natural organicmatter:kinetics of chlorination and of THM formation[J]Water Research,2002,6(12):65-74.
    [3]Volk C, Bell K, Ibrahim E, et al. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water[J]. Water Res.,2000,34(12): 3247-3257.
    [4]Edwald J K, Tobiason J E. Enhanced Coagulation:US Requirements and a Broader View[J]. Wat. Sci. Tech.,1999,40(9):63-70.
    [5]于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响[J].中国公共卫生,2003,19(4):66-67.
    [6]D. W. Page. etal. Efect of alum treatment on the trihalomathane formation and bacterial regrowth potential of natural and synthetic waters [J]. Water Res.,2002,36(18):4884-4892.
    [7]黄廷林.强化絮凝法去除水中DBP先质研究.环境科学学报,1999,19(4):399-404.
    [8]Tuhkanen T, Ketonen A, Gillberg L, et al. Removal of different size fractions of natural organic matter in drinking water by optimised coagulation[A]. In:Chemical Water and Wastewater Treatment[C].2004,201-208.
    [9]金鹏康,王晓昌.天然有机物的混凝特性研究[J].西安建筑科技大学学报,2000,32(2):155-159.
    [10]Chow C W K, van Leeuwen J A, Drikas M, et al. The impact of the character of natural organic matter in conventional treatment with alum[J]. Wat. Sci. Tech.,1999,40(9):97-104.
    [11]何文杰,顾金辉,康华.混凝-超滤工艺处理滦河水的中试研究[J].中国给水排水,2007,23(9):73-76.
    [12]王东升,刘海龙,晏明全等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报,2006,26(4):544-550.
    [13]齐雪梅,刘永昌.强化混凝技术去除水中有机物的研究进展.上海电力学院学报,2007,23(4):354-358.
    [14]Crozes G, White P, Marshall M. Enhanced Coagulation:Its Effect on NOM Removal and Chemical Costs[J]. AmerWater Works Assoc,1995,87(1):78-89.
    [15]US EPA. Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual [M]. EPA, Office of Ground Water and Drinking Water, Washington, DC,1998.
    [16]刘光压.超滤技术在饮用水处理中的应用和研究进展.浙江工商职业技术学院学报,2007,6(3):57-59.
    [17]P. Jarvis, B. Jefferson, S.A. Parsons. Breakage, regrowth, and fractal nature of natural organic matter flocs, Environ. Sci. Technol.39 (2005) 2307-2314.
    [18]E.L. Sharp, P. Jarvis, S.A. Parsons, B. Jefferson, The impact of zeta potential on the physical properties of ferric-NOM flocs, Environ. Sci. Technol.40 (2006) 3934-3940.
    [19]M. Boller, S. Blaser, Particles under stress, Water Sci. Technol.37 (1998) 9-29.
    [20]K.W. Chau, Investigation on effects of aggregate structure in water and wastewater treatment, Water Sci. Technol.50 (2004) 119-124.
    [21]P. Jarvis, B. Jefferson, S.A. Parsons, Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source, Water Res.40 (2006) 2727-2737.
    [22]J. Gregory, Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference, International Water Association, Zurich,2003.
    [23]张永吉,周玲玲,刘志生,等.水中天然有机物的分类特性及其卤代活性[J].环境科学,2005,26:104-107.
    [24]陶澎.引滦水中不同形态天然有机物的卤代活性.环境科学学报,1994,91:103-115
    [25]汪善锋,汪海峰.陈安国.生化黄腐酸的应用效果与作用机理[J].中国饲料,2004,22:12-13.
    [26]崔蕴霞,肖锦.铝盐絮凝剂及其环境效应[J].工业水处理,1998,18(3):6-9.
    [27]樊冠球.自来水厂用混凝剂存在的问题和解决途径[J].中国给水排水[J],1998,14(3):42-43.
    [28]苗晶.稳定高效聚合氯化铁混凝剂的基础研究[D].济南:山东大学,2002.
    [29]王红宇.高浓度聚合氯化铁絮凝剂的应用基础研究[D].杭州:浙江大学,2004.
    [30]Butler G B, Ingley F L. Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds. Ⅰ. Halogenated Allyl Derivatives [J]. J. Am. Chem. Soc.,1951,73: 895-896.
    [31]常青,陈野.二甲基二烯丙基氯化铵的合成[J].环境科学,1999,20(1): 87-90.
    [32]Jane B, Wong S, Karen R T. Hydrophilic Dispersion Polymers of Diallyldimethylammonium Chloride and Acrylamide for the Clarification of Drinking Process Waters [P]. US 6019904.
    [33]Wemer J, Ulrich G, Monika J. Flotation Agent and Method for Treatment of Oil-containing Wastewaters [P]. DD,294422.
    [34]顾学芳,张跃军,陈伟忠.阳离子絮凝剂PDA的合成与应用研究一对废纸再生造纸废水的处理[J].工业水处理,2001,21(1):22-25.
    [35]Golubeva I A, Gromov V F. Stabilization of Cationic Acrylamide Polymers Designed to Enhance Oil Recovery [J]. J. Polym. Mater.,1994,24(14):85-89.
    [36]Shu-Jec. W H, Schaumbrug. Reducing Turbidity in Turbid Waters [P]. US 4450092.
    [37]刘立华,龚竹青.两步法合成二甲基二烯丙基氯化铵的工艺改进[J].精细化工,2006,23(6):588-593.
    [38]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化铵聚合物的除浊性能研[J].工业水处理,2002,22(3):26-31.
    [39]高宝玉,魏锦程等.聚合铁复合絮凝剂处理地表水的性能研究[J].中国给水排水,2006,22(7):57-61.
    [40]魏锦程,高宝玉等.聚合铁复合絮凝剂用于城镇纳污河河水化学强化处理的性能及机理研究[J].精细化工,2008,25(2):171-177.
    [41]魏锦程,高宝玉等.聚合铁与季铵盐复合絮凝剂处理造纸中段水的性能[J].精细化工,2007,24(3):278-281.
    [42]王燕,高宝玉等.铁盐类无机有机复合絮凝剂的水解特性及脱色效能[J].环境化学,2006,25(6):730-734.
    [43]O'Melia C.R.. Coagulation in Wastewater Treatment [C]. In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands,1978.
    [44]Hahn H.H, Stumm W.. Kinetics of Coagulation with Hydrolyzed Aluminum [J]. J. Colloid. Inter. Sci.,1968,28:133-142.
    [45]Ruehrwein R A, Ward D W. Mechanism of Clay Aggregation by Polyelectrolytes [J]. Soil Sci,1952,73:485-492.
    [46]Micheals A S. Aggregation of Suspensions by Polyelectrolytes [J]. Ind Eng Chem,1954,46: 1485-1490.
    [47]Smellie R H, LaMer V K. Flocculation Subsidence and Filtration of Phosphate Slimes VI. A Quantitative Theory of Filtration of Flocculated Suspensions [J]. J Coll Sci,1956,13: 589-599.
    [48]LaMer V K, Healy T W. Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface [J]. Rev Pure App Chem,1963,13:112-132.
    [49]Packham R.F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts [J]. J. Colloid. Sci.,1965,20:81-92.
    [50]李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,1(1):1-3.
    [51]许经纶.微滤和超滤技术在澳门饮用水处理中的应用研究[J].上海水务,,2002,18(4):45-49.
    [52]闫昭辉,董秉直.混凝-超滤处理微污染原水的试验研究[J].净水技术,2005,24(6):4-6
    [53]尹华升,陈治安,陈益清等.超滤处理微污染水库水的中试研究[J].中国给水排水,2006,22(11):9-12
    [54]LaEne J M, Viai D, Pierre Moulart. Status after 10 years of operation-overview of UF technology today [J]. Desalination,2000,131(1):17-25.
    [55]Lipp P, Baldauf G, Schick R, et al. Stabel integration of ultrafiltration to conventional drinking water treatment for a better particle removal-efficiency and costs[J]. Desalination,1998, 119(2):133-142.
    [56]刘春霞,付婉霞.超滤技术在饮用水处理中的效果和应用前景[J].给水排水.2008.34(增刊):121-124.
    [57]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(增刊):23-29.
    [58]Logan B E, Wilkinson D B. Fractal geometry of marine snow and other biological aggregates [J]. Limnol Oceanogr,1990,35(1):130-136.
    [59]王东升,汤鸿霄,栾兆坤.分形理论及其研究方法[J].环境科学学报,2001,21(增刊):10-16.
    [60]Teixeira B J. Small-angle scattering by fractal systems [J]. Appl Cryst,1988,21(6): 781-785.
    [61]Gregory J. Turbidity fluctuations in flowing suspensions [J]. JC&IS,1985,105:357-371.
    [62]Gregory J, Nelson D W. Monitoring of aggregates in flowing suspensions [J]. Colloids Surf., 1986,18:175-186.
    [63]Gregory J. Chung H J. Continuous monitoring of floe properties in stirred suspensions [J]. J Water SRT-Aqua,1995,44:125-131.
    [64]魏建刚.长潭水库有机污染及其对饮用水水质的影响[J].浙江水利水电专科学校学报,2008,20(4):40-43.
    [65]SINGER P C. Humic substances as precursors for potentially harmful disinfection by-products [J]. Wat Sci Tech,1999,40(9):25.
    [66]邱秀珍.矿泉水生产设备消毒方法的探讨[J].食肠与发酵工业,1993,3(1):68-70
    [67]徐慧.生活饮用水消毒方法[J].中外医疗,2010.,28:174-177
    [68]戚成栋.城市饮用水消毒技术的研究进展[J].机电信息,2009,21:45-48
    [69]Francois R J. Strength of aluminum hydroxide flocs [J]. Water Res.1987,21(9):1023-1030.
    [70]Yukselen M A, Gregory J. The reversibility of floc breakage [J]. Int. J. Miner. Process.,2004, 73(2-4),251-259.
    [71]Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates [J]. Adv. Colloid Interface Sci.,2002,95(1):1-50.
    [72]Guan J, Waite T D, Amal R. Rapid structure characterization of bacterial aggregates [J]. Environ. Sci. Technol.1998,32(23):3735-3742.
    [73]F. Hua, J.R. West, R.A. Barker, C.F. Forster, Modelling of chlorine decay in municipal water supplies, Water Res.33 (1999) 2735-2746.
    [74 D.L. Boccelli, M.E. Tryby, J.G. Uber, R.S. Summers, A reactive species model for chlorine decay andTHMformation under rechlorination conditions, Water Res.37 (2003) 2654-2666.
    [75]Kastl G, Fisher I, Jegatheesan V. Evaluation of Chlorine Decay Kinetics Expressions for Drinking Water Distribution Systems Modelling. J Water SRT-Aqua,1999,48(6):219-226.
    [76]K. Bell-Ajy, M. Abbaszadegan, E. Ibrahim, D. Verges, M. LeChevallier, Conventional and optimized coagulation for NOM removal, J. Am.Water Works Assoc.92 (2000) 44-58.
    [77]Gary L Amy et al. Molecular size distributions of dissolved organic matter[J]. J. AWWA. 1992,84(6):67-75.
    [78]J.K. Edzwald, J. Van Benschoten, Aluminum coagulation of natural organic matter, in:H.H. Hahn, R. Klute (Eds.), Chemical Water and Wastewater Treatment, Proceedings of the Fourth InternationalGothenburgSymposium, Madrid, Spain, Springer, Berlin,1990, pp.341-359.
    [79]C.B. Lind, Experiences in TOC removal by polyaluminum hydroxychloride and enhanced coagulants, in:Proceedings of the AWWA Annual Conference, Anaheim, CA, June 17-21,1995.
    [80]Vedat Uyak, Ismail Toroz,2007. Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies. Journal of Hazardous Materials 141,320-328
    [81]Jung, A.V., Chanudet, V., Ghanbaja, J., Lartiges, B.S., Bersillon, J.L.,2005. Coagulation of humic substances and dissolved organic matter with a ferric salt:an electron energy loss spectroscopy investigation. Water Res.39 (16),3849-3862.
    [82]Yu, J., Sun, D.D., Tay, J.H.,2003. Characteristics of coagulation-flocculation of humic acid with effective performance of polymeric flocculant and inorganic coagulant. Water Sci. Technol.47(1),89-95.
    [83]Cheng, W.P., Chi, F.H.,2002. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method. Water Res.36 (18), 4583-4591.
    [84]Hu C Z, Liu H J, Qu J H, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of AI13 species and pH control [J]. Environ. Sci. Technol.,2006,40(1): 325-331.
    [85]Dempsey B A, Ganho R M. O'Melia C R. The coagulation of humic substances by means of aiuminum salts [J]. J. Am. Water Works Assoc,1984,76(4):141-150.
    [86]Dennett K E, Amirtharajah A, Moran T F, et al. Coagulation:its effect on organic matter [J]. J. Am. Water Works Assoc,1996,88(4):129-142.
    [87]Vilge-Ritter A, Rose J, Masion A, et al. Chemistry and structure of aggregates formed with Fe-salts and natural organic matter [J]. Colloids Surf. A.,1999,147 (9):297-308.
    [88]Bache D H, Rasool E, Moffatt D, et al. On the strength and character of alumino-humic flocs [J], Water Sci. Technol.1999,40 (9):81-88.
    [89]Gregor J E, Nokes C J, Fenton E, et al. Optimising natural organic matter removal from low turbidty waters by controlled pH adjustment of aluminium coagulation [J], Water Res.,1997, 31(12):2949-2958.
    [90]J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Advances in Colloid and Interface Science 100-102 (2003) 475-502
    [91]Gorczyca B, Ganczarczyk J. Structure and porosity of alum coagulation flocs [J]. Water Qual. Res. J. Can.,1999,34(4):653-666.
    [92]Antoine L, Francois F, Bottero J Y. Polymerized iron chloride:an inproved inorganic coagulant [J]. J. Am. Water Works Assoc,1984,76(10):93-97.
    [93]Wu, X.; Ge, X.; Wang, D.; Tang, H. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf. A:Physicochem. Eng. Aspects 2007,305,89-96.
    [94]Chen, T.; Gao, B.; Yu, Q. Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment. Colloids Surf. A:Physicochem. Eng. Aspects 2010,355,121-129.
    [95]Zularisama, A.W.; Ismail, A. F.; Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment —— a review. Desalination 2006,194,211-231.
    [96]Kim, J., Nason, J. A.; Lawler, D. F. Influence of Surface Charge Distributions and Particle Size Distributions on Particle Attachment in Granular Media Filtration. Environ. Sci. Technol. 2008,42,2557-2562.
    [97]Tao Li; Zhe Zhu; Dongsheng Wang. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology.2006,168,104-110.
    [98].罗坚.杨殿海.聚合氯化铝混凝机理及混凝条件对余铝的影响.海南医学院学报,2005,11(4):343-345.
    [99].张声.谢曙光.张晓健等.利用强化混凝去除水源水中天然有机物的研究进展[J].环境污染治理技术与设备,2003,4(8):19-22.
    [100].路光杰.孙永刚.杨日光.聚合铝混凝机理研究的新进展.东北电力学院学报,1997.3,17(1)
    [101].赵志伟.徐勇鹏.控制混凝条件对天然有机物指标的去除影响.哈尔滨商业大学学报(自然科学版),2003.4,19(2)
    [102].李凡修.铝盐混凝剂作用机理研究进展.工业水处理,1999.9,19(5)
    [103]. L. Rizzo et al. Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behavior of THMFP toxicity on D. magna[J]. Desalination.,2005, 176:177-188.
    [104].丁‘桓如.给水处理中除有机物研究的现状[J].水处理技术,1995,21(5):282-285.
    [105]J.K. Edzwald, Coagulation concepts for removal of TOC, in:Proceedings of the AWWA WQTC Conference, San Francisco, USA,1994.
    [106]E.E. Chang, P.C. Chiang, W.Y. Tang, S.H. Chao, H.J. Hsing, Effects of polyelectrolytes on reduction of model compounds via coagulation, Chemosphere 58(8) (2005) 1141-1150.
    [107]X.Q. Lu, Z.L. Chen, X.H. Yang, Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation, Water Res.33 (15) (1999) 3271-3280.
    [108]赵振业,肖贤明,李丽等.水体中不同相对分子质量有机质对饮用水消毒的影响[J].环境科学,2002,23(6):45-50
    [109]乔春光,魏群山,王东升等.典型南方水源溶解性有机物分子量分布变化及去除特性[J].环境科学学报,2007,27(2):195-200.
    [110]Zhou Y, Franks G V. Flocculation mechanism induced by cationic polymers investigated by light scattering [J]. Langmuir,2006,22(16):6775-6786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700