过渡金属的芳香磺酸及有机多胺配合物的合成、结构与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用多羧酸及多膦酸合成结构独特的金属-有机骨架材料是杂化金属-有机配合物研究的主要方向。然而,由于磺酸根与过渡金属离子的弱配位能力使得过渡金属的芳香磺酸配合物的研究较少。同时,过渡金属离子与咪唑及有机多胺形成的配合物由于其独特的生物活性及优良的催化性能也受到了人们的广泛关注。本文主要研究了芳香二磺酸及有机多胺分别与过渡金属离子的配位行为,探讨合成新型过渡金属芳香磺酸及有机多胺配合物的方法、结构与表征。
     (1)利用1,5-萘二磺酸分别与氧化锌、氧化镉和碳酸锰在水溶液中反应后再与咪唑反应合成得到了三个新型结构的过渡金属配位聚合物:{[Zn(1,5-nds)(Him)_2(H_2O)]·2H_2O}_n(1),{[Cd_2(1,5-nds)_2(Him)_4(H_2O)_2]·4H_2O}_n(2)和[Mn(1,5-nds,)(Him)_4]_n(3)。晶体结构分析表明,配合物1和2具有相似的二维层状结构。1,5-萘二磺酸根离子中的-SO_3基团以二种桥联方式进行配位;其一是与Zn原子以双齿配位,桥联的相邻Zn…Zn之间的距离为0.54523(16)nm(在配合物2中Cd…Cd之间是0.54533(9)nm),整个1,5-萘二磺酸根作为μ_4桥联配体形成一维双核链状结构,沿链方向相邻Zn…Zn之间的最近距离为1.02530(22)nm(在配合物2中Cd…Cd之间是1.02570(11)nm);另一类-SO_3~-基团是以单齿配位桥联,整个1,5-萘二磺酸根作为μ_2桥联配体,使链与链间相互联接形成二维聚合物结构,链间桥联Zn…Zn之间的距离为0.8017(2)nm(在配合物2中Cd…Cd之间是0.80194(22)nm)。再通过层间水分子与-SO_3~-基团的氢键作用使二维配聚物形成三维堆积结构。配合物3中Mn(Ⅱ)离子是畸变的八面体配位结构,1,5-萘二磺酸根以μ_2桥联方式配位,使相邻的[Mn(Him)_4]~(2+)离子配位单元联接成一维链状聚合物。沿链方向Mn…Mn之间的最近距离为1.14499(12)nm。咪唑配体的引入有利于磺酸基团与Zn(Ⅱ)、Cd(Ⅱ)和Mn(Ⅱ)的配位,增强了磺酸基团的配位能力。运用Gaussian 03W和MOPAC 2007程序包分别对配合物1-3进行了单点能、电荷分布、键级及前线轨道附近的轨道的能量和组成进行了理论计算,对配合物的形成从理论上提供佐证。通过红外光谱、元素分析、核磁共振氢谱及热重分析对其结构和性质进行了表征。
     (2)利用1,5-萘二磺酸分别与氢氧化铜和碳酸钴在水溶液中反应再与咪唑配体反应合成得到了二个新型结构的过渡金属配合物:[Cu(Him)_2(H_2O)_4](1,5-nds)(4)和[Co(Him)_2(H_2O)_4](1,5-nds)(5);利用对甲苯磺酸锌的水溶液中引入邻苯二胺配体合成得到新型配合物[Zn(C_6H_8N_2)_3(H_2O)](C_7H_7SO_3)_2·3H_2O(6)。配合物4和5具有相似的空间结构。在水溶液中存在咪唑时,1,5-荼二磺酸根离子没有与Cu(Ⅱ)和Co(Ⅱ)配位而仅作为对阴离子存在,但由于-SO_3~-基团与水分子及咪唑之间的氢键作用导致二维有机一无机层状结构的形成。配合物6中的对甲苯磺酸根离子中的磺酸基团也未参与配位。而是通过磺酸基团上氧原子的氢键作用使化合物晶体获得稳定结构。
     (3)以溶剂热法合成了新型配位聚合物[Zn(acac)_2(4,4'-bipy)]_n(7)。通过IR,~1HNMR,TGA和单晶X-射线衍射对其结构进行了表征。该配合物是由Zn~(2+)与乙酰丙酮酸根离子组成的电中性平面单元再通过4,4'-bipy组装而成的一维链状结构。运用Gaussian 03W程序包对配合物7进行了单点能、电荷分布和前线轨道附近的轨道的能量和组成进行了理论计算。计算结果很好地佐证了配位环境。
     (4)合成了以有机多胺三(2-氨基乙基)胺与单羧酸配体(HCOO)桥联而成的新型双核锌配合物[(tren)Zn(HCOO)Zn(tren)](BF_4)_3(8)、与氯混配的单核锌配合物[(tren)ZnCl]BF_4(9)及1,3-丙二胺(1,3-pn)与锌的单核配合物[Zn(1,2-pn)_3](ClO_4)_2(10)。晶体结构分析表明:在配合物8和9中,每个Zn(Ⅱ)周围均呈畸变的三角双锥配位环境。而在配合物10中,每个Zn(Ⅱ)周围呈八面体结构配位环境。在配合物8的晶体中以配体tren的-NH2基团上的N原子与BF_4~-中的F原子之间的氢键作用,形成三维层状结构。
     (5)以有机多胺1-[二(2-氨基乙基)氨基]-2-丙醇为配体与过渡金属镍(Ⅱ)、镉(Ⅱ)和铜(Ⅱ)合成了三个新型配合物[Ni(C_7H_(19)N_3O)_2](ClO_4)_2(11),[Cd(C_7H_(19)N_3O)_2](ClO_4)_2(12),{[Cu_2(C_7H_(19)N_3O)_2(C_(10)H_8N_2)](ClO_4)_4·H_2O)(13)。并通过元素分析、IR、~1HNMR及单晶X-射线衍射对化合物进行了表征。配合物11是六配位的单核结构,1-[二(2-氨基乙基)氨基]-2-丙醇配体中的羟基O原子未参与配位。配合物12是八配位的单核结构,与11不同的是1-[二(2-氨基乙基)氨基]-2-丙醇配体作为四齿配体参与配位。配合物12是以4,4'-联吡啶桥联配体中的1个N原子和多胺中的3个N原子及1个O原子与铜离子形成4N+O五配位畸变的四方锥构型,形成双核结构。[Cu_2(C_7H_(19)N_3O)_2(C_(10)H_8N_2)]~(4+)中Cu…Cu间的距离为1.1122nm。以上结果表明,1-[二(2-氨基乙基)氨基]-2-丙醇配体具有配位模式多变的特点。通过差热和热重对三个配合物在氮气氛中的热分解性质进行了测定,结果发现:配合物11和13具有相似的热分解特性,即分别加热到298℃和260℃会发生爆炸分解的反应。结果说明该类化合物的热不稳定性,同时也为进一步研究该类化合物作为潜在的含能材料使用提供了有用的信息。
Current efforts on hybrid metal-organic complexes are directed mostly toward synthesis of diverse metal-organic frameworks using polycarboxylates and phosphonates. However, a few of studies are dedicated to the metal arenesulfonates owing to the weak coordination ability of sulfonate toward transition metal ions. In addition, the transition metal complexes with imidazole and organic polyamines have received considerable attention in recent years because of their diverse biological activity and excellent catalytic properties. In this paper, we discuss mainly the syntheses and coordination behavior of transition metal cations toward arenedisulfonates and organic polyamines.
     (1) Three new polymeric complexes{[Zn(1,5-nds)(Him)_2(H_2O)]·2H_2O}_n (1), {[Cd_2 (1,5-nds)_2(Him)_4(H_2O)_2]·4H_2O}_n (2) and [Mn(1,5-nds)(Him)_4]_N (3) were prepared by the reactions of 1,5- naphthalenedisulfonate (1,5-nds) with zinc oxide, cadmium oxide, manganese carbonate and imidazole in aqueous solution, respectively. X-ray diffraction analysis reveals that complex 1 and 2 have the similar two-dimensional layer network structures. In complex 1, the -SO_3~- groups of the 1,5-nds ligand have two different coordination modes, one bridges two Zn atoms in a bidentate fashion with the shortest Zn…Zn distance being 0.54523(16) nm (0.54533(9) nm for Cd…Cd in 2), the ligand acts as aμ_4 bridge and links four symmetry-related Zn centers forming a linear chains with the shortest Zn…Zn distance between Zn atoms separated by a 1,5-nds ligand being 1.02530(22) nm(1.02570(11) nm for Cd…Cd in 2), while the other coordinates to the Zn atom in a monodentate fashion, the ligand acts as aμ_2 bridge and links the adjacent chains giving rise to a 2-dimensional network with the shortest Zn…Zn distance 0.8017(2) nm (0.80194(22) nm for Cd…Cd in 2). The overall structure can be described as stacking of 2-dimensional networks, held together by inter-layered hydrogen bonds between water molecules and SO_3~-groups. In complex 3, Mn(Ⅱ) ion is coordinated in a distorted octahedral geometry. The [Mn(Him)_4]~(2+) units are linked by 1,5-nds which act as bidentate bridging ligands, leading to the forming of a 1-D Zig-Zag chain coordination polymer with Mn…Mn distance 1.14499(12) nm. There are significant inter-string hydrogen bonded interactions. Therefore, the 1,5-nds ligands have much stronger coordination ability to Zn(Ⅱ), Cd(Ⅱ) and Mn(Ⅱ) in aqueous solution by introducing imidazole ligand as auxiliaries to these metal centers. The theoretical investigation of the complexes 1-3 as a structure unit were carried out with Gaussian 03W and MOPAC 2007 program packages, and the single-point energy, atomic charges distribution, bond order and composition of some frontier molecular orbitals were also discussed. Their properties were also characterized by element analysis, IR,~1H NMR and TG analysis.
     (2) Complexes [Cu(Him)_2(H_2O)_4](1,5-nds) (4), [Co(Him)_2(H_2O)_4](1,5-nds) (5) and [Zn (C_6H_8N_2)_3(H_2O)](C_7H_7SO_3)_2·3H_2O (6) hvae been synthesized and characterized by elemental analysis, IR , ~1H NMR spectroscopies, and X-ray single-crystal diffraction analysis. The complexes 4 and 5 own the same structure type. There is no direct coordination between SO_3~-and Cu~(2+) and Co~(2+) in the presence of water molecules and imidazole ligand, instead, hydrogen bonding interactions between SO_3~- and imidazole and water molecules constructed two-dimensional alternating inorganic-organic structures. Therefore, the Cu~(2+) and Co~(2+) show no tendency to coordinate to sulfonate anions in the presence of imidazole ligand in aqueous solution. p-Toluenesulfonate in complex 6 didn't coordinate to Zn~(2+) in the presence of o-phenylenediamine. All of the SO_3~- O-atoms and the amino H-atoms, water molecules are involved in hydrogen bonds with each other, resulting extended stable structures.
     (3) A novel one-dimensional zinc(Ⅱ) coordination polymer [Zn(acac)_2(4,4'-bipy)]_n (7) has been synthesized and cultured using the solvothermal method in methanol medium. It's structure was characterized by element analysis, IR, ~1H NMR and TGA. The crystal structure was determined by X-ray single-crystal diffraction. In the crystal, a plannar structure unit Cu(acac)_2 are linked with 4,4'-bipyridinyl, forming a one-dimension chain. The theoretical investigation of the complex 7 as a structure unit was carried out at HF/LanL2dz level with Gaussian 03W program, and the atomic charges distribution, composition of some frontier molecular orbitals provided a good testimony for the coordination condition in the crystal structure.
     (4) Three new zinc complexes [(tren)Zn(HCOO)Zn(tren)](BF_4)_3(8), [(tren)ZnCl]BF_4(9) and [Zn(1,2-pn)3](ClO_4)_2(10) were obtained by the reactions of zinc salts with polyamine tris (2-aminoethyl)amine, propane-1,2-diamine respectively. X-ray diffraction analysis reveals that in complex 8 and 9, Zn(Ⅱ) ion is coordinated in a distorted trigonal bipyramids coordination geometry, while in complex 10 Zn(Ⅱ) ion adopts octahedral coordination geometry. There is moderate intermolecular hydrogen bonds between the amino hydrogens and BF_4~- fluorins in complex 8, forming 3-D layer structure. Compounds 8-10 were also characterized by element analysis, IR and H NMR.
     (5) Three new complexes [Ni(C_7H_(19)N_3O)_2](ClO_4)_2(11), [Cd(C_7H_(19)N_3O)_2](ClO_4)_2(12) and {[Cu_2(C_7H_(19)N_3O)_2(C_(10)H_8N_2)](ClO_4)_4·H_20}(13) have been prepared by reaction of ligand l-[bis(aminoethyl)amino]-2-propanol (L) and 4,4'-bipyridyl with Ni(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) ions. The products were characterized by element analysis, IR, H NMR , TGA and X-ray single-crystal diffraction analysis. In compound 11, the nickel center coordinates to two tridentate nitrogen atoms of two L ligands, leaving the other binding site hydroxypropyl pendant. Ni(Ⅱ) ion with two L ligands forms six-coordinated complex . The geometry around Ni(Ⅱ) is octahedral. The L in compound 12 is coordinated to Cd(Ⅱ) ions as tetradentate mode, so that the Cd center is eight-coordinated. This is not a familiar coordination number for the Cd(Ⅱ) ion. Eight coordination atoms form a distorted square antiprism with a Cd(Ⅱ) ion center. Compound 13 is a binuclear mixed-ligand copper(Ⅱ) complex with 4,4'-bipyridyl as bridging ligand. Each of Cu(Ⅱ) ions is bonded to three nitrogen atoms and one oxygen atom from L and one nitrogen atom from 4,4'-bipy, forming a CUN_4O five-coordinated tetragonal pyramid stereochemistry. The Cu…Cu distance in [Cu_2 (C_7H_(19)N_3O)_2(C_(10)H_8N_2)]~(4+) is 1.1122 nm. Thermogravimetric analysis (TGA) was performed to investigate the thermal stability of compounds 11-13. The thermal behaviour of 11 and 13 is very similar and generally shows a single-step explosive thermal decomposition at 298℃and 260℃. The results provide the valuable information for further investigations for these compounds as a potential energetic materials.
引文
1 游效曾,孟庆金,韩万书.配位化学进展.第1版.北京:高等教育出版社,2000.
    2 Kealy T J, Pauson P L. A new type of organic-iron compound. Nature, 1951,168:1039-1040
    3 Miller S A, Teboth J A, Tremaine J F. Dicyclopentadienyliron. J. Chem. Soc, 1952, 632-635
    4 Claessens C G, Stoddart J F. Review commentary π-π interactions in self-assembly. J. Phys. Org. Chem., 1997,10:254-272
    5 Inoue Y, Hakushi T, Liu Y. Tong L H. Molecular design of crown ethers: 12. complexation thermodynamics of 12-to 16-Crown-4: thermodynamic origin of high lithium selectivity of 14-crown-4. J. Org. Chem, 1993,58(20): 5411-5413
    6 Inoue Y. Liu Y, Tong L H, Ouchi M, Hakushi T.Complexation thermodynamics of crown ethers. Part 3.12-Crown-4 to 36-crown-12: from rigid to flexible ligand . J. Chem. Soc. Perkin Trans., 1993,2(10): 1947-1950
    7 Szejtli J.Cyclodextrin technology. Dordrechi:Kluwer-Academic, 1988
    8 Breslow R.Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res., 1995,28(3): 146-153
    9 Croft A P, Bartson R A.Synthesis of chemically modified cyclodextrins.Tetrahedron. 1983,39(9):1417-1474
    10 Lindoy L F.The chemistry of macrocyclic ligand complexes.Cambridge University Press, 1989
    11 Gray G M.Metallacrown ethers: unique organometallic ligands. Comments Inorg. Chem., 1995,17:95-114
    12 Orama M, Saarinen H, Korvenranta J.Equilibrium and structural studies on metal complexes of oxime ligands. Polynuclear complex formation of copper(Ⅱ) with 3-aminopropanamidoxime and its N-alkyl derivatives. Acta. Chem. Scand, 1994, 48:127-133
    13 Mingos D M, Wsdes D J. Introduction to Cluster Chemistry, Wiley Sons Inc,1992
    14 卢嘉锡.过渡金属原子簇化学的新进展.福州:福建科技出版社,19997
    15 Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc, 1967,89(10):2495-2496
    16 Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc, 1967, 89(26), 7017-7036
    17 Pedersen C J. The discovery of crown ethers. Angew. Chem. Int. Ed. Engl, 1988, 27:1021-1027
    18 Cram D J,Cram J M. Host-guest chemistry:complexes between organic compounds simulate the substrate selectivity of enzymes. Science, 1974,183:803-809
    19 Cram D J. Cavitands-organic hosts with enforced cavities. Science, 1983,219:1177-1183
    20 Lehn J M. Supramolecular chemistryscope and perspectives molecules, supermolecules, and molecular devices(nobel lecture). Angew. Chem. Int. Ed. Engl., 1988,27(1):89-112
    21 Lehn J M.Cryptates: Inclusion complexes of macropolycyclic receptor molecules, Pure Appl. Chem., 1978, (50):871-892
    22 Lehn J M. Interdisciplinary Science Rev., 1985,10:72
    23 Lehn J M. Supramolecular Chemistry, VCH, 1995
    24 Behr J P. The Lock-and-key Principle, John Wiley and Sons Ltd, 1994
    25 Cram D J. The design of molecular hosts, guests, and their complexes. Angew Chem. Int. Ed. Engl., 1988,27(8): 1009-1020
    26 Lorenz I P, Pohl W, Noth H. Molecular self-assembly to give the antiferromagnetic cage compound [{CpFe(CO)_2(Mes)PO_2}_4{MesPO_3Fe_2(OH)Cl}_2]. Angew Chem. Int.Ed.Engl., 1997,36(1-2):55-56
    27 Henrique E T, Koiti A. Supramolecular assemblies of ruthenium complexes and porphyrins. Coordination Chemistry Reviews, 2000,196(1):307-329
    28 Yu Y F, Wei Y Q, Broer R, Sa R, Wu K C. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(Ⅱ)/copper(Ⅱ) -(1,10-phenanthroline)_2 building blocks. J. Solid State Chem., 2008,181(3):539-551
    29 Golubev Y A. Supermolecular nanostructurization in natural colloids: scanning probe microscopy data. J. Cryst. Growth., 2005,275(1-2):e2357-e2360
    30 Haque S A., Handa S, Peter K, Palomares E, Thelakkat M, Durrant J R. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO_2 films: towards a quantitative structure-function relationship. Angew Chem. Int.Ed.Engl., 2008,47(15): 5740-5744
    31沈兴海等译.Lehn J M著.超分子化学:概念和展望.第一版.北京:北京大学出版社,2002
    32刘祁涛.配体间的弱相互作用-从配位化学到超分子化学.辽宁大学学报(自然科学版),2000,1(27):1-8
    33 Naumann C F. Sigel H.Ternary complexes in solution. ⅩⅧ. Stability enhancement of nucleotide-containing charge-transfer adducts through the formation of a metal ion bridge. J.Am.Chem.Soc.,1974, 9(96): 2750 - 2756
    34 Yamauchi O,Odani A,Shimata R,Kosaka Y. Spectroscopic evidence for stacking and electrostatic interactions between nucleoside 5'-monophosphates and a platinum DNA intercalator, (2,2'-bipyridine)(ethylenediamine)platinum(Ⅱ) in dilute aqueous solution. Inorg.Chem, 1986,25(19):3337-3339
    35龚钰秋,孙洪良.介绍混配配合物分子内的芳环堆积作用.化学通报,1991,(1):20-24
    36 Sigel H. Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem.Soc.Rev., 1993,22:255-267
    37 孙洪良,龚钰秋.三元混配铂(Ⅱ)配合物的稳定性和分子内芳环堆积效应研究.化学物理学报,2003,16(1):54-58
    38 Sigel H. Operschall B P, Massoud S S, Song B, Griesser R. Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5'-monophosphate (XMP). Dalton Trans.. 2006. (46):5521 -5529
    39 Sigel H. Stability, structure and reactivity of mixed ligand complexes in solution. 20th conf. proc. Coord.Chem.New York, Pergamon press, 1980
    40 Friden E. Non-covalent interactions: key to biological flexibility and specificity. J.Chem. Edu., 1975,72(12):754-761
    41 Brookes G,Pettit L D.Complex formation and stereoselectivity in the ternary systems copper(Ⅱ)-D/L-histidine-L-amino-acids. J.Chem.Soc.Dalton Trans., 1977, (19):1918-1924
    42 Yamauchi O,Odani A,Masuda H. Weak interactions in metal complexes of amino acids with a phosphorylated side chain. Conversion of aromatic ring stacking to electrostatic bonding by tyrosine phosphorylation. Inorg.Chim.Acta., 1992, (198-200):749-761
    43 Dougherty D A. Cation-π interactions in chemistry and biology: A new view of Benzene, Phe, Tyr, and Trp. Science, 1996,271(5246):163-168
    44 Jennifer C M,Dennis A D.The cation- n interaction interaction. Chem.Rev., 1997, 97: 1303-1324
    45 ChenY F,GongY Q,Zhang H S.Synthesis,structure and noncovalent interactions of palladium(Ⅱ) complexes with N-benzoyl-β-phenylalaninate dianion and aromatic diimine. Chinese Journal of Chemistry, 2002,20(6):570-575
    46 Hunter C A,Sanders J K M.The nature of.π-π interactions. J.Am.Chem.Soc, 1990, 112(14): 5525-5534
    47 Christophe C, Richard J, Bernard M, David A P, Peter A K. Benzene Dimer: A good model for π-π interactions in proteins? A Comparison between the benzene and the toluene dimers in the gas phase and in an aqueous solution. J. Am.Chem.Soc, 1996, 118 (45):11217-11224
    48 Burley S K,Petsko G A. Dimerization energetics of benzene and aromatic amino acid side chains. J.Am.Chem.Soc, 1986,108(25):7995-8001
    49 Ezuhara.T.;Endo,K.Hayashida.O.Aoyama,Y. Metal-ion induced alignment of an orthogonal anthracene-pyrimidine derivative. Cooperation of metal coordination, hydrogen bonding, and aromatic stacking in the buildup of one-, two- and three- dimensional networks. New J.Chem., 1998,22(2): 183-188
    50 Min K S,Suh M P. Construction of Various Supramolecules by π-π Interactions: Self-Assembly of Nickel(Ⅱ) Macrocyclic Complexes Containing Pyridine Pendant Arms with Bidentate Ligands. Eur. J. Inorg. Chem., 2001, (2):449-455
    51 Huang X C,Zheng S L,Zhang J P,Chen X M. Synthesis,Structure and Photoluminescent Studies of a Novel Supramolecular [Ag(phen)(CN)]·(phen) Complex. Eur. J. Inorg. Chem., 2004, (5): 1024-1029
    52 黄仲贤,顾伟强,胡红雨.锌指类基因调控蛋白-生物无机化学和分子生物学发展的新领域.生物化学与生物物理进展,1995,22(3):208-213
    53 Masuda H,Odani A,Yamazaki T,Yajima T,Ymauchi O. Structures and stabilities of ternary copper(Ⅱ) complexes containing an acidic and a basic amino acid. Evidence for arginine side chain involvement in intermolecular interactions and its biological implication. Inorg. Chem., 1993,32(7): 1111-1118
    54 Corradi A.B. Structures and stabilities of metal(Ⅱ) (Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ), Pd(Ⅱ), Cd(Ⅱ)) compounds of N-protected amino acids. Coord. Chem. Revs., 1992,117:45-98
    55 Sigel H.Hydrophobic interactions in biological systems: some background information based on ligand-ligand interactions in metal ion complexes. Pure Appl. Chem., 1989, 61(5): 923-932
    56 Terron A. X-ray structural studies of metal-nucleoside and metal-nucleoside monophosphate complexes: new perspectives. Comments Inorg.Chem., 1993, 14(2-3):63-88
    57 Munakata M, Wu L P, Kuroda -Sowa T.Crystal engineering of multidimensional copper(Ⅰ) and silver(Ⅰ) coordination supermolecules and polymers with functions. Bull.Chem.Soc.Jpn., 1997, 70(8): 1727-1743
    58 Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M,Kim J.Reticular synthesis and the design of new materials. Nature, 2003, 423(6941 ):705-714
    59张荣,罗三来,郑敦胜.生物分子溶液中的弱相互作用研究进展.化学研究,2008, 19(1): 102-105
    60 Assadollahzadeh B, Schwerdtfeger P. A comparison of metallophilic interactions in group 11[X-M-PH_3]_n (n=2-3) complex halides (M = Cu, Ag, Au; X = Cl, Br, I) from density functional theory. Chem.Phys.Lett., 2008,462(4-6):222-228
    61 Patzer A, Knorke H, Langer J, Dopfer O. IR spectra of phenol~+-(O_2)_n cation clusters (n=1-4):Hydrogen bonding versus stacking interactions. Chem.Phys.Lett., 2008, 457(4-6): 298-302
    62 Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem. Int.Ed.Engl., 2003,42(11):1210-1250
    63潘清江,郭元茹,张红星,付宏刚.双核Au(Ⅰ)磷硫配合物激发态性质和金属间弱相互作用的从头算研究.化学学报,2007,65(7):595-600
    64郭辉瑞,陶朱,祝黔江,薛赛凤.配位化学中的C-H...π非键弱相互作用.无机化学学报,2002,18(5):435-441
    65陈强,谭民裕,刘伟生.超分子中弱相互作用力的研究方法概述.化学通报,2001,64(4):236-239
    66朱维良,蒋华良,陈凯先等.分子间相互作用的量子化学研究方法.化学进展,1999,11(3):247-253
    67朱维良,顾健德,蒋华良,陈建忠,刘东祥,林茂伟,陈凯先,嵇汝运,曹阳.抗早老性痴呆症天然产物石杉碱甲的红外光谱与简正分析-量子化学密度函数理论(DFT)研究中国科学(B辑),1998,4(28):326-331.
    68 Gu J D,Chen K X, Jiang H L, Ji R Y. A DFT study of artemisinin and 1,2,4-trioxane, J.Mol. Struct.(THEOCHEM)., 1999,459(1-3):103-111
    69朱维良,蒋华良,陈建忠,顾健德,刘东祥,林茂伟,陈凯先,嵇汝运.石杉碱甲-Ache复合物中石杉碱甲的结构特征-量子化学研究.化学学报,1998,3(56):233-237
    70蒋华良,朱维良,谭小健,顾健德,陈建忠,林茂伟,陈凯先,嵇汝运.阳离子π体系相互作用的理论研究:Ⅰ.铵离子—苯复合体系的量子化学研究.中国科学(B辑),1998,5(28):403-409
    71封继康.超分子体系弱相互作用的量子化学计算.化学通报,1995,(10):25-28
    72 Parca T N,Caulder D L,Raymond KN. Selective encapsulation of aqueous cationic guests into a supramolecular tetrahedral [M_4L_6]~(12-) anionic host. JAm.Chem.Soc, 1998,120(31): 8003 - 8004
    73 Schneider H J. Linear free energy relationships and pairwise interactions in supramolecular chemistry. Chem.Soc.Rev., 1994,23(4):227-234
    74 Page M. I, Jencks W P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc.Natl.Acad.Sci. U S A, 1971,68(8),1678-1683
    75 Steed J W,Atwood J L.著.赵耀鹏.孙震译.超分子化学.第一版.北京:化学工业出版社,2006年7月
    76 李国斌,于贤勇,郑柏树,易平贵,唐臻强,陈忠.双过氧钒配合物与N-取代皮考啉酰胺相互作用的NMR研究.化学学报,2007,65(21):2357-2362
    77 郭玉华,陈晓岚,张婷,屈凌波,赵玉芬,郁有祝.7-羟基黄酮及磷酰化7-羟基黄酮与DNA作用荧光法研究.光谱学与光谱分析,2006,26(3):475-479
    78 谢亚杰.磺酸系双子表面活性剂的合成与分离.浙江大学学报(理学版),2004,31(3):306-308
    79 于涛,胡龙江,丁伟.新型表面活性剂-双烷基双磺酸钠基二苯甲烷的合成与性能.大庆石油学院学报,2004,28(1):35-37
    80 詹国清,周多刚,陈乐文.1-氨基-4-对甲基苯磺酰胺-9,10-蒽醌-2-磺酸的合成工艺研究.江苏化工,2007,35(6):23-25
    81 李继光.1-萘胺-5-磺酸合成方法改进.安徽化工,2007,33(6):38-39
    82 华小社,杜宝中,苏洁.4,4'-二氨基-二苯胺-2-磺酸型黑色直接皮革染料的合成.中国皮革,2007,36(15):39-41
    83 胡章云.4,4'-二胺基二苯胺-2-磺酸的合成工艺改进.染料工业,2002,39(4):32-34
    84 李永忠,张燮,陈祥军.1-羟基-2-(3,5-二溴-2-吡啶偶氮)-8-氨基-3,6-萘二磺酸的合成及其应用研究.华东理工学院学报,2005,28(4):381-383
    85 马杰,王学凯,姜恒.几种磺酸铜盐的合成、表征及其催化氯乙酸酯化反应性能比较.化学研究与应用,2004,16(6):789-791
    86 俞善信,刘美艳.固体酸催化合成乙酸环已酯评述.化学推进剂与高分子材料,2007,7(5):28-31
    87 刘鸿,金真,饶晓冬.微小辐射二甲苯磺酸催化合成乙酸异戊酯的研究.广东化工,2007,34(10):28-34
    88 单俊,韩德满.2-(2,3,5-三氮唑偶氮)-1,8-二羟基-3,6-萘二磺酸分光光度法测定蛋白质.科学技术与工程,2007,7(12):2928-2930
    89 李艳辉,马卫兴,许兴友,陈军.2-羟基-5-磺酸基苯基重氮氨基偶氮苯分光光度法测定铂(Ⅳ).冶金分析,2007,27(10):62-64
    90 张学军,夏心泉,高春香.显色剂2-苯并噻唑偶氮-7-(4-甲氧基苯偶氮)-1,8-二羟基萘-3,6-二磺酸的合成及与铁(Ⅲ)显色反应研究.理化检验:化学分册,2004,40(6):326-328
    91闫新华,孟双明,戴云,王志飞,王琳,邓杰文,孟华平,王君玲.新显色剂2-磺酸基苯基-1,4-二氨基重氮偶氮苯的合成及其与镍(Ⅱ)的显色反应.云南化工,2007,34(6):39-41
    92黎前跃,钟启智,张,张宝砚.磺酸基遥爪液晶离聚物的合成与表征.高分子材料科学与工程,2007,23(5):41-44
    93黎前跃,宋银敏,钟启智,张种,张宝砚.一种含有磺酸基螯合型热致性主链液晶离聚物的合成及性能分析.东北师大学报(自然科学版),2007,39(3):65-68
    94 Huo Q, Margolese D, Ciesla U, Feng P, Gier T, Sieger P, Firouzi F, Chmelka B, Schuth F, Stucky G Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem.Mater., 1994,6(8):1176-1191
    95 Marder S, Perry J, Yakymyshyn C. Organic salts with large second-order optical nonlinearities. Chem.Mater., 1994,6(8):1137-1147
    96 Russell V, Etter M, Ward M D. Guanidinium para-substituted benzenesulfonates: competitive hydrogen bonding in layered structures and the design of nonlinear optical materials. Chem.Mater., 1994,6(8): 1206-1217
    97柳艳,张罡,童欣,李勇,牟世辉.磺酸掺杂导电聚苯胺粉体及膜的制备及性能.沈阳理工大学学报,2007,26(3):69-76
    98刘承美,邱进俊,田大听.二磺酸掺杂高热稳定性导电聚苯胺的合成及性能.功能高分子学报,2003,16(4):489-494
    99吕新美,吴全富,米红宇,张校刚.低温合成樟脑磺酸掺杂聚苯胺微管的电化学电容行为.物理化学学报,2007,23(6):820-824
    100 Atwood J L, Orr G W, Means N C, Hameda F, Zhang H, Bott S G, Robinson K D. Metal ion complexes of water-soluble calix[4]arenas. Inorg.Chem., 1992,31(4):603-606
    101 Steed J W, Johnson C P, Barnes C L, Juneja R K, Atwood J L, Reilly S, Hollis R L, Smith P H, Clark D L. Supramolecular chemistry of p-sulfonatocalix[5]arene: A water-soluble, bowl-shaped host with a large molecular cavity. J.Am.Chem.Soc, 1995, 117(46): 11426-11433
    102 Drljaca A, Hardie M J, Raston C L. Selective isolation of Keggin ions using self-assembled superanion capsules. J.Chem.Soc, Dalton Trans., 1999, (20):3639-3642
    103 Drljaca A, Hardie M J, Johnson J A, Raston C L, Webb H R. Lanthanum(Ⅲ) capture of 18-crown-6 in the cavity of p-sulfonatocalix[4]arene. Chem.Commun., 1999, (12): 1135-1136
    104 86 Russell V A, Ward M D. Two-dimensional hydrogen-bonded assemblies: the influence of sterics and competitive hydrogen bonding on the structures of guanidinium arenesulfonate networks.J.Mater.Chem., 1997, 7(7): 1123-1134
    105 Swift J A, Pivovar A M, Reynolds A M, Ward M D.Template-directed architectural isomerism of open molecular frameworks: engineering of crystalline clathrates.JAm.Chem.Soc., 1998,120(24):5887-5894
    106 Swift J A, Reynolds A M, Ward M D.Cooperative host-guest recognition in crystalline clathrates: steric guest ordering by molecular gears.Chem.Mater., 1998,10(12):4159-4168
    107 Evans C C, Sukarto L, Ward M D.Sterically controlled architectural reversion in hydrogen-bonded crystalline clathrates.JAm.Chem.Soc, 1999,121(2):320-325
    108 Holman K T, Ward M D.Cooperative polar ordering of acentric guest molecules in topologically controlled host frameworks.Chem.Mater., 2000,12(6): 1501-1504
    109 Holman K T, Martin S M, Park D P, Ward M D.The generality of architectural isomerism in designer inclusion frameworks.JAm.Chem.Soc., 2001,123(19):4421-4431
    110 Holman K T, Pivovar A M, Ward M D.Engineering crystal symmetry and polar order in molecular host frameworks.Science, 2001,294(5548):1907-1911
    111 Russell V A, Etter M C, Ward M D.Layered materials by molecular design: structural enforcement by hydrogen bonding in guanidinium alkane- and arenesulfonates.JAm.Chem.Soc., 1994,116(5):1941-1952
    112 Russel V A, Ward M D.Molecular crystals with dimensionally controlled hydrogen-bonded nanostructures.Chem.Mater., 1996, 8(8): 1654-1666
    113 Couldwell C, Prout K, Robery D, Taylor R, Rossoti F.The crystal and molecular structures of hexaaquacopper(Ⅱ) benzenesulphonate, toluene-4-sulphonate and D-camphor-10-sulphonate.ActaCryst.SectB, 1978, 34(5):1491-1499
    114 Groh S E, Riggs P J, Baldacchini C J, Rheingold A L.The crystal structure of [Ni(H)2O)_6][C_6H_5SO_3]_2: a comparison of hexaaqua divalent layered ions.Inorg.Chim.Acta., 1990, 174(1):17-20
    115 Kosnic E J, Mcclymont E L, Hodder R A, Squattrito P J.Synthesis and structures of layered metal sulfonate salts.Inorg.Chim.Acta., 1992, 201(2): 143-151
    116 Kosnic E J, McClymont E L, Hodder R A, Squattrito P J.Correction to: Synthesis and structures of layered metal sulfonate salts.Inorg.Chim.Acta., 1996,244(2):253-254
    117 Laverat A G, Ramirez A, Jeronimo A, Santos A, Florencio F, Carrera S M, Blanco S G.catena- bis(benzenesulfonato)bis(ethanol)cobalt(Ⅱ): Preparation, properties and crystal structure.Inorg.Chim.Acta., 1987, 128(1):113-117
    118 Gunderman B J, Squattrito P J, Dubey S N.Copper and manganese sulfanilate hydrates.Acta Cryst.Sect.C, 1996, 52(5): 1131-1134
    119 Walsh B, Hathaway B J.Electronic properties and crystal structures of the copper-doped zinc(Ⅱ) bis(pyridine-3-sulphonate) hydrate system: a fluxional CuN_2O_4 chromophore.J.Chem.Soc, Dalton Trans., 1980, (4):681-689
    120 Haynes J S, Retting S J, Sams J R, Thompson R C, Trotter J.Structure and magnetic exchange in poly-bis(pyrazine)bis(methanesulfonato-0)-copper(Ⅱ).One-dimensional exchange in a two-dimensional polymer.Can.J.Chem., 1987,65(2):420-426
    121 Murase J, Vuckovic G, Kodera M, Harada H, Matsumoto N, Kida S.Synthesis and characterization of copper(Ⅱ), nickel(Ⅱ), and cobalt(Ⅱ) binuclear complexes with a new tricyclic octadentate ligand, l,5,8,12,15,19,22,26-octaazatricyclo[17.9.2.25,15]dotriacontane (tcoa): trapping of carbon dioxide in a neutral aqueous solution.Inorg.Chem., 1991,30(4):728-733
    122 Sundberg M R, Sillanpaa R.Syn versus anti conformation in monodentately coordinated sulfonate groups.Crystal structure determination and MMX force-field calculations for trans-di(4-methylbenzenesulfonato)bis( 1,3 -diaminopropane)copper(Ⅱ), C_2OH_(34)CUN_4O_6S_2.Acta Chem.Scand., 1993,47:1173-1178
    123 Cocker T M, Bachman R E.Isolation and crystal structure of a novel dinuclear nickel(Ⅱ) O-bound sulfinate from the oxidation of 2,2'-bipyridine-l,2-benzenedithiolatonickel(Ⅱ).Chem.Commun., 1999, (10):875-876
    124 Jedrzejas M J, Towns R L, Baker R J, Daraj S A, Hepp A F.Structure of bis (benzenesulfonato-O) tetrakis(pyridine-JV)copper(Ⅱ).Acta Cryst.Sect.C, 1993,49(3):538-540
    125 Gamage R S K A, Peake B M, Simpson J.X-Ray Crystal structure determination of some sodium anthraquinone sulfonate derivatives.Aust.J.Chem., 1993,46(10): 1595-1604
    126 Gunderman B J, Squattrito P J.Synthesis and structures of potassium and rubidium arenesulfonates.Inorg.Chem., 1994,33(13):2924-2931
    127 Shubnell A J, Kosnic E J, Squattrito P J.Structures of layered metal sulfonate salts:trends in coordination behavior of alkali, alkaline earth and transition metals.Inorg.Chim.Acta., 1994,216(1-2):101-112
    128 Gunderman B J, Squattrito P J.Structural Variations in layered alkali metal naphthalenesulfonates.Inorg.Chem., 1995,34(9):2399-2406
    129 Gunderman B J, Kabell I D, Squattrito P J, Dubey S N.Structural chemistry of naphthalenedisulfonate salts.Inorg.Chim.Acta., 1997,258(2):237-246
    130 Florencio F, Martinez-Carrera S, Garcia-Blanco S, Bombin M, Martinez-Zaporta M A, Ramirez-Garcia A, Gerrero-Laverat A. Eur. Cryst. Meeting. 1985,9:220
    131 Smith G, Cloutt B A, Byriel K A, Kennard H L. Preparation and crystal structures of the urea adducts of silver(Ⅰ) perchlorate and silver(Ⅰ)p-toluenesulfonate. Aust.J.Chem., 1997, 50(7):741-746
    132 Ohki Y,Suzuki Y,Takerchi T,Ouchi A. The crystal and molecular structure of scandium(Ⅲ), yttrium(Ⅲ), and some lanthanoid(Ⅲ)p-toluenesulfonates, [Sc(C_7H_7SO_3)_2 (H_2O)_4](C_7H_7SO_3)·2H_2O and [M(C_7H_7SC_3)_2(H_2O)_6](C_7H_7SO_3)·3H_2O (M=Y, Sm, Gd, Dy, Ho, Er, Yb); and yttrium(Ⅲ) and dysprosium(Ⅲ) 2-naphthalenesulfonates, [M(C_(10)H_7SO_3)_2(H_2O)_6](C_(10)H_7SO_3)·3H_2O (M=Y, Dy). Bull.Chem.Soc.Jpn., 1988, 61(2):393-405
    133 Faithfull D L, Harrowfield J M, Ogden M I, Skelton B W,Third K,White A H. Synthetic and structural studies in the lanthanide toluene-4-sulfonate hydrates. AustJ.Chem., 1992, 45(3):583-594
    134 Shimizu G H K,Enright G D,Ratcliffe C I,Rego G S,Reid J L,Ripmeester J A. Silver sulfonates: An unexplored class of layered solids. Chem.Mater.,1998,10(11):3282-3283
    135 Shimizu G H K,Enright G D,Ratcliffe C I,Preston K F,Reid J L,Ripmeester J A. A layered silver sulfonate incorporating nine-coordinate Ag~1 in a hexagonal grid. Chem.Commun., 1999, (16):1485-1486
    136 M(?)kinen S K,Melcer N J,Parvez M,Shimizu G K H. Highly selective guest uptake in a silver sulfonate networkimparted by a tetragonal to triclinic shift in the solid State. Chem.EurJ., 2001,7(23):5176-5182
    137 C(?)t(?) A P,Ferguson M J,Khan K A,Enright G D,Kulynych A D,Dalrymple S A,Shimizu G K H. Intercalation of Alcohols in Ag Sulfonates: Topotactic behavior despite flexible layers. Inorg.Chem., 2002,41(2):287-292
    138 Yu J O,C(?)t(?) A P, Enright G D, Shimizu G K H. The first nonlayered metal sulfonate structure: a 1-D Ba~(2+) network incorporating hydrophobic channels. Inorg.Chem., 2001, 40(4):582-583
    139 C(?)t(?) A P, Shimizu G K H. The first example of a functional pillared metal sulfonate network. Chem.Commun., 2001, (3):251-252
    140 C(?)t(?) A P, Shimizu G K H. Coordination solids via assembly of adaptable components: systematic structural variation in alkaline earth organosulfonate Networks. Chem.Eur.J., 2003,9(21):5361-5370
    141 Gandara F,Garcia-Cortes A, Cascales C,Gomez-Lor B,Gutierrez-Puebla EJglesias M,Monge A, Snejko N. Rare earth arenedisulfonate metal-organic frameworks: An approach toward polyhedral diversity and variety of functional compounds. Inorg. Chem., 2007,46(9):3475-3484.
    142 V(?)gtle F, M(?)ller W M, Wehner W, Buhleier E. Noncyclic cryptates. Angew.Chem.Int. Ed.Engl., 1977,16(8):548-549
    143 Trofimenko S. Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry. Chem. Rev., 1993,93(3):943-980
    144 Etienne M. Hydridotris(pyrazolyl)borato complexes of the group 5 metals: inorganic and organometallic chemistry. Coord.Chem.Rev., 1996,156:201-236
    145 Szczepura L F, Witham L M, Takeuchi K J. Tris(2-pyridyl) tripod ligands. Coord. Chem. Rev., 1998,174(1):5-32
    146 Bergeron R. J. Synthesis and solution structure of microbial siderophores. Chem.Rev., 1984, 84(6):587-602
    147 Neilands J B. Methodology of siderophores. Structure and Bonding, 1984, 58:1-24.
    148 Hider R C. Siderophore mediated absorption of iron. Structure and Bonding, 1984, 58:26- 87
    149 Ranmond K N, Mueller G, Matzanke B F. Complexation of iron by siderophores: a review of their solution and structural chemistry and biological function. Top. Curr. Chem., 1984,123:49-101
    150 Matzanke B F, Matzanke G M, Raymond K N. In Loehr TM(Ed)., Iron Carriers and Ion Proteins, V.C.H Publisher, NY,1989
    151 卢会杰,尹明彩,樊耀亭,侯红卫,吴养洁.三脚架结构化合物及其配合物研究进展.无机化学学报,2001,17(4):478-488
    152 Gupta A,Skarzewski J. Lipophilic complexes part 6. J.Chem.Res.(s), 1994,6:206-207
    153 Collman J P, Fu L, Herrmann P C, Wang Z,Rapta M, Broring M, Schwenninger R, Boitrel B. A functional model of cytochrome c oxidase: thermodynamic implications. Angew.Chem.Int.Ed.Engl., 1998,37(24):3397-3400
    154 樊志,文欣,周卫红,刘小兰,缪方明.三(2-苯并咪唑亚甲基)胺铜(Ⅱ)配合物的合成、晶体结构和量子化学研究.无机化学学报,1999,15(5):601-606
    155 Piguet C, Edder C, Rigault S, Bernardinelli G, Biinzli J C G, Hopfgartner G Isolated d-f pairs in supramolecular complexes with tunable structural and electronic properties. J.Chem.Soc. Dalton Trans., 2000, (22):3999-4006
    156 Utz D, Kisslinger S, Hampel F, Schindler S. Syntheses and characterization of copper complexes with the ligand 2-aminoethyl(2-pyridylmethyl)-1,2-ethanediamine (apme). J.Inorg.Biochem., 2008,102(5-6):1236-1245
    157 Leung W H, Zhang Q F, Yi X Y. Recent developments in the coordination and organometallic chemistry of Kl(?)ui oxygen tripodal ligands. Coord.Chem.Rev., 2007, 251(17-20):2266-2279
    158 Fernandes C, Parrilha G L, Lessa J A, Santiago J M, Kanashiro M M., Boniolo F S, Bortoluzzi A J, Vugman N V, Herbst M H, Horn J A. Synthesis, crystal structure, nuclease and in vitro antitumor activities of a new mononuclear copper(Ⅱ) complex containing a tripodal N_3O ligand. Inorg.Chim.Acta., 2006,359(10):3167-3176
    159 Kimura E, Shionoya M, Hoshino A, Ikeda T, Yamada Y. A model for catalytically active Zinc(Ⅱ) ion in liver alcohol dehydrogenase: A novel "Hydride transfer" reaction catalyzed by Zinc(Ⅱ)-macrocyclic polyamine complexes. J Am. Chem. Soc, 1992, 114(26):10134-10137
    160 Kimura E, Nakamura I, Koike T, Shionoya M, Kodama Y, Ikeda T, Shiro M. Carboxyester hydrolysis promoted by a new zinc(Ⅱ) macrocyclic triamine complex with an alkoxide pendant: A model study for the serine alkoxide nucleophile in zinc enzymes. J. Am. Chem. Soc, 1994,116(11):4764-4771
    161 Koike T, Kajitani S, Nakamura I, Kimura E, Shiro M. The catalytic carboxyester hydrolysis by a new Zinc(Ⅱ) complex with an alcohol-pendant cyclen (1-(2-hydroxyethyl)-1,4,7,10-tetraazacyclododecane): a novel model for indirect activation of the serine nucleophile by zinc(Ⅱ) in zinc enzymes. J. Am. Chem. Soc, 1995, 117(4):1210-1219
    162 Li S A, Xia J, Yang D X, Xu Y, Li D F, Wu M F, Tang W X. Carboxyester hydrolysis catalyzed by a novel dicopper(Ⅱ) complex with an alcohol-pendant macrocycle. Inorg. Chem., 2002,41(7):1807-1815
    163高健.新型有机多胺配合物的合成、结构及抗微生物活性研究.南京理工大学,博士论文,2004
    164 Huang J, Li S A, Li D F, Yang D X, Sun W Y, Tang W X. Carboxy ester hydrolysis promoted by a dicopper(Ⅱ) macrocyclic polyamine complex with hydroxypropyl pendant groups. Eur. J. Inorg. Chem., 2004, (9):1894-1901
    165 Horn Jr. A., Neves A., Vencato I., Zucco C, Drago V., Werner R., Haase W., A new dinucleating N,0 donor ligand (H_2BPCINOL) and the structural and magnetic properties of two diiron complexes with the di-μ-alkoxo motif. J. Braz. Chem. Soc, 2000,11(1): 7-10
    166 Fernandes C, Parriha G L, Lessa J A, Santiago L J M, Kanashiro M M, Boniolo F S, Bortoluzzi A J, Vugman N V, Herbst M H, Horn Jr. A. Synthesis, crystal structure, nuclease and in vitro antitumor activities of a new mononuclear copper(Ⅱ) complex containing a tripodal N_3O ligand. Inorg. Chim. Acta., 2006,359(10):3167-3176
    167 Horn Jr.A, Fernandes C, Bortoluzzi A J, Vugman N V, Herbst M H. Coordination chemistry of the new ligand 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol (HPClNOL) with copper(Ⅱ). X-ray crystal structure, spectroscopic and electrochemical properties of the complex [Cu(HPClN0L)(CH_3CN)](ClO_4)_2. J.Mol.Struct., 2005, 749(1-3): 96-102
    168 Liu S H, Xue G P, Fu E Q, Wu C T, Luo B S, Chen L R. Crystal structure of copper (Ⅱ) complex with 3-hydroxyl-l,5-diazacyclo. Chin. J. Struct. Chem., 1996,15(4):315-317
    169 Liu S H, Xue G P, Zhang S H, Fu E Q, Wu C T,Yang Q C. Crystal Structure of nickel (Ⅱ) complex with 3-hydroxyl-l,5-diazacycloheptane. Chin. J. Struct. Chem. ,1997, 16(5):355-357
    170 蒋疆,赵春梅,洪瑾,唐惠炜,朱龙根.带羟乙基侧臂三脚架多胺Cu(Ⅱ)配合物切割肌红蛋白所得片断的质谱指认.无机化学学报,2007,23(2):243-252
    171 Navarro M, Cisneros-Fajardo E J, Fernadez-Mestre M, Arrieche D, Marchan E. Synthesis, characterization, DNA binding study and biological activity against Leishmania mexicana of [Cu(dppz)_2]BF_4. J. Inorg. Biochem., 2003, (97):364-369
    172 Melvin M S, Wooton K E, Rich C C, Saluta G R, Kucera G L, Lindquist N, Manderville R A, Copper-nuclease efficiency correlates with cytotoxicity for the 4-methoxypyrrolic natural products. J. Inorg. Biochem., 2001,87(3):129-135
    173 Liang F, Wu C, Lin H, Li T, Gao D, Li Z, Wei J, Zheng C, Sun M. Copper complex of hydroxyl-Substituted triazamacrocyclic ligand and its antitumor activity. Bioorg. Med. Chem. Lett., 2003,13(15): 2469-2472
    174 Cai J W. Structural chemistry and properties of metal arenesulfonates. Coord. Chem. Rev., 2004,248(11-12):1061-1083
    175 Lawrance G A. Coordinated trifluoromethanesulfonate and fluorosulfate. Chem.Rev., 1986, 86(1):17-33
    176 An D L, Gao S, Zhu Z B, Huo L H, Zhao H. Hexaaquacobalt(Ⅱ) 1,5-naphthalenedisulfonate. Acta Cryst., 2004, E60:m111-m112
    177 Huo L H, Gao S, Xu S X, Zhao H. Hexaaquazinc(Ⅱ) naphthalene-1,5-disulfonate. Acta Cryst., 2005, E61, m449-m450
    178 Chen C H,Cai J W,Liao C Z,Feng X L,Chen X M,Ng S W. Variation in the coordination mode of arenedisulfonates: Syntheses and structural characterization of mononuclear and dinuclear cadmium(Ⅱ) arenedisulfonate complexes with two- to zero-dimensional architectures. Inorg.Chem., 2002,41(18):4967-4974
    179 Cai J W, Chen C H, Liao C Z, Yao J H, Hu X P, Chen X M. Variation in the coordination mode of arenedisulfonates to copper(Ⅱ): synthesis and structural characterization of six copper(Ⅱ) arenedisulfonate complexes. J.Chem.Soc.Dalton.Trans., 2001 (7): 1137-1142
    180 杨仕平.含多咪唑配体金属酶模型化合物与分子自组装的研究.中山大学,博士论文,2000
    181 Gorun S M, Lippard S J. Synthesis, structure, and characterization of the tetranuclear iron(Ⅲ) oxo complex [Fe_4O_2(BICOH)_2(BICO)_2(O_2CPh)_4]Cl_2. Inorg.Chem., 1988, 27(1):149-156
    182 Beer R H, Tolman W B, Bott S G, Lippard S J. Effects of a bridging dicarboxylate ligand on the synthesis and physical properties of (μ-oxo)bis(μ-carboxylato)diiron(Ⅲ) complexes. Inorg.Chem., 1991,30(9): 2082-2092
    183 Baren C A, Duggan K A, Freeman H C. Tetraimidazolezinc(Ⅱ) perchlorate. Acta Cryst., 1975, B31:2713-2715
    184 Garrett T P J, Guss J M, Freeman H C. Hexakis(imidazole)manganese(Ⅱ) dichloride tetrahydrate, [Mn(C_3H_4N_2)_6]Cl_2·4H_2O, and hexakis(imidazole)zinc(Ⅱ) dichloride tetrahydrate, [Zn(C_3H_4N_2)_6]Cl_2·4H_2O. Acta Cryst., 1983, C39:1027-1031
    185 Morsali A,Ranjbar Z R, Amiri M G, Askarinejad A, Xiao H P. Synthesis, structural and spectroscopic characterization of a new cadmium(Ⅱ) complex containing imidazole (Im) as ligand, [Cd(Im)_6](ClO_4)_2. J.Coord.Chem., 2006, 59(9):961-967
    186 Caira M R, Nassimbeni L R, Orpen G The crystal structure of cis-catena-sulphatoaquatris(imidazole)cadmium(Ⅱ).Acta Cryst., 1976, B32:140-144
    187 Smith G, Cloutt B A, Lynch D E, Byriel K A, Kennard C H L. Nitrogen base adducts with silver(Ⅰ) p-toluenesulfonate: Syntheses and single crystal X-ray characterizations of the adducts with pyridine (1:1), 2-aminopyridine (1:2), 2-aminopyrimidine (1:1), 4,6- dimethyl -2-aminopyrimidine (2:3), and 3-aminobenzoic acid (1:2) and the crystal structure of the parent silver(Ⅰ) p-toluenesulfonate. Inorg.Chem., 1998, 37(13):3236-3242
    188 Sheldrick G M, SHELXS-97: Program for crystal structure determination. University of Gottingen, Germany, 1997
    189 Sheldrick G M, SHELXL-97: Program for the refinement of crystal structures. University of Gottingen, Germany, 1997
    190 廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社,1984:176
    191 Aeleen, F.;Michael,J.F.;Gary,W.T. Gaussian 03w User's Reference.Gaussian,Inc.,USA, 2004
    192 Stewart J J P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J.Mol.Model., 2007,13:1173-1213
    193 Carolina A P, Elena B A, Duane C L, Alfonso C, Josefa Maria G P, Juan N G Dinuclear EGTA-copper(Ⅱ) chelates with imidazole as auxiliary ligand. Inorg. Chem.Commun., 2006, 9(9):903-906
    194 Boca R. Zero-field splitting in metal complexes. Coord. Chem. Rev., 2004,248(9-10): 757-901
    195 Bacci M. Static and dynamic effects in spin equilibrium systems. Coord. Chem. Rev., 1988,86:245-271
    196 Masciocchi N, Galli S, Sironi A, Barea E, Navarro Jorge A R, Salas Juan M, Tabares L C. Rich structural and magnetic chemistry of cobalt(Ⅱ) pyrimidin-2-olate and pyrimidin -4-olate complexes. Synthesis, X-ray powder diffraction studies, and thermal behavior. Chem. Mater., 2003,15(11):2153-2160
    197 Kiskin M A, Aleksandrov G G, Bogomyakov A S, Novotortsev V M, Eremenko Ⅰ L.Coordination polymers of cobalt(Ⅱ) with pyrimidine and pyrazine: Syntheses, structures and magnetic properties. Inorg.Chem.Commun., 2008,11:1015-1018
    198 Gunderman B J, Kabell I D, Squattrito P J, Dubey S N. Structural chemistry of naphthalenedisulfonate salts. Inorg.Chim.Acta., 1997,258(2):237-246
    199 蔡继文陈彩虹,周金森.芳香二磺酸的配位化学研究化合物
    [Ni(cyclam)(1,5-nds)]·1/3H_2O(1)和[Co(cyclam)(H_2O)_2](1,5-nds)·2H_2O(2)的合成与结构.无机化学学报,2003,19(1):81-85
    200 Gandara F, Fortes-Revilla C, Snejko N, Gutierrez-Puebla E, Iglesias M, Monge M A. 2D and 3D supramolecular structures via hydrogen bonds and π-stacking interactions in arylsulfonates of nickel and cobalt. Inorg.Chem., 2006,45(24):9680-9687
    201陈彩虹.芳烃二磺酸根离子配位行为的研究.中山大学,博士论文,2002
    202陈彩虹,蔡继文,冯小龙,陈小明.烟酰胺合铜固体化合物中的分子间氢键.无机化学学报,2002,18(7):659-664
    203 Couldwell C, Prout K, Robey D, Taylor R, Rossotti F J C. The crystal and molecular structures of hexaaquacopper(Ⅱ) benzenesulphonate, toluene-4-sulphonate and D-camphor-10-sulphonate.Acta Cryst, 1978, B34:1491-1499
    204 Liu Y Q,Zeng X R. Hexaaquacopper(Ⅱ) bis(4-hydroxybenzenesulfonate). Acta Cryst., 2007,E63:m2414
    205 Batten S R. Current Opinion in Solid State & Materials Science, 2001,5:107-114
    206 Khan O, Pei Y, Verdaguer M, Renard J P, Sletten J. Magnetic ordering of manganese(Ⅱ) copper(Ⅱ) bimetallic chains; design of a molecular based ferromagnet. J.Am.Chem.Soc, 1988, 110(3):782-789
    207 Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement. ngew.Chem.Int.Ed.Engl., 1998,37(11): 1460-1494
    208 Leininger S, Olenyuk B, Stang P J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem.Rev., 2000,100(3):853-908
    209 马卫兴,高健,钱保华,许兴友,陆路德,杨绪杰,汪信,宋海斌.配位聚合物{[Zn(CF_3COO)_2(C_5H_5ON)]·H_2O}_n的合成、晶体结构及表征.无机化学学报,2005,21(5):749-752
    210 郭金玉,张建国,张同来,吴瑞凤,于伟.三维网状结构配位聚合物[Cu(HCOO)_2(H_2O)_2]_∞晶体的热分解机理.物理化学学报,2006,22(10):1206-1211
    211 李秀梅,崔运成,李国锋.4,4'-联吡啶桥联配合物的合成及其晶体结构研究.吉林师范大学学报(自然科学版),2005,(4):23-25
    212 何银华,封霞,冯云龙,孙鸿,温一航.一维链状1,8-萘二酸四核锌配位聚合物[Zn_4(1,8-nap)_4(4,4'-bipy)_2·0.5en·H_2O]_n的合成、结构、热稳定性及发光性质.无机化学学报,2007,23(10):1085-1088
    213 徐晨,乔海滨,毛红艳,张鸿云,吴庆安,刘红磊,朱玉.多吡啶配合物[Zn(4,4'-bipy)(CH_3COO)(NO_3)]_n和[Y(bpy)_2](NO_3)_3的合成、表征及其晶体结构.郑州大学学报(理学版),2004,36(4):67-70
    214 马卫兴,钱保华,程青芳,许兴友,陆路德,宋海斌.混配配合物[Zn(acac)_2(C_5H_4NOH)]的合成、晶体结构及表征.无机化学学报,2006,22(11):2101-2104
    215 施舒,徐元植.[Cu(acac)_2(4,4'-bipy)]_n的晶体结构.结构化学,1985,4(1):42-45
    216 Ma B Q, Gao S, Yi T, Xu G .X. One-dimensional coordination polymers [Co(acac)_2pz]_n and [Co(acac)_2(4,4'-bipy)]_n (acac=acetylacetone, pz=pyrazine, bipy=4,4'-bipyridine): synthesis, structures and magnetic properties. Polyhedron, 2001,20:1255-1261
    217 邓玉恒,王少亭,张帆.稀土4,4'-联吡啶-2-羟基-3-萘甲酸固体配合物的合成与表征.首都师范大学学报(自然科学版),2006,27(6):38-42
    218 陈文凯,邓昭浦.4,4'-联吡啶二面角和扭转势垒的理论研究.分子科学学报,2005,21(5):9-13
    219 Braga D, Grepionif F, Desiraju G R. Crystal engineering and organic architecture. Chem.Rev., 1998,94(4): 1375-1406
    220 Kepert C J, Hesek D, Beer P D, Rosseinsky M J.Desolvation of novel microporous hydrogen-bonded framework: characterization by in situ single crystal and powder X-ray diffraction.Angew.Chem.Int.Ed.Engl., 1998,37(22):3158-3160
    221 Eddaoudi M, Li H L, Yaghi 0 M.Highly porous and stable metal-organic frameworks:structure design and sorption properties.J.Am.Chem.Soc, 2000,122(7): 1391-1397
    222 O'Keeffe M, Eddaoudi M, Li H L.Frameworks for extended solids:Geometrical design principles.J.Solid State Chem., 2000,152(1):3-20
    223 Eddaoudi M, Moler D B, Li H L.Modular chemistry: secondary building units as a basis for the design of higly porous and robust metal-organic carboxylate frameworks.cc.Chem.Res., 2001,34:319-330
    224 Rao C N R, Natarajan S, Vaidhyanathan R.Metal carboxylates with open architectures,Angew.Chem.Int.Ed., 2004,43:1466-1496
    225 Dybtsev D N, Chun H, Yoon S H, Kim D, Kim K.Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties, J.Am.Chem.Soc, 2004,126(1):32-33
    226 Cornia A, Caneschi A, Dapporto P, Fabretti A C, Gatteschi D, Malavasi W, Sangregorio C, Sessoli R.Manganese(Ⅲ) Formate: A three-dimensional framework that traps carbon dioxide molecules.Angew.Chem.Int.Ed., 1999,38:1780-1782
    227 Viertelhaus M, Adler P, Clerac R, Anson C E, Powell A K.Iron(Ⅱ) formate [Fe(02CH)2]- 1/3HCO_2H: A mesoporous magnet-solvothermal syntheses and crystal structures of the isomorphous framework metal(Ⅱ) formates [M(O_2CH)_2]- n(Solvent) (M=Fe,Co,Ni,Zn,Mg).Eur.J.Inorg.Chem., 2005,44(3):692-703
    228 Gou S H, You X Z, Yu K B, Lu J P.Synthesis and characterization of a series of tripodal transition metal complexes with the Schiff base of 2,2',2"-triaminoethylamine and 2-pyridinecarboxaldehydeN-oxide.Crystal structures of heptacoordinate manganese(Ⅱ) and cobalt(Ⅱ) complexes of a seven-coordinate ligand .Inorg.Chem., 1993,32(10):1883-1887
    229 Cai C X, Xue K H, Xu X Y.Electrocatalysis for the reduction of O_2 and H_2O_2 based on complex of copper(Ⅱ) with the tris(3-aminopropyl)amine and imidazole ligands.J.Applied Electrochem., 1997,27(7): 793-798
    230 Wang J, Xu X Y, Chen J L, Luo Q H, Shen M C, Huang X Y, Wu Q J.Synthesis and X-ray crystal structure of a macrocyclic binuclear cadmium(Ⅱ) complex with side chain.Inorg.Chim.Acta, 1997,256(1): 121-124
    231 Liu S, Gelmini L, Rettig S J, Thompson R C, Orvig C.Synthesis and characterization of lanthanide [Ln(L)]_2 complexes of N_4O_3 amine phenol ligands with phenolate oxygen bridges: evidence for very weak magnetic exchange between lanthanide ions. JAm.Chem.Soc., 1992,114:6081-6087
    232 Brudenell S J, Crimp S J, Higgs J K E, Moubaraki B, Murray K S, Spiccia L. Binuclear chromium(Ⅲ) complexes bridged by hydroxide and acetate groups. Inorg.Chim.Acta, 1996,247(1):35-41
    233 Basolo F, Chen Y T, Murman K R. Steric effects and the stability of complex compounds. Ⅳ. The chelating tendencies of C-substituted ethylenediamines with copper(Ⅱ) and nickel(Ⅱ) ions. J Am Chem Soc, 1954,76:956-959
    234 Newman M S, Busch D H, Cheney G E, Gustafson G R. Synthesis and chelation studies of 2,2-dialkyl-1,3-propanediamines. Inorg Chem, 1972,11:2890-2893
    235 Hares G B, Fernelius W C, Douglas B E. Equilibrium Constants for the Formation of Complexes between Metal Ions and Polyamines. J Am Chem Soc, 1956,78:1816-1818
    236 Bertsch C R, Fernelius W C, Block B P.A Thermodynamic Study of Some Complexes of Metal Ions with Polyamines. J Phys Chem, 1958,62:444-450
    237 Wu D M, Lin X , Lu C Z, Zhuang H H.A superstructure type of crystal for [Zn(C_2H_8N_2)_3] Cl_2·2H_2O. Chinese J.Struct.Chem.(Jiegou Huaxue), 2001,20:409-412
    238 Wieczorrek C.Tetraiodide von. Tris(1,2-ethandiamin)komplexen der Metalle Zink und Nickel. Acta Crystallogr, 2000, C56:1079-1081
    239 Fowkes A, Harrison W T A. Tris(propane-l,2-diamino-N,N')Zinc(II) dichloride dihydrate. Acta Crystallogr, 2007, E63:m1249
    240 Xu X Y, Zheng T, Ma W X, Zhang M X, Liu Q L, Grguric S, Dinovic V, Kaluderovic G, Sabo T. Synthesis, crystal structure and properties of a 4,4'-bipyridine bridged trigonal-bipyramidal copper homobinuclear complex with tris(2-Aminoethyl)amine. J.Coord.Chem., 2002, 55(6): 711-716
    241 蔡正洪,唐瑜,于青,刘德波,谭民玉,王宏根.[ZnN(CH_2CH_2NH_2)_2(CH_2CH_2N=CHC_6H_4O)]Pic的合成与晶体结构.结构化学,2003,23(4):431-434
    242马卫兴,钱保华,高健,许兴友,陆路德,杨绪杰,汪信,宋海斌.配合物[Zn(tren)(H-SSA)]的合成、晶体结构及表征.无机化学学报,2005,4(21):612-615
    243 Addison A W, Rao TN, Reedijk J, Rijn J, Verschoor G C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2' -yl)-2,6-dithiaheptane] copper(Ⅱ) perchlorate. J. Chem. Soc. Dalton Trans., 1984,1349
    244 Armando M. Racemic Chloro[tris(2-aminoethyl)arnine]zinc(Ⅱ) Chloride Trihydrate, [ZnCl(C_6H_(18)N_4)]Cl.3H_2O.Acta Cryst., 1994,C50:1451-1456
    245 Han G H, Lin B Z, Li Z. Tris(ethylenediamine)zinc(Ⅱ) molybdate(Ⅵ), [Zn(en)_3][MoO_4]. Acta Cryst., 2005, C61: m313-m314
    246 Rick L H, Judith N B. Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordination chemistry. Coordination Chemistry Reviews, 1998,173(1): 133-165
    247 Baldwin G S, Sessions R B, Halford S E. DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis. J.Mol.Biol., 1999, 288(1):87-103
    248 Kuzuya A, Machida K, Komiyama M. A highly acidic acridine for efficient site-selective activation of RNA leading to an eminent ribozyme mimic. Tetrahedron Lett., 2002, 43(46):8249-8252
    249 寇兴明,曾宪诚.大环钴(Ⅱ)配合物模拟水解酶催化羧酸酯水解的比较研究(英文).无机化学学报,2002,18(9):892-896
    250 Aka F N, Akkayal M S, Akkaya E U. Remarkable cooperative action of two zinc centers in the hydrolysis of plasmid DNA. J.Mole.Cat.A:Chem., 2001,165(1-2):291-294
    251 Kimura E, Shiota T, Kioke T, Shiro M, Kodama M. A zinc(Ⅱ) complex of 1,5,9- triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J.Am.Chem.Soc, 1990,112(15): 5805-5811
    252 陈万东,朱守荣,林华宽,林春晨,林美荣,陈荣悌.三(2-苯并咪唑甲基)胺-锌(Ⅱ)配合物模拟水解酶催化酯类水解研究.高等学校化学学报,1997,18(8):1321-1324
    253 解永树,薛奕,林瑞森,刘清亮.链型含醇羟基N3O2配体Zn(Ⅱ)和Cu(Ⅱ)配合物催化对-硝基苯酚乙酸酯水解研究.无机化学学报,2000,16(5):745-750
    254 Qian B H, Zhang Z M,LU L D,Yang X J,Wang X. Bis{1-[bis(2-aminoethyl) amino]propan-2-ol}nickel(Ⅱ) bis(perchlorate). Acta. Cryst., 2007, E63:m2754
    255 Li S A, Xia J, Yang D X, Xu Y, Li D F, Wu M F, Tang W X. Carboxyester hydrolysis catalyzed by a novel dicopper(Ⅱ) complex with an alcohol-pendant macrocycle. Inorg.Chem., 2002,41(7):1807-1815
    256 Xia J,Xu Y,Li S A, Sun W Y, Yu K B, Tang W X. Carboxy ester hydrolysis promoted by a zinc(Ⅱ) 2-[Bis(2-aminoethyl)amino]ethanol complex: Anew model for indirect activation on the serine nucleophile by zinc(Ⅱ) in zinc enzymes. Inorg.Chem., 2001,40:2394-2401
    257 Bobylev V A,Chechik V O. Synthesis of N-(2-hydroxyethyl)- and N-(2-chloroethyl) polyethylenepolyamines. Zh.Obshch,Khim., 1990, 60(12):2721-2725
    258 中本一雄(K.Nakamoto)著.无机和配位化合物的红外和拉曼光谱(第四版).黄德如,汪仁庆译.北京:化学工业出版社,1991
    259 张进,张同来,杨利,张建国,崔燕.[Ni(CHZ)_3]SO_4·3H_2O的合成、晶体结构及热分解特性.物理化学学报,2008,24(5):760-766
    260 吕春华,张同来,张建国,蔡瑞娇,郁开北.[Ni(CHZ)3](TNR)5H2O的制备、晶体结构及热分解机理.高等学校化学学报,2000,21(7):1005-1009
    261 Xiang H, Lu T B, Chen S, Mao Z W, Feng X L, Yu K B. Macrocyclic nickel(Ⅱ) complexes with folded conformtion.Synthesis, properties and structures of [NiL(en)_3] (ClO_4)_4 and [(NiL)_2(μ-ox)](ClO_4)_2(L=3,10-bis(2-hydroxyethyl) -1,3,5,8,10,12- hexaazacyclotetradecane, en=ethylenediamine, ox=oxalate anion). Polyhedron, 2001, 20:313-319
    262 Yao Y J, Shu H M, Du C Q, Hu H M. Bis{2-[N,N-bis(2-aminoethyl)mino]ethanaminium} nickel(Ⅱ) hexacyanidoferrate(Ⅱ). Acta Cryst., 2007, E63:m1208-m1210
    263 Chen Z F, Xiong R G, Abrahams B F, You X Z, Che C M.An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(Ⅱ) coordination polymer with a second-order nonlinear optical effect. J. Chem. Soc, Dalton Trans., 2001,2453-2455
    264 Meng X R, Song Y L, Hou H W, Han H Y, Xiao B, Fan Y T, Zhu Y. Hydrothermal Syntheses, Crystal Structures, and Characteristics of a Series of Cdbtx Coordination Polymers (btx =1,4-Bis(triazol-1-ylmethyl)benzene). Inorg. Chem., 2004,43(11): 3528-3536
    265 Antonia N, Helen S E.Trinuclear Zinc(Ⅱ) Complexes and Polymeric Cadmium(Ⅱ) Complexes with the Ligand 2,5-Bis(2-pyridyl)pyrazine: Synthesis, Spectral Analysis, and Single-Crystal and Powder X-ray Analyses. Inorg. Chem., 1999,38(26):6164-6170
    266 Prasad P A, Neeraj S, Natarajan S, Rao C N R. Synthesis and structure of the first openframework cadmium oxalate possessing channels. Chem. Commun., 2000, (14):1251-1252
    267 Wang H S, Shi W, Xia J, Song H B, Wang H G, Cheng P. Six-, seven- and eightcoordinated Cd(Ⅱ) ions with N-heterocyclic multicarboxylic acids. Inorg. Chem. Commun., 2007, 10:856-859
    268 Smith J P, Wendlandt W W. Mechanism of the thermal deaquation of some transition metal aquoammine complexes. Nature, 1964,201:291-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700