氨基酸盐SG溶液吸收烟道气中二氧化碳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于温室气体CO_2大量排放引发的环境问题日益严重以及CO_2潜在的资源性,开发出一种新型高效的吸收剂富集分离烟道气中CO_2正越来越引起人们的关注。本文通过对氨基酸盐SG单一溶液及其SG与位阻胺AMP的混合溶液吸收CO_2特性的研究,吸收动力学的初步探讨,和再生性能的研究,为更深入这方面的研究和工作应用提供必要的理论基础。
     本文以双搅拌釜为反应吸收装置,采用浓度为1.0~4.0 kmol·m~(-3)SG单一溶液和不同浓度配比的AMP+SG混合溶液作为CO_2的吸收剂,通过对SG单一溶液和AMP+SG混合溶液吸收CO_2的反应速率的测定,考察了吸收量,吸收负荷随时间的变化关系,温度对于SG单一溶液和AMP+SG混合溶液吸收CO_2的影响,及在烟道气中混有400 mg·m~(-3)的SO_2对SG单一溶液吸收CO_2的影响。实验结果表明:1.5 kmol·m~(-3)AMP+0.6 kmol·m~(-3)SG混合溶液的吸收性能较优,烟道气中混有400 mg·m~(-3)的SO_2对SG单一溶液吸收CO_2的影响很小,SG单一溶液和AMP+SG混合溶液吸收CO_2的反应是快速拟一级反应。
     以磁力搅拌恒温加热器作为再生装置,对SG单一溶液和AMP+SG混合溶液吸收CO_2富液再生性能分别进行考察。测定363 K到403 K再生温度下的再生效率及pH的变化规律。总结发现SG单一溶液的最佳再生温度为388 K,最佳再生时间为76 min。当再生温度从363 K上升到403 K时,SG单一溶液的再生效率从80.0%上升到92.6%。AMP+SG混合溶液的最佳再生温度为378 K。通过连续循环吸收再生实验,比较了单一溶液(SG、MEA、DEA、MDEA、AMP)和混合溶液(AMP+MEA,AMP+DEA,AMP+SG)的再生效率。发现单一溶液再生效率从大到小依次为:AMP>MDEA>SG>DEA>MEA。混合溶液的再生效率大小分别是:AMP+SG>AMP+MEA>AMP+DEA。研究结果表明:与常见的混合胺溶液相比,AMP+SG混合溶液是一种吸收性能和再生性能较为优秀的CO_2的吸收液。
CO_2 separation and capture has been extensively studied in recent years because of environmental concern of greenhouse effect and potential resources. The choice of absorbent has been focused on in the chemical absorption research. Features of single aqueous sodium glycinate (SG) and mixed solutions systems, absorption mechanism were studied, which may sever future study as groundwork.
     Absorption performance of CO_2 into single aqueous SG (1.0~4.0 kmol·m~(-3)) and the aqueous blends of 2-amino-2-methyl-l-propanl (AMP) and SG were investigated at different temperatures (298~323 K) using a double stirred-cell absorber. The relationships between the absorption rate, absorption capacity and absorption time were analyzed. The results indicated that aqueous blends of 1.5 kmol·m~(-3) AMP and 0.6 kmol·m~(-3) SG was much more suitable as submarine-based CO_2 scrubbers. It was demonstrated that the kinetics region of absorption CO_2 into single aqueous SG and the aqueous blends of AMP and SG was the fast pseudo-first order reaction regime.
     To determine its regeneration behavior, single aqueous SG and the aqueous blends of AMP and SG was investigated by the means of regeneration heating. The CO_2 absorption and regeneration characteristics were experimentally examined under various operating conditions. Experimental results showed that the regeneration efficiency of single aqueous SG increased from 80.0% to 92.6% during temperature range of 363 K to 403 K. The most suitable regeneration temperature and time for single aqueous solution are 388 K and 76 min respectively. The most suitable regeneration temperature for the aqueous blends of AMP and SG was 378 K in our experiment condition. Under the same experimental conditions, the regeneration efficiency can be ranked in the following order: AMP+SG>AMP+MEA>AMP+DEA. It was demonstrated that the aqueous blends of AMP and SG was easier to regenerate with saving energy and less loss of absorption capacity than other amines. It was concluded that the aqueous blends of AMP and SG was fitted for industry.
引文
[1]Halmann M.M.,Stenberg M.,Greenhouse Gas Carbon Dioxide Mitigation[M].Boca Raton,Florida:CRC Press LLC,1999:9-15.
    [2]Stewart C.,Hessami M.,A study of methods of carbon dioxide capture and sequestration-the Sustainability of a photosynthetic bioreactor approach[J].Energy Conversion Management,2005(46):403-420.
    [3]Rao A.B.,Rubin E.S.,A technical,economic,and environmental assessment of amine-based CO_2 capture technology for power plant greenhouse gas control[J].Environmental Science Technology,2002(36):4467-4475.
    [4]Suda T.,Ijima M.,Tanaka H.,Mitsuoka S.,Iwaki T.,Countercurrent absorption of CO_2 in a real flue gas into aqueous alkanolamine solutions in a wetted wall column[J].Environmental Progress,1997(16):200-207.
    [5]Ayanduntan O.,Lawal,Raphael O.,Idem,Kinetics of the oxidative degradation of CO_2 loaded and concentrated aqueous MEA-MDEA blends during CO_2 absorption from flue gas streams[J].Industrial & Engineering Chemistry Research,2006(45):2601-2607.
    [6]Ho-Jun S.,Seungmoon L.,Sanjeev M.,Jong J.P.,Solubilities of carbon dioxide in aqueous solutions of sodium glycinate[J].Fluid Phase Equilibria,2006(246):1-5.
    [7]Chen H.,Obuskovic G.,Majumdar S.,Sirkar K.K.,Immobilized glycerol-based liquid membranes in hollow fibers for selective CO_2 separation from CO_2-N_2mixtures[J].Journal of Membrane Science,2001(183):75-88.
    [8]Murdoch K.,Thibaud-Erkey,C.,Sirkar,K.K.,Obuskovic.G.Membrane based CO_2 removal from spacesuits.http://www.dsls.usra.edu/meetings/bio2001/pdf/sessions/abstracts/138p.pdf.
    [9]Chen H.,Kovvali A.S.,Sirkar,K.K.,Selective CO_2 separation from CO_2-N_2mixtures by immobilized glycine-Na-glycerol membranes[J].Industrial &Engineering Chemistry Research,2000(39):2447-2451.
    [10]肖亚平,贝浼智,二氧化碳·温室效应·对策[J].现代化工,1995(9):34-36.
    [11]周淑贞,张如一,张超,气象学与气候学[M].高等教育出版社.2004: 243-247.
    [12]Song C.,Global challenges and strategeies for control,coversion and utilization of CO_2 for sustainable development involving energy,catalysis,adsorption and chemical processing[J].Catalysis Today,2006(115):2-32.
    [13]李春鞠,顾国维,温室效应与二氧化碳的控制[J].环境保护科学,1998(26):13-15.
    [14]施雅风,全球变暖影响下中国自然灾害的发展趋势[J].自然灾害学报,1996(5):102-116.
    [15]Yamasaki A.,An overview of CO_2 mitigation options for global warmingEmphasing CO_2 sequestration options[J].J.Chem.Eng.Jp.,36(2003):361-375.
    [16]李颖,耐低温水稻[J].新农业,2006(2):32-32.
    [17]Lewis J.,Argyropoulos J.N.,Nielson K.A.,Supercritical carbon dioxide spray systems[J].Metal finishing,2000(98):254-262.
    [18]Fu H.,Matthews M.A.,Comparison between Supereritieal carbon dioxide extraction and aqueous surfactant washing of an oily machining waste[J].Journal of Hazardous Materials,1999(67):197-213.
    [19]Pyo.D.,Separation of vitamins by supereritical fluid chromatography with water -modified carbon dioxide as the mobile Phase[J].Journal of Biochemical and Biophysical,2000(43):113-123.
    [20]Sihvonen M.,Rvenp J.E.,Hietaniemi V.,Advances in supercritical carbon dioxide thchnologies.Trends in Food Science&Technology,1999(10):217-222.
    [21]Li Y.,Use of sapereritical carbon dioxide in Synthetic Organic Chemistry[J].Chemical World,2002(468):490-493.
    [22]Yang G.,Liu Z.Z.,Zhang M.,Application of supercritical CO_2 anti-solvent to pharmaceutical micmencapsulation[J].Chemical Industry and Engineering Progress,2005(24):1037-1041.
    [23]刘涛,超临界CO_2制冷循环的应用与研究[J].制冷与空调,2007(21):39-41.
    [24]贾航,CO_2气体保护焊在4000 m~3球罐中的应用[J].石油化工设备,2007(36):81-84.
    [25]周如金,顾立军,李德豪,超临界二氧化碳在环境保护中的应用[J].化工环保,2003(23):270-273.
    [26]金竹萍,超临界流体萃取技术的应用及研究进展[J].山西化工,27(2007):42-46.
    [27]彭特立,超临界二氧化碳萃取技术的开发应用[J].企业技术开发,1998(5):15-15.
    [28]原华山,银建中,丁信伟.超临界CO_2萃取大豆油的实验研究[J].化学工业与工程技术,2003(23):3-5.
    [29]沈迪新,控制CO_2的可行性、模式和经济性评估[J].环境科学进展,1994(2):47-56
    [30]James W.L.,Integration of fossil energy systems with CO_2 sequestration through NH_4HCO_3 production[J].Energy Conversion and Management,2004(44):1535-1546.
    [31]Huang H.M.,Shi Y.,Li W.,Dual alkali approaches for the capture and separation of CO_2[J].Energy and Fuels,2001(15):263-268.
    [32]Robert J.H.,An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds[J],Ind.Eng.Chem.Res,1997(36):1779-1790.
    [33]张建敏,张锁江,氨基酸类离子液体用于酸性气体吸收:中国,专利,200510073345.0,2005.12.21.
    [34]Hiyoshi N.,Yogo K.,Yashima T.,Adsorption of carbon dioxide on modified SBA-15 in the presence of water Vapor[J].Chem.Lett.,2004(33):510-511.
    [35]Hiyoshi N.,Yogo K.,Yashima T.,Development of novel CO_2 adsorption for capture of CO_2 from flue gas[J].Micropor.Mespor.Mat.,2005(84):357-365.
    [36]Hiyoshi N.,Yogo K.,Yashima T.,Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J].J.Jpn.Petrol.Inst.,2005(48):29-36.
    [37]Knofel C.,Descarpentries J.,Benzaouia A.,Functionalised micro-mesoporous silica for the adsorption of carbon dioxide[J].Micropor.Mespor.Mat.,2005(9):79-85.
    [38]Huang H.Y.,Yang R.T.,Chin D.,Munson C.L.,Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J].Ind.Eng.Chem.Res.,2003(42):2427-2433.
    [39]Xu X.C.,Song C.S.,Andresen J.M.,Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO_2 capture[J].Energy Fuels,2002(16):1463-1469.
    [40]Xu X.C.,Song C.S.,Andresen J.M.,Preparation and characterization of novel CO_2 'molecular basket' absorbents based on polymer-modified mesoporous molecular seieve MCM-41[J].Micropor.Mespor.Mat.,2003(62):29-45.
    [41]Maroto-Valer M.M.,Fauth D.J.,Kuchta M.E.,Zhang Y.,Andresen J.M.,.Activation of magnesium rich minerals as carbonation feedstock materials for CO_2 sequestration[J].Fuel Processing Technology,2005(86):1627-1645.
    [42]Maroto-Valer M.M.,Tang Z.,Zhang Y.,CO_2 capture by activated and impregnated anthracites[J].Fue.Proce.Tech.,2005(86):1487-1502.
    [43]Essaki K.,Nakagawa K.,Kato M.,Uemoto H.,CO_2 absorption by lithium silicate at room temperature[J].J.Chem.Eng.Jp.,2004(37):772-777.
    [44]Kato M.,Nakagawa K.,Essaki K.,Novel CO_2 absorbents using lithium-containing oxide[J].International of Applied Ceramic Technology,2005(2):467-475.
    [45]汪士昂,大气中二氧化碳的回收利用[J].扬子石油化工,2000(10):13-15.
    [46]Hong Q.Y.,Zheng X.,Mao H.F.,Progress in carbon dioxide separation and capture:A review[J].Journal of environmental scicences,2008(20):14-27.
    [47]Danckwerts P.V.,McNeil K.M.,The absorption of carbon dioxide into aquesous amine solutions and the effects of catalysis[J].Trans.Instn.Chem.Engrs.,1967(45):T32-T49.
    [48]Caplow M.,Kinetics of carbamate formation and breakdown[J].J.Am.Chem.Sci.,1968(90):6795-6803.
    [49]Danckwerts P.V.,The reactions of CO_2 with ethanolamines[J].Chem.Eng.Sci.,1979(34):443-446.
    [50]Sharma M.M.,Absorption of CO_2 and COS in alkaline and amine solutions[M],Ph.D.thesis,University of Cambridge.1964.
    [51] Huang H. P., Chang S. G, Dorchak T., Method to regenerate ammonia for the capture of carbon dioxide[J]. Energ. Fuel., 2002 (16): 904-910.
    
    [52] Kumar P. S., Hogendoorn J. S., Feron P. H., Equilibrium Solubility of CO_2 in aqueous potassium taurate solutions: part 1. crystallization in carbon dioxide loaded aqueous salt solutions of amino acids[J]. Industrial & Engineering Chemistry Research, 2003(42): 2832-2840.
    [53] Hoist J. V., Kersten S. R. A., Hogendoorn J. A., Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts[J]. J. Chem. Eng., 2008: A-B.
    [54] Portugal A. F., Derks P. W. J., Versteeg G. F., Characterization of potassium glycinate for carbon dioxide absorption purposes[J]. Chem. Eng. Sci., 2007 (62): 6534-6547.
    [55] Seungmoon L, Ho-Jun S., Sanjeev M, Kinetics of CO_2 Absorption in Aqueous Sodium Glycinate Solutions[J]. Industrial & Engineering Chemistry Research, 2007(46): 1578-1583.
    [56] Jyung R. J., Heemoon E., Dongwha K., Absorbent and method for separating acid gases from gas mixture, US, patent, 20060270051,2006.2.30.
    [57] Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Pilot plant studies of the CO_2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture demonstration plant[J]. Industrial and Engineering Chemistry Research, 2006 (45): 2414-2420.
    [58] Florentin M. G, Ma.Esther R. L, Ascencion R. M., Arturo T., Solubility of CO_2 in aqueous mixtures of diethanolamine with methyldiethanolamine and 2-amino-2-methyl- 1-propanol[J], 1998(150-151): 721-729.
    [59] Chen. H., Obuskovic G., Majumdar S., Sirkar K. K., Immobilized glycerol-based liquid membranes in hollow fibers for selective CO_2 separation from CO_2-N_2 mixtures[J]. Journal of Membrane Science, 2001 (183): 75-88.
    [60] Murdoch K., Thibaud-Erkey C., Sirkar, K. K., Obuskovic. G, Membrane based CO_2 removal from spacesuits. http://www.dsls.usra.edu/meetings/bio2001/pdf/sessions/abstracts/138p.pdf.
    
    [61] Chen H., Kowali A. S., Sirkar K. K., Selective CO_2 separation from CO_2-N_2 mixtures by immobilized glycine-Na-glycerol membranes[J].Industrial &Engineering Chemistry Research,2000(39):2447-2451.
    [62]Ho-Jun S.,Seungmoon L.,Sanjeev M.,Jong-Jin P.Solubilities of carbon dioxide in aqueous solutions of sodium glycinate[J].Fluid Phase Equilibria,2006(246):1-5.
    [63]袁文峰,张卫峰,王树源,微孔型膜接触器分离模拟烟道气二氧化碳的研究[J].能源工程,2004(4):9-12.
    [64]张卫风,方梦祥,王树源,中空纤维膜接触器分离烟气中CO_2试验研究[J].高技术通讯,2004(14):40-43.
    [65]张培,位阻胺AMP溶液富集烟道气中CO_2的研究[D].浙江省杭州市,浙江大学.2007:26-28.
    [66]Versteeg,G.F.,Swaaij V.,W.P.M.,On the kinetics between CO_2 an alkanolamine both in aqueous and non-aqueous solutions-Ⅰ Primary and Secondary amines.Chemical Engineering Science,1988(43):573-585.
    [67]Jyung R.J.,Heemoon E.,and Dongwha K.,Absorbent and method for separating acid gases from gas mixture,US,patent,20060270051,2006.2.30.
    [68]Rao A.B.,Rubin E.S.,A technical,economic,and environmental assessmet of amine- based CO_2 capture technology for power plant greenhouse gas control[J],Environ.Sci.Technol.,2002(36):4467-4475.
    [69]Levenspiel O.,Godfrey J.M.,A gradientless contactor for experimental study of interface mass transfer with/without reaction[J].Chem.Eng.Sci.,1974(29):1723-1730.
    [70]Mandal B.P.,Bandyopadhyay S.S.,Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amio-methyl-1-propanol and diethanolamine[J].Chem.Eng.Sci.,2005(60):6438-6451.
    [71]Kundu M.,Bandyopadhyay S.S.,Solubility of CO_2 in water+Diethanolamine+2-amino-2-methyl-1-propanol.J.Chem.Eng.Data.,2006(51):398-405.
    [72]Florentin M.G.,Ma.Esther R.L.,Ascencion R.M.,Arturo T.,Solubility of CO_2in aqueous mixtures of diethanolamine with methyldiethanolamine and 2-amino-2-methyl-1-propanol[J].Chem.Eng.Sci.,1998(150-151):721-729.
    [73]Jimmy X.,Chih W.L.,Meng H.L.,Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol+monoethanolamine[J].Chem.Eng.Sci.,2000(55):161-175.
    [74]Mandal B.P.,Guha A.K.,Biswas,Bandyopadhyay S.S.,Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J].Chem.Eng.Sci.,2001(56):6217-6224.
    [75]Tan C.S.,Chen J.E.,Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed[J].Sep.Sci.Technol.,2006(49):174-180.
    [76]James T.Y.,Henry W.P.,Study of CO_2 absorption and desorption in a packed column[J].Energy & Fuels,2001(15):274-278.
    [77]Chiu L.F.,Li M.H.,Heat capacity of alkanolamine aqueous solutions[J].J.Chem.Eng.Data.,1999(44):1396-1401.
    [78]Zhang K.,Hawrylak B.,Thermodynamics of aqueous amines:excess molar heat capacities,volumes,and expansibilities of {water+methyldiethanolamine (MDEA)} and {water+2-amino-2-methyl-1-propanol(AMP)}[J].J.Chem.Thermodynamics,2002(34):679-710.
    [79]Jassim M.S.,Rochelle G.,Eimer D.,Carbon dioxide absorption and desertion in aqueous monoethanolamine solutions in a rotating packed bed[J].Ind.Eng.Chem.Res.,2007(46):2823-2833.
    [80]Sakwattanapong R.,Aroonwilas A.,Veawab A.,Behavior of reboiler heat duty for CO_2 capture plants using regenerable single and blended alkanolamines[J].Ind.Eng.Chem.Res.,2005(44):4465-4473.
    [81]Zhang P.,Shi Y.,Wei J.W.,Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption[J].J.Env.Sci.,2008(20):39-44.
    [82]Hook R.J.,An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds[J].Ind.Eng.Chem.Res.,1997(36):1779-1790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700