基于生理生态模型的杉木形态结构变化可视化模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和信息技术的不断进步,树木的三维可视化模拟正受到越来越多的学者关注,近年来更是取得了长足的发展。树木三维可视化模拟技术已经成为当前研究树木的有效手段,在展示树木形态结构以及树木生长变化过程等方面有其独特的优势,为深入研究树木形态结构变化机制以及生长过程开辟了新的技术途径,其最终目的是构建外在形态结构和内在功能都与真实树木相一致的模型,并应用计算机手段以可视化的方式呈现最终的模拟结果。树木的生命活动在某种程度上表现为树木形态结构、生理生态过程和环境之间的交互作用结果。实现对树木三维形态结构和生理功能的并行模拟成为当前树木模拟的主要发展方向。
     杉木作为我国特有的用材树种,在国民经济建设中发挥着重要的作用。本研究以杉木为研究对象,综合考虑环境因素对杉木生长的影响,选取对杉木生长影响较大的环境因子做为驱动变量,利用光合作用产物的生产以及在杉木根、主干、茎以及叶子上的分配来建立杉木的生理生态模型,实现对杉木生长的定量化模拟;通过建立杉木的形态结构模型以及与生理生态模型的关系,实现了通过控制环境变量来影响杉木生物量的生产与分配,并通过生物量来控制杉木形态结构变化的过程。通过宏观层面的环境—生物量—结构之间的关系,简化了研究的难度,也为研究环境因素对树木生长的影响提供了新的技术方法。本研究的主要内容和结论如下:
     (1)从杉木光合作用、呼吸作用以及光合产物生产与分配、水分平衡、环境响应等方面建立了杉木的生理生态模型,实现了不同环境条件下杉木不同组分生物量的变化情况,为定量化模拟杉木的生长情况提供了依据。
     (2)以植物构筑型理论为依据,分析了杉木的形态结构特征,得出杉木的总体分枝率和逐级分枝率随着年龄的变化逐渐增大;杉木一、二级枝分枝角度符合正态分布,分别集中于50°~80°和50°~100°之间;杉木一级枝方位角符合均匀分布,二级枝方位角多分布在水平方向上。
     (3)以杉木的形态结构特征为基础,应用IFS方法建立了杉木的形态结构模型。根据树冠的生长空间,应用幂函数以树高、枝下高、冠幅和冠高为自变量建立了冠形曲线函数,并通过生长曲线函数控制变量的取值范围。应用不同年份的杉木冠形形状结合IFS方法实现了对杉木的动态生长模拟并建立了相应的控制模块。所采用的方法能够建立常见的树种冠形,对于模拟其他树种的形态提供了参考。
     (4)在得出杉木不同组分生物量和形态结构模型的基础上,建立生物量和结构之间的关系。通过树干的异速生长方程建立树干体积与树干生物量的关系得出了树干形状的参数,为模拟树干提供了依据;通过调查数据分析了杉木生长中分枝的变化情况,主要有分枝轮数、分枝位置以及每年死亡的分枝数量,应用分枝生物量和冠形确定了杉木分枝的情况;通过叶生物量和叶之间的关系确定了叶量,并对叶子的分布情况进行了讨论。
     (5)在前文介绍的相关理论和方法的基础之上,通过计算机编程语言和计算机图形学的相关知识完成了杉木形态结构与生长的三维可视化模拟系统的开发工作,实现了对杉木形态结构与生长的三维可视化模拟,输出了不同形态结构参数和环境条件下的模拟结果。
     树木可视化模拟技术的应用为林业信息化建设提供形象、直观地观测平台和快速便捷的工具,具有广泛的实用价值,使林业科学研究和生产实践从费时费力的现场观测转移到方便、直观、逼真的三维可视化模拟环境,促进了林业管理和科学研究。已有的研究中关于树木的模拟多注重视觉意义上的像,而忽略了树木本身的特征,在实际的应用中有其局限性,缺少理论支撑。本文从影响杉木生长的环境条件出发来建立杉木对环境的响应机制,并以计算机可视化的方式展现了影响结果,具有非常好的发展空间。在今后的研究中,需要对生理生态模型进行不断完善,深入考虑杉木的内在生长机制与环境的交互反馈作用,加强模型理论与实际的结合,对模型参数进行优化,积累调查数据对模型进行可靠性的验证,同时也为研究杉木和林业生产提供有力的支撑工具。
With the development of computer and information technologies, the application of thecomputer for three-dimensional visual simulation of tree’s morphological structure has beengot more and more attention. The visual simulation technology of trees has become an effectivemethod. It is a new approach and have some advantages in the expression of tree’smorphological structure and growth of process. The ultimate goal of the technology is todevelop a model which is consistent with the real trees on the external morphological structureand internal function, and display the visual simulation results. Tree life activities are theinteractive results between the morphological structure, physiological and ecological processesand the environment. The parallel simulation of three-dimensional morphology structure andphysiological functions has become the major trend of the current tree simulation.
     Cunninghamia lanceolata as an unique timber species in China plays an important role inthe national economy. In this study, based on the Cunninghamia lanceolata, we achieved thequantitative simulation of the growth by selecting the environmental factors which have a greatimpact on tree growth as the driving variable and built the physiological and ecological modelwith the photosynthesis production and allocation of the roots, trunk, branches and leaves. Byanalyzing the relationship between model and physiological and ecological model, the processof production and allocation of the biomass with different environment factors was achieved,and the morphological structure was depended on the biomass allocation. With the analyzedrelationship between environment factors and morphological structure, it simplified theresearch of tree three-dimensional visual simulation, and provided a new method for theresearch of impact of the environment on tree growth. Main contents and results are listed asfollows:
     (1) The physiological and ecological model was developed by analyzing photosynthesis,respiration, biomass production and allocation, water balance, environmental response. Basedon the model, the biomass changed with different environments. It provided a basis forquantitative growth of Cunninghamia lanceolata.
     (2) The morphological structure of Cunninghamia lanceolata was analyzed based on thetheory of plant architecture. Results indicated that the bifurcation ratios increased with the age;the branching angles of primary branches and secondary branches obeyd to normal distribution,and they mainly disributed from50°to80°and50°to100°, respectively; the azimuth ofprimary branches also obeyed to normal distribution, whereas the secondary branches mostlydistributed in horizontal direction.
     (3) Morphological structure model was established by iterative function system(IFS)based on the characteristics of morphological structure of Cunninghamia lanceolata.According to the growth space of crown, tree’s crown shape function taking Height(H), Heightunder branch(Hb), Crown width(Cr) and Height of crown(Hc) as independent variables was alsoestablished by power function. The independent vairbles values were calculated with growthcurves. Using the tree crown shapes in different years through IFS method, we achieved thesimulation of the dynamic growth and established its control module. The above method couldbe used to analyze the common tree crown and provided a method to simulate themorphological of other species.
     (4) The relationship between the biomass and structure was also established based on thebiomass of different components and the morphological structure model. Shape parameters ofthe trunk were abtained based on establishing the relationship between tree volume andbiomass with trunk allometry equation. Based on the survay data, the branche changes werealso analyzed, including the number of branch round, branch location and number of deaths peryear. Branch biomass and crown shape were applied in determining the branches. Leaf amountwere obtained by the function of leaf areas and the leaf biomass, and distribution of leaves wasalso discussed.
     (5) The3D visual simulation system of morphological structure and growth ofCunninghamia lanceolata was developed with computer programming languages andcomputer graphics based on the above theory and method. The visual results with differentmorphological structure parameters and environment were displayed using the system.
     The application of visual simulation technology of trees provides a intuitionistic platformand a convenient tool for forest informationization development, and havs a wide range of practical value. It promotes the forest management and scientific research for making theforestry science research and production practice from the time-consuming observation transferto convenient, direct, lifelike environment of3D visualization. The previous researches on thesimulation of the trees emphasized the vision and ignored tree characteristics, and had somelimitations in practical applications, which lacked theoretical support. In this study, we buildedthe mechanism of Cunninghamia lanceolata responsed to environment, and showed the resultsby visualization. In the future, we need to improve the physiological and ecology model,account for the interactive feedback between the internal growth mechanism and environment,strengthen the combination of the theory and practice, optimize the parameters of the modeland test the reliability of the model.
引文
Agren G.I., Axelsson B. PT-A Tree Growth Model, in: Persson T.(Ed.), Structure and Function of NorthernConiferous Forests, an Ecosystem Study. Ecol. Bull., Stockholm,1980,525~536
    Allen M T, Prusinkiewicz P., Dejong T M. Using L-systems for Modeling Source-sink Interactions,Architecture and Physiology of Growing Trees: the L-PEACH Model. New Phytologist,2005,166(3),869~880
    Almeida A C, Landsberg J J, Sands P J. Parameterisation of3-PG for Fast Growing Eucalyptus GrandisPlantations. Forest Ecology and Management,2004,193(1-2):179~195
    Amthor J.S., Respiration and Crop Productivity. New York, Springer-Verlag,1989
    Amthor J.S.. The Role of Maintenance Respiration in Plant Growth. Plant. Cell Env,1984,7(8):561~569
    Aristid Lindenmayer. Mathematical Models for Cellular Interaction in Development1. Filaments withOne-sided Inputs. Journal of Theoretical Biology,1968,18(3):280~299
    Baldwin Jr V C, Peterson K D. Predicting the Crown Shape of Loblolly Pine Trees. Canadian Journal ofForest Research,1997,27(1):102~107
    Baker D N, Lambert J R, Mc Kinion J M. Goeeym:a Simulator of Cotton Growth and Yield. TechnicalBulletin1089, South Carolina Agricultural Experiment Station, Clemson University(Clemson),1983
    Barnsley M F, Demko S. Iterated Function Systems and the Global Construction of Fractals. Proceedings ofthe Royal Society of London. A. Mathematical and Physical Sciences,1985,399(1817):243~275
    Berninger F. Effects of Drought and Phenology on GPP in Pinus Sylvestris: a Simulation Study along aGeographical Gradient. Funct. Ecol,1997,11(1):33~42
    Boardman N. K. Comparative Photosynthesis of Sun and Shade Plants. Ann. Rev. Plant. Physiol,1977,28:355~377
    Bosc A. Emilion, a Tree Functional-structural Model: Presentation and First Application to the Analysis ofBranch Carbon Balance. Ann. For. Sci.2000,57(5-6):555~569
    Brouwer R. Distribution of Dry Matter in the Plant. Neth. J. Agr. Sci,1962,10:361~376
    Eschenbach C. Emergent Properties Modelled with the Functional Structural Tree Growth Model ALMIS:Computer Experiments on Resource Gain and use. Ecological Modelling,2005,186(4):470~488
    Cannell M G R, Dewar R C. Carbon Allocation in Trees: a Review of Concepts for Modeling. In: Begon M,Fitter A H, eds. Advances in ecological research. London: Academic Press,1994
    Charles-Edwards,D.A. Shoot and Root Activities Duting Steady-state Plant Growth. Annals of Botany,1976,40(4):767~772
    Chen J L, Reynolds J F. A Coordination Model of Whole Plant Carbon Allocation in Relation to WaterStress. Annals of Botany,1997,80(1):45~55
    Collatz G J, Ball J T Grivet C, et al. Physiological and Environmental Regulation of Stomatal Conductance,Photosynthesis and Transpiration: a Model that Includes a Laminar Boundary Layer. Agricultural andForest Meteorology,1991,54(2-4):107~136
    Davidson R.L. Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grassesand Clover. Ann. Bot.1969,33(3):561~569
    De Reffye P, Houllier F, Blaise F,et al. A Model Simulating Above-and Below-ground Tree Architecture withAgroforestry Applications. Agroforestry systems,1995,30(1):175~197
    de Reffye P, Hu BG. Relevant Qualitative and Quantitative Choices for Building an Efficient Dynamic PlantGrowth Model: GREENLAB Case. In: Hu BG, Jaeger M, eds. Plant growth modeling and applications,Proceedings PMA03. Beijing, China: Tsinghua University Press and Springer,2003
    De Willigen P, Van Noordwijk M. Roots, Plant Production and Nutrient Use Efficiency. Wageningen:Wageningen Agric. Univ.,1987
    Deleuze C, J C Herve, Colin F, et al. Modelling Crown Shape of Picea abies: Spacing Effects. CanadianJournal of Forest Research,1996,26(11):1957~1966
    Deleuze C., Houllier F., A Transport Model for Tree Ring Width. Silva Fennica,1997,31(3):239~250.,
    Demko S, Hodges L, Naylor B. Construction of fractal objects with iterated function systems. ACMSIGGRAPH Computer Graphics,1985,19(3):271~278
    Farquhar G.D., Caemmerer S., Berry J.A. A Biochemical Model of Photosynthetic CO2Assimilation inLeaves of C3Species. Planta,1980,149(1):78~90
    Farquhar, G.D, von Caemmerer, S. Modelling Photosynthetic Response to Environmental Conditions. In:Encyclopedia of Plant Physiology.(O. L. Lange et al.,ed.), Berlin,Spring-Verlag,1982,12:549~587
    Field C., Mooney H., The Photosynthesis-nitrogen Relationship in Wild Plants, in: On the Economy of PlantForm and Function. Cambridge University Press,1986
    Godin C, Caraglio Y. A Multiscal Model of Plant Topological Structures. Journal of Theoretical Biology,1998,191(1):1~46
    Gould S J. Allometry and size in ontogeny and phylogeny. Biological Review,1966,41(4):587~640
    Grossman Y.L., DeJong T.M., PEACH: A Simulation Model of Reproductive and Vegetative Growth inPeach Trees. Tree Physiol.1994,14(4):329~345
    Guo Y,Ma Y T,Zhan Z G,et al. Parameter Optimization and Field Validation of the Functional-structuralModel GREELAB for Maize. Annals of Botany,2006,97:217~230
    Hagihara, A. and K. Hozumi. Respiration. In Physiology of Trees. Ed. A.S. Raghavendra. John Wiley&Sons, Inc., New York,1991.
    Hauhs M., Kastner-Maresch A. Rost-Siebert K., A Model Relating Forest Growth to Ecosystem-scaleBudgets of Energy and Nutrients. Ecol. Modelling,1995,83(1-2):229~243
    Hirose, T.,Werger, MJA. Maximizing Daily Canopy Photosynthesis with Respect to the Leaf NitrogenAllocation Pattern in the Canopy. Oecologia,1987,72(4),520~526
    Hu BG, De Reffye P, Zhao X, et al. GreenLab: A New Methodology Towards Plant Functional-structuralModel-structural Aspect. Plant Growth Modeling and Applications. Beijing: Tsinghua UniversityPress-Springer,2003
    Hutchinson JE. Fractals and self-similarity. Indiana Univ. Math. J,1981,30(5):713~747
    Isebrands J.G., Rauscher H.M., Crow T.R. et al. Whole-tree Growth Process Models Based onStructural-functional Relationships, in: Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G.(Eds.),Process modelling of forest growth responses to environmental stress, Timber Press, Portland, OR,1990
    Ishii H, Clement JP, Shaw DC. Branch Growth and Crown Form in Old Coastal Douglas-fir. Forest Ecologyand Management,2000,131(1-3):81~91
    Jiang Xian, Zhang Huai-qing, The Design and Implementation of Plantation structure adaptivesimulation.Proceedings of International conference on computational Intelligence and softwareengineering (CiSE2010)978-1-4244-5392-4
    J. Bloomenthal. Skeletal Design of Natural Forms. University of Calgary, PhD thesis,1995
    J Vos and E Heuvelink. Concepts to Model Growth and Development of Plants. in: Plant Growth Modelingand Applications: Second International Symposium on Plant Growth Modeling, Simulation,Visualisation and Application, Beijing, China, November13-17,2007.-Los Alamitos: IEEE,3-10.
    J.Bastow Wilson. A Review of Evidence on the Control of Shoot: Root Ratio, in Relation to Models. Annalsof Botany.1988,61:433~449
    Jacobs C M J, van der Hurk B M M, de Bruim H A R. Stomatal Behavior and Photosynthetic Rate ofUnstressed Grapevines in Semiarid Conditions. Agricultural and Forest Meteorology,1996,80(2-4):111~134
    Jason Weber, Joseph Penn. Creation and Rendering of Realistic Tree. SIGGRAPH’95Proceedings of the22ndannual conference on Computer graphics and interactive techniques. New York, USA.1995
    Johnson I.R. Plant Respiration in Relation to Growth, Maintenance, Ion Uptake and Nitrogen Assimilation.Plant Cell. Env,1990,13(4):319~328
    Kaelke, C.M., E.L. Kruger, P.B. Reich. Trade-offs in Seedling Survival, Growth, and Physiology AmongHardwood Species of Contrasting Successional Status Along a Light Availability Gradient. Can. J. For.Res,2001,31(9):1602~1616
    Kajihara M. Studies on the Morphology and Dimensions of Tree Crowns in Even-aged Stand of Sugi. I.Crown Form. J. Jap. For. Soc,1975,57:425~431
    Kellomaki S., Strandman H. A Model for the Structural Growth of Young Scots Pine Crowns Based on LightInterception by Shoots. Ecol. Modelling,1995,80(2-3):237~250
    Kiona ogle, Stephen W. Pacala. A Modeling Framework for Inferring Tree Growth and Allocation FromPhysiological, Morphological and Allometric Traits. Tree Physiology,2006,29(4):587~605
    Korner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Germany:Springer-Verlag Berlin Heidelberg,1999
    Kubo T., Kohyama T. Abies Population Dynamics Simulated Using a Functional-structural Tree Model.Ecology Research,2005,20(3):255~269
    Larcher, W. Physiological plant ecology,3rded. Berlin Heidelberg, New York: Springer Press,1995
    Le Dizès S., Cruiziat P., Lacointe A. et al. A Model for Simulating Structure-function Relationships inWalnut Tree Growth Processes. Silva Fennica,1997,31(3):313~328
    Le Roux X., Grand S., Dreyer E., et al. Parameterization and Testing of a Biochemically-basedPhotosynthesis Model in Walnut (Juglans regia L.) Trees and Seedlings. Tree Physiol,1999,19(8):181~188
    Le Roux X., Walcroft A.S., Daudet F.A., et al. Photosynthetic Light Acclimation in Peach Leaves:Importance of Changes in Mass: Area Ratio, Nitrogen Concentration, and Leaf Nitrogen Partitioning.Tree Physiol,2001,21(6):377~386
    Leverenz, J.W., Hinckley, T.M.. Shoot Structure, Leaf Area Index and Productivity of Evergreen ConiferStands. Tree Physiol,1990,6(2),135~149
    Liang Shibo, Zhang Huaiqing. Improvement of the Plants Interaction Model and Simulation on StandGrowth Processes. Proceedings of International conference on computational Intelligence and softwareengineering(CiSE2010)978-1-4244-5392-4
    Liu Min, ZHANG Huai-qing, LU Kang-ning,Research on Three-dimensional Simulation of Tree’sMorphology Based on Tree-crown Growth mode. Proceedings of International conference oncomputational Intelligence and software engineering(CiSE2010)978-1-4244-5392-4
    Linermann B, Deussen, O. Interactive Modeling of Branching Structure. Computer Graphics andApplications,1999,19(1):56~65
    Lluch J, Vicent MJ, Fernandez S, et al. The Modelling of Branched Structures Using a Single PolygonalMesh. Proceedings on IASTED International Conference Visualization, Imaging and Image ProcessingConference,2001
    Lluch J, Vivó R, Monserrat C. Modelling Tree Structures Using a Single Polygonal Mesh. Graphical Models,2004,66(2):89~101
    Luan J., Muetzelfeldt R.I., Grace, J. Hierarchical Approach to Forest Ecosystem Simulation. Ecol. Modelling,1996,86(1):37~50
    LU Kang-ning, ZHANG Huai-qing, LIU Min, CHEN Kang. Research on Three-dimensional Simulation ofTree’s Morphology Based on Tree-crown Growth Model. Proceedings of International conference oncomputational Intelligence and software engineering(CiSE2010)978-1-4244-5392-4
    M kel A. A Carbon Balance Model of Growth and Selfpruning in Trees Based on Structural Relationships.For. Sci,1997,43(1):7~24
    M kel A., Hari P. Stand Growth Model Based on Carbon Uptake and Allocation in Individual Trees. Ecol.Modelling,1986,33(2-4):204~229
    M kel A. Modelling Structural Functional Relationships in Whole-tree Growth Resource Allocation. In:Dixon R., Meldahl R., Ruark G., Warren W.(Eds.), Process modelling of forest growth responses toenvironmental stress, Timber press, Portland, Oregon,1990
    Mawson JC, Thomas JW, DeGraaf RM. Program HTVOL: the Determination of Tree Crown Volume byLayers. Notes,1976
    McCree K.J. An Equation for the Rate of Respiration of White Clover Plants Grown Under ControlledConditions. Proceedings of the technical meeting IBP, Trebon (CSK),1969, Centre for AgriculturalPublishing and Documentation, Wageningen,(NDL),1970
    McCree K.J. Measuring the Whole-plant Daily Carbon Balance. Photosynthetica,1986,20(2):82~93
    McMurtrie, R.E., J.J. Landsberg. Using a Simulation Model to Evaluate the Effects of Water and Nutrientson the Growth and Carbon Partitioning of Pinus Radiata. For. Ecol. Manage,1992,52(1-4):243~260
    McMurtrie, R.E., D.A. Rook, F.M. Kelliher. Modelling the Yield of Pinus Radiata on a Site Limited byWater and Nitrogen. For. Ecol. Manage,1990,30(1-4):381~413
    Monteith J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol,1972,9(3):747~766
    Nelson Max, Keiichi Ohsaki. Rendering Trees from Precomputed Z-Buffer Views. In EurographicsRendering Workshop, Eurographics,1995
    Normal, J. M. Scaling Processes Between Leaf and Canopy Levels. In: Scaling Physiological Process: Leafto Globe (James R. Ehleringer and C. B. Field). Academic Press, Inc. Harcourt Brace Jovanovich,Publishers,1993
    Oker-Blom, P. Photosynthetic Radiation Regime and Canopy Structure in Modeled Forest Stands. ActaForestalia Fennica,1986,197:1~44
    Perttunen J., Siev nen R., Nikinmaa E., LIGNUM: A Model Combining the Structure and Functioning ofTrees. Ecol. Modelling,1998,108(1-3):189~198
    Perttunen J., Siev nen R., Nikinmaa E., et al. LIGNUM: A Tree Model Based on Simple Structural Units.Ann. Bot,1996,77(1):87~98
    Peter E. Oppenheimer. Real Time Design and Animation of Fractal Plants and Trees. SIGGRAPH’86Proceedings of the22ndannual conference on Computer graphics and interactive techniques. New York,USA,1986
    Phillippe de Reffye, Claude Edelin, Jean Francon, et al. Plant Models Faithful to Botanical Structure andDevelopment, SIGGRAPH '88Proceedings of the15th annual conference on Computer graphics andinteractive techniques, New York, USA,1988
    Potter C S, Kloo ster S A. Global Model of Carbon and Nitrogen Storage in Litter and Soil Pools: Responseto Change in Vegetation Quality and Biomass Allocation. Tellus,1997,49(1):1~17
    P. Prusinkiewicz, M. Hammel, E. Mjolsness. Animation of Plant Development. Computer Graphics,1993,27(3):351~360
    P. Prusinkiewicz, M. Hammel. L-system: From the Theory to Visual Models of Plants. Presented atProceedings of the2nd CSIRO Symposium on Computational Challenges in Life Sciences,1996
    Prentice I.C., Leemans R. Pattern and Process and the Dynamics of Forest Structure: a Simulation Approach.J. Ecol.1990,78(2):340~355
    Prentice I.C., Sykes M.T., Cramer W. A Simulation Model for the Transient Effects of Climate Change onForest Landscapes. Ecol. Modelling,1993,65(1-2):51~70
    Promnitz L.C. A Photosynthate Allocation Model for Tree Growth. Photosynthetica,1975,9:1~15
    Raulier F, Ung CH, Ouellet D. Influence of Social Status on Crown Geometry and Volume Increment inRegular and Irregular Black Spruce Stands. Canadian Journal of ForestResearch,1996,26(10):1742~1753
    Rauscher H.M., Isebrands J.G., Host G.E.,et al. ECOPHYS: An Ecophysiological Growth Process Model forJuvenile Poplar. Tree Physiol,1990,7(1-4):255~281
    Reffye (de) P., Fourcaud T., Blaise F., et al. A Functional Model of Tree Growth and Tree Architecture. SilvaFennica,1997,31(3):297~311
    Reynolds J F, Chen J L. Modelling Whole-plant Allocation in Relation to Carbon and Nitrogen Supply:Coordination vs. Optimization: Opinion. Plant Soil,1996,185(1):65~74
    Ruget F. Respiration de croissance et respiration d’entretien: methods de mesure, comparaison des resultants.Agronomie,1981,1(7):601~610
    Running SW, Coughlan JC. A General Model of Forest Processes for Regional Application. I. Hydro LogicalBalance, Canopy Gas Exchange and Primary Production Processes. Ecological Modelling,1997,42:125~154
    Shinozaki. A Quantitative Analysisi of Plant Form the Pipe Model Theory:Ⅰ. Basic Analysis. Jpn J Ecol,1964,14(3):97~105
    Shipley B. Analyzing the Allometry of Multiple Interacting Traits. Perspect Plant Ecol. Evol. Syst,2004,6(4):235~241
    Sorrensen-Cothern K.A., Ford E.D., Sprugel D.G., A Model of Competition Incorporating Plasticity ThroughModular Foliage and Crown Development. Ecol. Monogr,1993,63(3):227~304
    Sprott JC. Automatic Generation of Iterated Function Systems. Computers&graphics,1994,18(3):417~425
    Sprugel D.G., Benecke U. Woody-tissue Respiration and Photosynthesis, in: Lassoie J.P., Hinckley T.M.(Eds.), Technics and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, FL, USA,1991
    Sultan S E. Promising Directions in Plant Phenotypic Plasticity. Plant Ecol. Evol. Syst,2004,6(4):227~233
    Takenaka A., A Simulation Model of Tree Architecture Development Based on Growth Response to LocalLight Environment. J. Plant Res,1994,107(3):321~330
    Thornley J H M. A Balanced Quantitative Model for Root:Shoot Ratio in Vegetative Plants. Ibid,1972,36(2):431~441
    Thornley J H M. Mathematical Models in Plant Physiology: a Quantitative Approach to Problems in Plantand Crop Physiology. Academic Press,1976
    Thornley J HM, Johnson I R. Plant and Crop Modeling: a Mathematical Approach to Plant and CropPhysiology. Oxford: Clarendon Press,1990
    Thornley J.M.H. Respiration, Growth and Maintenance in Plants. Nature,1970,227:304~305
    Via S, Gomulkiewicz R, De Jong G, et al. Adeptive Phenotypic Plasticity: Consensus and Controversy.Trends in Ecology&Evolution,1995,10(5):212~217
    Vos J, Marcelis L F M, Visser J B. Functional-Stuctureal Plant Modelling in Crop Production: adding adimension. Netherlands: Wageningen University and Research Series,2007,22:1~12
    Wang Y.P., Jarvis P.G., Description and Validation of An Array Model–MAESTRO. Agric. For. Meteorol.1990,51(3-4):257~280
    Waring, R.H., Law, S.W.F. Forest Ecosystems: Analysis at Multiple Scales. Academic Press, San Diego,1998
    Weber J, Penn J. Creation and Rendering of Realistic Trees. SIGGRAPH '95Proceedings of the22nd annualconference on Computer graphics and interactive techniques1995:119~28
    Weinstein D.A., Yanai R.D., Beloin R., et al. The Response of Plants to Interacting Stresses: TREGROVersion1.74–Description and Parameter Requirements. Electric Power Res. Institute, Palo Alto, CA,1992
    Wermelinger B., Baumb rtner J., Gutiérrez A.P. A Demographic Model of Assimilation and Allocation ofCarbon and Nitrogen in Grapevines. Ecol. Modelling,1991,53:1~26
    William T. Reeves, Particle Systems: A Technique for Modeling a Class of Fuzzy Objects.ComputerGraphics,1983,17(3):359~376
    Williams J R, Jones CA, Kiniry J R, et al. The EPIC Crop Growth Model. Transactions of the ASAE,1989,32(2):497~511
    Williams M., A Three-Dimensional Model of Forest Development and Competition. Ecol. Modelling,1996,89(1-3):73~98
    Wilson J B. A Review of Evidence on the Control of Shoot: Root Ratio, in Relation to Models. Annals ofBotany,1988,61(4):433~449
    Yan H P, Barczi J F, de Reffye P, et al. Fast Algorithms of Plant Computation Based on SubstructureInstances[A]. In: Proceeding of International Conference in Central Europe on Computer Graphics,Visulization and Computer Vision. Plzen, Czech,2002,10(3):145~153
    Yoda, K. Community Respiration in a Lowland Forest in Pasoh, Prnninsular Malaysia. Jpn.J.Ecol,1983,33:183
    Zhang H Q, Liu M, Tree Growth Simulation Method Based on Improved IFS Algorithm. Proceedings ofInternational Conference on Computer Intelligence and Software Engineering(CiSE2009)978-1-4244-4507-3
    Zhang Y., Reed D.D., Cattelino P.J., et al. A Process-based Growth Model for Young Red Pine. For. Ecol.Manage.1994,69(1-3):21~40
    陈波,宋永昌,达良俊.木本植物的构型及其在植物生态学研究的进展.生态学杂志,2002,21(3):52~56
    陈冬丽,苏楷礼,柳薇.一种基于本体和特征综合推理的植物建模方法.华南师范大学学报(自然科学版),2010,2(2):45~49
    陈刚,唐丽玉,陈崇成等.基于L-系统的幼龄杉木形态建模.福州大学学报(自然科学版),2011,39(3):375~379
    陈彦云,林晖,孙汉秋等.高度复杂植物场景的构造和真实感绘制.计算机学报,2000,23(9):917~924
    戴小鹏,黄璜.虚拟现实实验中虚拟植物的建模.计算机工程,2007,33(23):215~217,242
    刁军,雷相东,洪玲霞等.基于叶重的桉树单叶面积估计模型.林业研究:英文版,2010,1:73~76
    丁维龙,陈敏智.植物三维结构参数化建模系统的设计与实现.浙江工业大学学报,2006,34(1):82~85
    国红.基于GreenLab原理的油松结构-功能模型研究.中国林业科学研究院博士学位论文,2010
    国红,雷相东,Veronique LETORT等.基于GreenLab原理构建油松成年树的结构-功能模型.植物生态学报,2011,35(4):422~430
    郭明春,刘建锋.杉木人工林林分生长模拟.福建林学院学报,2011,31(1):65~68
    郭焱,李保国.玉米冠层三维结构研究.作物学报,1998,24(6):1006~1009
    郭焱,李保国.虚拟植物的研究进展.科学通报,2001,46(4):273~280
    郝林倩,江希钿.基于形态结构特征的杉木形态可视化研究.福建林学院学报,2011,31(4):300~303
    郝林倩.杉木人工林的三维可视化模拟及其生长经营模拟研究.福建农林大学硕士学位论文,2009
    侯军岐,杨静.林业可视化技术推广路径选择研究.林业经济问题,2010,30(3):211~214
    景向欣.樟子松人工林单木动态生长三维可视化模型的研究.东北林业大学硕士学位论文,2007
    康孟珍,Philippe de Reffye,胡包钢等.快速构造植物几何结构的子结构算法.中国图像图形学报,2004,9(3):79~86
    雷相东,常敏,陆元昌等.虚拟树木生长建模及可视化研究综述.林业科学,2006,42(11):123~131
    雷向东,常敏,陆元昌等.长白落叶松单木生长可视化系统设计与实现.工程与应用,2006,17:180~183
    李大锦.用面向对象的L系统模拟树的生长.计算机仿真,2007,24(2):183~187
    李凤日.长白落叶松人工林树冠形状的模拟.林业科学,2004,40(5):16~24
    李丽芳,吴晓敏,王立峰.植物光合生理生态学研究进展.山西师范大学学报(自然科学版),2007,21(3):71~75
    李云峰,朱庆生,傅鹤岗等.基于L系统改进的虚拟植物原型系统设计.计算机应用研究,2006,7:232~234,239
    刘海,张怀清,林辉.森林经营可视化管理系统设计与实现.科技咨询,2010,17:240~242
    刘树群,刘硕.IFS与L系统的统一描述语言及其分类.中国图像图形学报,2011,16(10):1891~1895
    刘晓东,罗轶先,郭新宇等.基于NURBS曲面的玉米叶生长过程中的形态建模.计算机工程与应用,2004,14:201~203
    刘向东,廖欣,于海等.迭代函数系IFS吸引子的参数控制与树木的模拟.计算机工程与应用,2000,36(5):28~29
    刘颖慧,贾海坤,高琼.植物同化物分配及其模型研究综述.生态学报,2006,26(6):1981~1992
    刘兆刚,李凤日.樟子松人工林树冠结构模型及三维图形可视化模拟.林业科学,2009,45(6):54~61
    龙洁,苏喜友.国内树木三维可视化研究进展.林业调查规划,2007,32(6):44~47
    卢康宁,张怀清,刘闽等.杉木单木生长可视化模拟系统设计与实现.林业科学研究,2012,25(2):207~211
    卢康宁,张怀清,刘闽.基于实测数据的杉木构筑型研究.林业科学研究,2011,24(1):132~136
    卢康宁,张怀清.植物构筑型研究综述.世界林业研究,2010,23(1):17~20
    陆霞梅,周长芳,安树青等.植物的表型可塑性、异速生长及其入侵能力.生态学杂志,2007,26(9):1438~1444
    马克明,祖元刚.兴安落叶松分枝格局的分形特征.植物研究,2000,20(2):235~241
    毛卫强,耿卫东,潘云鹤.基于特征综合的植物建模方法.计算机辅助设计与图形学学报,2000,12(8)595~600
    钱能志.杉木叶量叶面积与边材面积关系研究.南京林业大学学报,1989,13(4):75~79
    任艳林.海南主要热带树木苗期构筑型研究.北京林业大学硕士论文,2004
    史刚荣.木槿叶片结构的发育可塑性研究.广西植物,2005,25(1):48~52
    石银涛,程效军,张鸿飞.基于参数L-系统的三维树木仿真.同济大学学报:自然科学版,2011,12:1871-1876
    宋铁英.一种基于图像的林分三维可视模型.北京林业大学学报,1998,20(4):93~97
    宋万寿,赖建伟.基于粒子系统方法的焰火及树木模拟.计算机辅助设计与图形学学报,1996,8(4):254~258
    唐丽玉,陈崇成,权兵.森林景观的计算机建模与可视化研究进展.林业科学,2006,42(10):109~116
    王春华,韩栋.基于树木综合特征的L系统建模.计算机应用与软件,2009,26(8):159~161
    王峰.基于GreenLab原理的樟子松生长的功能-结构建模与应用.中国农业大学博士论文,2009
    王天慧.植物表型可塑性及生活史对策研究.东北林业大学博士论文,2006
    王小铭,林拉.树木模拟的粒子系统模型及其实现.华南师范大学学报(自然科学版),2003,3(3):49~53
    吴谦,张怀清,陈永富.基于生长规律与图像相结合的树木叶片动态模拟.林业科学研究,2008,21(增刊):122-125
    吴谦,张怀清,陈永富等.杉木形态三维可视化模拟技术研究.林业科学研究,2010,23(1):59~64
    吴谦.杉木形态与生长可视化模拟技术研究.中国林业科学研究院硕士论文,2009
    吴中伦.杉木.北京:中国林业出版社,1984
    肖海蓉.基于IFS分形算法的树木形态分析与实现.计算机仿真,2011,28(6):274~279
    熊勇,史定华.随机迭代函数系统的仿射变换.应用数学和力学,2001,22(7):729~734
    杨允菲,祝廷成.植物生态学.北京:高等教育出版社,2011
    尹玉亮,李培珍,康与云等.分形理论的发展概况及研究现状.科技信息,2007,15:172,170
    余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究.生态学报,1996,16(3):238~245
    俞新妥.杉木栽培学.福建:福建科学技术出版社,1997
    俞新妥.中国杉木90年代研究进展:Ⅰ.杉木研究的特点及有关基础研究综述.福建林学院学报,2000,20(1):86~95
    臧润国,蒋有绪.热带树木构筑学研究概述.林业科学,1998,34(5):112~119
    张大勇.理论生态学研究.北京:高等教育出版社,2000
    张洪轩.植物生长可塑性研究.东北师范大学博士论文,2008
    张济忠.分形.北京:清华大学出版社,2004
    张建国,段爱国.理论生长方程直径结构模型的研究.北京:科学出版社,2004
    张敏,张怀清,陈永富.杉木人工林抚育间伐可视化模拟技术研究.林业科学研究,2009,22(6):813~818
    张小全,徐德应.18年生杉木不同部位和叶龄针叶光响应研究.生态学报,2001,21(3):409~414
    张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化.林业科学,2000,36(3):19~26
    张思玉,胥辉.树冠中的黄金分割初步探讨.西南林学院学报,2001,21(1):14~19
    赵梅芳,项文化,田大伦等.基于3-PG模型的湖南会同杉木人工林蒸发散估算.湖南农业科学,2008,3:158~161,162
    赵星,De Reffye Philippe,熊范纶等.虚拟植物生长的双尺度自动机模型.计算机学报,2001,24(6):608~615
    仲兰芬,王琰,程磊.三维分形树木IFS生成算法.沈阳理工大学学报,2005,24(1):28~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700