多分部传动的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多分部传动在生产中应用非常广泛,如造纸、车辆、冶金等行业中均存在多分部传动。在多分部传动中,既需要对各个部分进行单独控制,又需要协调各个分部之间的运动。多分部传动向着大型化、高速化、精密化等方向发展,中间受如张力控制等多种约束条件。我国的尖端机器装备与发达国家相比仍有较大的差距。多分部传动的控制技术在机器装备工业中占有重要的地位,其技术水平严重制约我国机器装备向高、精、尖方向发展。因此积极研究多分部的控制策略具有重要意义。
     目前,对多分部传动控制策略的研究主要集中在控制理论和控制器件的制造及使用两个方面,而将有关多分部传动的控制理论应用于生产实践控的学术论文则鲜有报道。理论主要集中在人工智能控制、自适应控制、专家系统、随机控制等几个方面。工业现场实现方式主要有使用变频器、PLC、DCS等,还有一些企业自己开发的多分部传动控制系统。至今为止,把多分部传动的控制作为整体研究的报道为数不多。
     本文以造纸机为研究对象研究多分部传动的控制策略。在本文中简要介绍了造纸机整机的结构及运行特性,介绍了造纸机成形部和压榨部的结构、运行原理与特性并且简要介绍了造纸机的关键部件。简要介绍了多分部传动所涉及到的控制理论,详细论述了基于参考模型的自适应控制理论的原理与数学模型。基于雅普诺夫稳定理论和波波夫超稳定理论两种理论,设计参考模型自适应(MRAC)系统。本文论述了基于模糊参数自适应PID的纸张张力控制、自适应张力控制等几种有影响的多分部传动的张力控制方式。基于现场数据建立了造纸机速度控制时的数学模型,采用PID控制和参考模型自适应控制两种控制策略,并用计算机仿真程序Matlab仿真检验所提出控制策略的控制效果。通过对比发现,与传统PID相比,MRAC对被控对象参数发生变化有很强的适应能力。本文亦研究了多分部传动的张力控制及多分部传动控制两大类电气实现方式。
     本文为我国机器装备工业的进步做了有益的探索,为制约机器装备工业发展的主要因素提出了良好的解决方法。本文提出的控制策略和生产实践相结合,相信肯定能为装备工业的进步作出突出的贡献。
The multi-partment driving is used very widely, such as paper making, vehicle, and metallurgy and so on, all of these fields use the multi-partment driving. In the multi-partment driving all the partment should be control singly, and yet the relation among partments should be harmonious. The multi-partment driving develop in following aspects large-scaled, high speed, and accurate, at the same time restricted by factors such as tension control. By now, in the equipment making fields, here are large differences between china and the developed countries. The control technique of multi-departments driving take the most important place in the equipment industry, and also is the main factor of the restraining the development of the equipment industry. So researching the controlling strategies of multi-partment driving is very significant. Now the researching on the controlling strategies of multi-partment driving is mainly concentrated on two fields which are the control theory and the control service. However, there little articles about which using the control theory control the apparatus. The control theory is mainly concentrate in such fields as artificial intelligence, adaptive control, expert system, random control and so on.. In the industrial production fields the apparatus mainly include Masters, PLC and DCS and also the control system made by themselves. By now, there are few articles which research the control of multi-department as whole.
     This article researches the controlling strategies of multi-partment driving about the paper machine. This article introduces the whole structure and the running character of the paper machine, introduces the structure, running theory, the character of the figuration department and the compressing department of the paper machine, also introduces the key components of the paper machine. In this article the controlling theories connected with the multi-department driving is introduced briefly, controlling theory and the mathematic modal about the adaptive control based on MRAC are discussed particularly. Two methods of design the MRAC systems based on the Lyapunov stable theory and Popov stable theory are discussed in this article. Kinds of influenced tensional control is discussed such as illegible parameter PID adaptive control and adaptive tensional control, count out the mathematic model of the speed control using the local data. Using the two control strategies PID control and the adaptive control basing MRAC, the control result is tested by the Matlab computer emulator program. We find that comparative with tradition PID MRAC has strong ability of adaptive parameter change. The electric realizing method about the multi-department and the tensional control is discussed in this article.
     This article does some useful researching job about the development of Chinese equipment industry, and gives some result about the main factor of restraining this fields. If connected the controlling strategies introduced by this article and product area, I believe that it could promote the developing of Chinese equipment industry.
引文
[1] 余琳. 纸机传动中几种典型控制介绍分析[J]. 控制与管理,2005,1:40-41
    [2] 陈先锋、舒志兵. 先进运动控制策略及运动控制新技术[J]. 电气时代,2005,2:129-131
    [3] 黄济荣 现代控制理论与交流电机调速[J],机车电传动,2005,1:1-7
    [4] 胡俊达、胡慧. 自适应PID控制技术概述[J]. 中华造纸,2005,2:48-51
    [5] 王付俊. 张力控制与负荷分配控制在纸机传动中的应用[J]. 上海造纸,2006,1:25-28
    [6] 杨珏. 传动系统布置型式和速度波动[J]. 北京科技大学学报 2001,4:159-162
    [7] 邓星钟 机电传动控制[J]. 武汉:华中科技大学出版社,2001:302-308
    [8] 周志文、薛华. 变频调速器在张力控制系统中的应用[J].真空,2003,1:33-35
    [9] WLODZIMIERZ KAMKA:TAPPI JOURNAL FEBURAY 2001
    [10] 孟彦京、孙标. 卷机退纸卷径的计算与纸幅张力控制[J]. 中华纸业, 2003,12:40-43
    [11] 崔江霞、张爱玲. 感应电动机直接转矩控制系统的模型参考自适应辨识[J]. 太原理工大学学报,2004,3:137-140
    [12] 杨旭. 纸板成形器的特点及应用[J]. 中华纸业,1998,6:42-43
    [13] 付捷. 变频调速装置在纸浆流送中的应用[J]. China Pulp&Paper Industry Feb,2003
    [14] 康家玉、米林安、高承雍. 复卷机退纸张力控制的研究与应用[J]. 中国造纸, 2004,6:35-38
    [15] Nancy J. Sell. Process Control Fundamentals for the Pulp&Paper Industry[M]. TAPPI Press,1996:289-295
    [16] 张向东. 复卷机纸卷结构控制[J]. 纸和造纸,1997,5:30-32
    [17] 陈克复 制浆造纸机械与设备 下册[M]. 北京:中国轻工业出版社 2003:448-450
    [18] 张末. 整饰辊在长网纸机上的使用[J]。China Pulp& Paper Industry,1999(2):55
    [19] 王学鼎. 欧洲高速新闻纸机若干新技术趋势[J]. 中华纸业,1998,1:12-14
    [20] Aamo.O.M.& Krsti’c,M . Flow Control by Feedback; Stabilization and Mixing[J], Communications and Control Engineering Series (Springer-Verlag, London) . 2003:56-72
    [21] 娄进. 一种新型的成形辊脱水板成形器[J]. 中华纸业,1999,3:46-47
    [22] 刘焕彬 制浆造纸过程自动测量与控制[M]. 北京:中国轻工业出版社 2003:245-249
    [23] 王素娥. 纸机传动系统负荷分配控制的分析与设计[J]. 中国造纸,2004,8:38-41
    [24] 胡寿松. 自动控制原理[M]. 北京:科学出版社,2001:33-34
    [25] 齐家玉. 自动控制原理与人体生理功能的自动调控[J]. 工业控制计算机,2006,4:32-33
    [26] 宋乐鹏. 自动控制原理中高阶系统分析方法的建立[J]. 自动化仪表,2005,2:16-20
    [27] 姚灵石. 具有线性前馈环节的高阶系统跟随低阶模型的MRACS设计方法[J]. 燕山大学学报,2000,24(2):157-59
    [28] Astrom, K. J. & Wittenmark, B. Adaptive Control,2nd edition (Addison-Wesley). 1995:395-399
    [29] Back, A., Guckenheimer, J., Myers, M. R., Wicklin, F. J.& Worfolk, P. A. [1992] “Dstool: Computer assisted exploration of dynamical systems,” Notices Amer.Math. Soc. 39, 303-309
    [30] Dumortier, F. & Roussarie, R. [2000] “Geometric singular perturbation theory beyond normal hyperbolicity,” in Multiple-Time-Scale Dynamical Systems, IMA Volumes in athematics and its Applications,Vol. 122, eds. Jones, C. K. R. T. & Khibnik, A. I. (Springer-Verlag, NY), pp. 29-63
    [31] Fiedler, B. & Liebscher, S. [2000] “Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws,” SIAM J. Math. Anal. 31, 1396-1404
    [32] Fiedler, B., Liebscher, S. & Alexander, J. C. [2000a] “Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory,” J. Diff. Eqs. 167, 16-35.
    [33] Fiedler, B., Liebscher, S. & Alexander, J. C. [2000b]“Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations,” Int. J. Bifurcation and Chaos 10, 1613-1621
    [34] Fiedler, B. & Liebscher, S. [2001] “Takens–Bogdanov bifurcations without parameters and oscillatory shock profiles,” in Global Analysis of Dynamical Systems, eds. Broer, H.W., Krauskopf, B. & Vegter, G. (Institute of Physics Publishing, Bristol), pp. 211-259
    [35] Guckenheimer, J. & Holmes, P. [1993] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 4th printing (Springer-Verlag, NY)
    [36] Ioannou, P. A. & Sun, J. [1996] Robust Adaptive Control (Prentice Hall Inc., Upper Saddle River, NJ)
    [37] Isidori, A. [1995] Nonlinear Control Systems, 3rd edition (Springer-Verlag, London)
    [38] 吴士昌. 自适应控制[M]. 北京:机械出版社,2005:67-70
    [39] 于长官. 现代控制理论及应用[M]. 哈尔滨:哈尔滨工业大学出版社,2005:287-290
    [40] Khalil, H. K. Nonlinear Systems (Macmillan, NY),1992:89-97
    [41] Krsti′c, M., Kanellakopoulos, I. & Kokotovi′c, P. V.[1992] “Adaptive nonlinear control without overparametrization,” Syst. Contr. Lett. 19, 177-185
    [42] Krsti′c, M. [1996] “Invariant manifolds and asymptotic properties of adaptive nonlinear stabilizers,” IEEE Trans. Automat. Contr. 41, 817-829
    [43] Kuznetsov, Y. A. [1998] Elements of Applied Bifurcation Theory, 2nd edition (Springer-Verlag, NY)
    [44] 刘美俊.基于模糊参数自适应PID 的纸张张力控制系统[J]. 湖南工程学院学报, 2006,3:9-11
    [45] Vega P,Prada C,Aleixandre V+Self—turning predictive PID controller +IEE proc. D,1991,38:303-311
    [46] VedaAA,LandauLD.A rrettxxth theauto—calibration of PID mntdlm+Automatic,l995,3i(1):41-53
    [47] Sehei T S+A new metlxxt of automatic turning of PID control parameters.In Proc.European control conference.Grenoble。France 1991.1522-1527
    [48] 陆士林等. 免疫PID算法在张力控制系统中的应用[J]. 测控技术,2005,2:89-94
    [49] 尹征琦、朱劲. 自适应张力控制[J].电气传动,2001,6:35-37
    [50] 丁永生,任立红. 一种新颖的模糊自调整免疫反馈控制系统[J]. 控制与决策,2000, 4: 443-446, 450
    [51] 黄中原,李青山. 张力控制系统中的张力检测技术[J]. 自动化与仪器仪表,1996,01:29-32
    [52] 高学忠,刘霞. 双电机恒张力控制系统[J]. 机电设备,1999,01:13-16
    [53] 茹锋. 复卷机的卷取控制策略及性能分析[J]. 电气时代2001,02:23-27
    [54] 许德玉等. 纸机传动系统控制方案的选择与设计[J]. 西北轻工业学院学报,2000,9:72-76
    [55] 肖中俊等. PLC在纸机传动控制中的应用[J],黑龙江造纸,2005,1:10-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700