溶磷细菌及控释肥料对土壤磷有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物必需的三大营养元素之一,施入土壤中的大部分无机磷易被钙、镁、铁、铝、锰离子固定而难以被植物体利用。磷肥的过量施用导致土壤中的磷大量盈余,针对这种情况本研究通过土壤肥力调查、模拟降雨淋溶试验、缓控释肥料养分释放模拟试验、溶磷细菌的筛选鉴定评价试验、溶磷细菌在不同条件及不同培养基下的溶磷试验以及温室条件下番茄盆栽试验等一系列试验手段,深入探讨了溶磷细菌在不同环境下对难溶磷组分的溶解特征及施用缓控释肥料对土壤磷活性的影响。主要研究结果如下
     1)太湖直湖港地区97.8%(n=93)的耕层土壤有机质高达20~69.5g/kg,具有极强的保肥能力;调查区域98%(n=98)的耕层土壤全氮含量高达1.5~4.4g/kg,达到丰富水平;该地区89.5%(n=95)的耕层土壤总磷含量在0.15~1.34g/kg之间,92.5%(n=94)有效磷含量在30~719mg/kg,属于丰富水平;该地区土壤pH主要(54%;n=92)集中在4.5~5.5,土壤酸化严重。
     2)模拟淋溶中的淋溶液的电导率、全氮浓度和可溶性磷浓度均在模拟灌溉期达到峰值,施用控释肥料的处理显著低于其它处理。不同施肥处理氮素的淋失量和淋失率有一定的差异性,其中农民习惯施肥处理(FFP)氮淋失率最高,为68.98%,施用缓控释肥的处理(CRF)最低,仅为24.46%。缓控释肥处理(CRF)和传统化肥处理(CF)淋失的氮以硝态氮为主,其它处理的氮主要以酰胺态氮或有机氮的形式淋失。施用畜禽有机肥料能显著增加淋溶液中的磷含量,其中农民习惯施肥处理(FFP)的全磷淋失量是施用缓控释肥处理(CRF)的16.73倍。直湖港地区推广施用缓控释肥可明显降低氮磷淋失量,减少施肥对地下水质的影响。
     3)缓控释肥在土壤中的实际释放规律与理想状态(25℃;净水浸提)有较大差异;施用缓控释肥时,田间耕层土壤同步埋瓶做静水释放能够反映肥料在土壤中的真实释放规律。
     4)对番茄蔬菜地、热带水果果园和未经人类活动扰动过的根际土壤样品进行了溶磷菌的分离和筛选,获得了具有较强溶磷作用的20株溶磷菌,通过形态特征和16SrRNA鉴定后将所得溶磷菌归类为巨大芽孢杆菌[Bacillus megaterium (B. aryabhattai)]、枯草芽孢杆菌(Bacillus subtilis)、绿脓杆菌(Pseudomonas aeruginosa)、根瘤菌(Rhizobium sp.)、不动杆菌(Acinetobacter sp.)和栖稻假单胞菌(Pseudomonasoryzihabitans)。
     5)平板法观测到的溶磷圈直径值仅可作为参考,具有明显聚落生长的细菌也应归为溶磷菌;同一株菌在三种基质测得溶磷参数各不相同,液体培养基中添加脓杆菌Krome3,测得增溶的磷523.69mg/l,土壤中仅有增溶17.02mg/l;砂土配以营养液时,添加溶磷菌的处理水溶性磷相比对照显著增高,M3-P有下降的趋势。
     6)不同温度和含水量条件下石灰性土壤接种溶磷菌模拟培养45天后,相同土壤间磷组分无显著性差异;不同土壤利用方式,无机磷组分差异较大,未耕作的土壤(松林地土壤)的水溶性磷、可浸提磷、铝铁结合磷、钙镁结合磷、有机磷和残渣态磷各项指标都低于耕作土壤(番茄地土壤和热带水果果园土壤),且以残渣态磷为主要磷组分(96.72%),而耕作石灰性土壤以钙镁结合磷为主(63.70~75.60%),残渣态磷次之。
     7)智能温室内盆栽条件下添加溶磷菌后番茄长势无显著差异,终止时土壤Olsen-P含量无显著性差异。
Phosphorus (P) is one of three major nutrients in crop productivity for its involvement inmany essential processes. Most of the soils, phosphate was present in unavailable forms dueto complex formation with Ca, Mg, Fe, Al or Mn. The continuing application of large amountof soluble P fertilizer to soil results in accumulation of phosphorus in most of cultivated soils.Controlled release fertilizer can release phosphate nutrient slowly, making P more available toplant. Phosphate-solubilizing bacteria can release special matters to make fixed phosphateavailable for plants. Controlled released fertilizer and phosphate-solubilizing bacteria shouldbe used together to reduce the costs of fertilization. The research results were as follows:
     1) In Tai Lake Zhihugang Region, organic matters of soil samples were as high as20-69.5g/kg (97.8%of93samples) with great fertilities; The total nitrogen contents of89.5%of95soil samples were as high as1.5-4.4g/kg; Olsen-P contents were30-719mg/kg (92.5%,n=94); The main values of pH were4.5-5.5with54%of92samples.
     2) There was no significant difference in pH values of leachate in different treatmentsafter late stage of experiment, but the pH value in leachate of two organic fertilizer (madefrom digested livestock manure) treatments were lower than other treatments during prophase.The peaks of electrical conductivity (EC), total nitrogen, and water-soluble phosphorusconcentration in leachate were occurred on the simulated irrigation period, and that oftreatments treated by controlled release fertilizer (CRF) were lower than other treatments. Therate of N loss of farmers' fertilization practice (FFP) was highest among other treatments as68.98%, and that of treatments treated with controlled released fertilizer were significantlylower than other treatments, the lowest of that was24.46%, respectively. The forms of N inleachate were mainly nitrate for CRF and common fertilizer (CF) treatment, and amide-nitrogen or organic nitrogen for other treatments. Compared with other no-organic fertilizertreatments, adding organic fertilizer significantly increased the total phosphorus leachingamount and water-soluble phosphorus concentration. Total phosphorus loss from thetreatment of farmer’s traditional fertilization was16.73times of that from the CRF treatment.The promotion of CRF in Zhihugang Region of Tai Lake could decrease leaching loss of Nand P, and reduce pollution of ground water.
     3) There were significantly differences on the release of nitrogen and phosphorus fromcontrolled release fertilizer in the field compared with laboratory conditions (water as matrix;25℃). Nutrient release in water at the temperature of field is more comparable than25℃.
     4) Twenty phosphate-solubilizing bacteria (PSB) were isolated from rhizospheres ofcalcareous soils. These isolates were identified by sequence analysis of16S rRNA genes asbacterial species of Bacillus megaterium (B. aryabhattai), Bacillus subtilis, Pseudomonasaeruginosa, Rhizobium sp., Acinetobacter sp., and Pseudomonas oryzihabitans.
     5) Seven of these isolates were evaluated with the National Botanical ResearchInstitute’s Phosphate (NBRIP) plate culture, NBRIP liquid culture, and real soil incubation.Results showed that halo zone formation by PSB on NBRIP plates was a good indicator forscreening PSB, but not good enough to quantify capability of P solubilization because of poorcorrelation between sizes of halo zone and water soluble P (WS-P). The NBRIP liquidmedium culture showed four PSB strains lowered medium pH (<4.3) and released WS-P up to523.69mg/l with three days incubation and Pseudomonas aeruginosa Krome3straindissolved95.3%tricalcium phosphate added after35days incubation. Incubation of PSB in asandy soil showed that PSB increased WS-P, but no Mehlich-3P (M3-P). Therefore, each ofthree culture practices has strength and weakness for charactering PSB and performing allthree tests provide the better understanding of PSB.
     6) Soil samples from the Pineland and nearby farmlands (vegetable fields and tropicalfruit groves) were sequentially extracted for water soluble P; exchangeable P; Al-and Fe-bound P; Ca-and Mg-bound P; NaOH-extractable organic P; and residual P. Phosphorusconcentrations were higher in each fraction of the farmed soils than in corresponding fractionsof the unfarmed soils. The unfarmed sites contained96.72%residual P. In the farmed sites,the Ca-and Mg-bound P fraction was the largest, ranging from63.70to75.60%of total P,and the residual P fraction was the second largest.
     7) We didn’t find any differences on plant growth conditions and Olsen-P content in soils,during tomato growing, even the phosphate-solubilizing bacterial strains were inoculated torhizosphere soils every week.
引文
板野新夫,甘扬声.转化土壤中不溶性有机磷和无机磷化合物为可溶性磷酸盐的细菌Ⅰ.细菌的分离和鉴定[J].土壤学报.1955(02):91-95
    楚雯瑛,段增强.亚磷酸盐作缓释磷肥对黄瓜体内养分吸收和光合特性的影响.植物营养与肥料学报2013,19(3):753-759
    杜建军,廖宗文,宋波,朱兆华.包膜控释肥养分释放特性评价方法的研究进展.植物营养与肥料学报2002(1):16-21
    高超,张桃林.太湖地区农田土壤磷素动态及流失风险分析[J].农村生态环境,2000,16(4):24-27
    高永峰.中国磷肥工业面临的问题和发展建议[J].现代化工,2007,27(5):7-12
    郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果[J].湖南农业大学学报:自然科学版,2004,30(3):233-235
    国家环境保护总局《水和废水监测分析方法》编委汇编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:243-246,254-255
    黄雷,毛小云,王君,邓冰露,王冠豪,廖宗文.促释磷肥的结构特征及其有效性机理研究.中国农业科学,2013,46(4):769-779
    黄绍文,金继运,杨俐苹,程明芳.粮田土壤养分的空间格局及其与土壤颗粒组成之间的关系[J].中国农业科学,2002,35(3):297-302
    蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66
    李阜棣,胡正嘉.微生物学[M].第五版.北京:中国农业出版社,2000:228
    李贵宝,尹澄清,周怀东.中国“三湖”的水环境问题和防治对策与管理[J].水问题论坛,2001,(3):36-39
    李明,王利平.无锡水蜜桃香气成分的初步分析[J].食品与生物技术学报,2007,26(5):53-56
    李庆逵,蒋柏藩,鲁如坤.中国磷矿粉的农业应用[M].南京:江苏科学技出版社,1992:23-26
    梁颁捷,朱其清.福建植烟土壤pH值与土壤有效养分的相关性[J].中国烟草科学,2001,22(1):25-27
    林德喜,樊后保,苏兵强,刘春华,蒋宗垲,沈宝贵.马尾松林下套种阔叶树土壤理化性质的研究[J].土壤学报,2004,41(4):655-659
    林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物通报,2002,(6):24-27
    林启美,赵海英,赵小蓉.一株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24-28
    林启美,赵小蓉,孙焱鑫,姚军.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37
    林治安,谢承陶.石灰性土壤无机磷形态,转化及其有效性研究[J].土壤通报,1997,28(6):274-276
    刘国栋,李继云,李振声.植物高效利用土壤磷营养的化学机理[J].植物营养与肥料学报,1995,3(4):72-78
    刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,43(3):405-413
    刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶“阈值”研究[J].西北农林科技大学学报(自然科学版),2003,31(3):123-126
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:12,106-108,147,166-168,179-182,193-194,272-278
    乔志伟,洪坚平,谢英荷,李林轩.石灰性土壤拉恩式溶磷细菌的筛选鉴定及溶磷特性[J].应用生态学报,2013,24(008):2294-2300
    屈凡柱,于君宝,陈小兵,王永丽.湿地土壤磷分级方法研究[J].土壤通报.2012,(01):243-248
    任清宇,姚金蕊.中国磷矿资源的特点与开发策略[J].矿业快报,2006,22(2):1-4
    孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-369
    王洪杰,李宪文,史学正,于东升.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44-46
    王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报,2002,39(2):268-275
    王锡义.蓬勃发展的中国磷肥工业如何面对磷矿资源瓶颈[J].化肥工业,2006,32(4):1-6
    魏静,周恩湘.不同活化剂对磷矿粉的活化作用[J].河北农业大学学报,2001,24(1):13-15
    武希彦.我国磷肥工业的现状及展望[J].磷肥与复肥,2001,16(1):1-4
    徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳,氮,磷的影响[J].土壤学报,2002,39(1):89-96
    许秀成.提高肥料利用率化工部门能作些什么[J].磷肥与复肥,1999,3:6-11
    许自成,王林,肖汉乾.湖南烟区土壤pH分布特点及其与土壤养分的关系[J].中国生态农业学报,2008,16(4):830-834
    杨佳佳.温度和水分对不同肥料条件下黑土磷形态转化的影响及机制[J].植物营养与肥料学报,2009,15(6):1295-1302
    余树文,汤章程.植物生理与分子生物学[M].北京:科学出版社,1998:336-343
    袁俊宏.我国磷资源现状及资源保障程度分析[J].中国矿业,2003,12(4):4-9
    袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983:63
    张民.包膜控释肥料研究与产业开发[J].化肥工业,2004,(2):7-14
    张民.控释和缓释肥的研究现状与进展[A].见:张福锁主编.植物营养研究进展与展望[C].北京:中国农业大学出版社,2000.177-196
    张奇春,王光火.应用离子交换树脂球研究温度对水稻土养分释放动态的影响.中国水稻科学,2003,17(4):365-368
    张庆利,张民,田维彬.包膜控释和常用氮肥氮素淋溶特征及其对土水质量的影响[J].土壤与环境,2001,10(2):98-103
    张岁岐,山仑.磷素营养对春小麦抗旱性的影响[J].应用与环境生物学报,1998,4(2):115-119
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形式估计[J].中国农业科学,2004,37(7):1008-1017
    张鑫,熊彩珍,顾立明,等.不同中晚熟水蜜桃品种的品质性状评价[J].浙江大学学报(农业与生命科学版),2011,37(5):551-556
    张彦才,周晓芬,李巧云,马民强,张永强.酸性物质与磷肥配合施用对石灰性潮土供磷能力的影响[J].土壤肥料,1998,3:36-38
    张永志.中国磷肥工业现状及发展思路[J].中国土壤与肥料,2007,1:1-4
    赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001(3):7-11
    赵小蓉,林启美,孙焱鑫,张有山,张美庆(2001)玉米根际与非根际解磷细菌的分布特点[J].生态学杂志,20(6):62-64
    浙江农业大学.作物营养与施肥[M].北京:中国农业出版社,1987:3
    中国土壤学会农业化学专业委员会.土壤农业学常规分析方法[M].北京:科学出版社,1983:542-543
    钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制[J].土壤学报,2004,41(6):931-937
    周鑫斌,洪坚平,谢英荷.溶磷细菌肥对石灰性土壤磷素转化的影响[J].水土保持学报,2006,19(6):70-7
    邹宗杰,孙小风,邓义林.农作物配方施肥技术[M].西宁:青海人民出版社,1993
    Adams F, and Evans CE (1962) A rapid method for measuring lime requirement of red-yellow podzolic soils. Soil Science Society of America Journal26.4:355-357
    Armstrong DL (1988) Role of phosphorus in plants. In: Armstrong DL (ed) Better crops withplant food. Potash and Phosphate Institute, Atlanta, USA, pp4–5
    Arora D, Gaur AC (1979) Microbial solubilization of different inorganic phosphates. IndianJournal Experimental Biology17:1258–61
    Babenko Y, Tyrygina G, Grigoryev EF, Dolgikh LM, Borisova TI (1984) Biological activityand physiologo-biochemical properties of bacteria dissolving phosphates. Microbiology53.4:533–539
    Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced byinoculation of some iso-lated phosphate solubilizing microorganisms, Plant Soil69,353–364
    Banik S, Dey BK (1983) Phosphate solubilizing potentiality of the microorganisms capable ofutilizing aluminium phosphate as a sole phosphate source, Zentralbl Microbiol138,17–23
    Barker SA (1984) Soil nutrient bioavailability. J. New York: Wiley and Sons
    Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi todissolve hardly soluble phosphates. Applied Soil Ecology29.1:73–83
    Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia mediatedrock phosphate solubilization in kaolinite and montmorillonite suspensions, Soil Sci SocAm J63,1703–1708
    Bashan Y, De-Bashan LE (2010) Chapter two-How the plant growth-promoting bacteriumAzospirillum promotes plant growth—a critical assessment. Advances in Agronomy108:77–136
    Bolan NS, Hedley M J, Loganathan P (1993) Preparation, forms and properties of controlled-release phosphate fertilizers. Fertilizer research,35(1-2),13-24
    Brink J (1977) World resources of phosphorus. Ciba Foundation Symposium,13–15,23–48
    Buch A, Archana G, Naresh KG (2008) Metabolic channelling of glucose towards gluconatein phosphate solubilizing Pseudomonas aeruginosa P4under phosphorus de Wciency.Research Microbiology159.9:635–642
    Buckingham DA, Jasinski SM (2006) Phosphate Rock Statistics, Historical Statistics forMineral and Material Commodities in the United States, Data Series140. US GeologicalSurvey. http://minerals.usgs.gov/minerals/pubs/historical-statistics/
    Burgstaller W, Straser H, Shinner F (1992) Solubilization of zinc oxide from filter dust withPenicillium simplicissimum: bioreactor, leaching and stoichiometry, Env SciTechnol26,340–346
    Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil science,84(2):133-144
    Chen M, Ma LQ (1998) Comparison of four USEPA digestion methods for trace metalanalysis using certified and Florida soils. Journal of Environmental Quality27.6:1294-1300
    Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA Young CC (2006) Phosphate solubilizingbacteria from subtropical soil and their tricalcium phosphate solubilizing abilities.Applied soil ecology,34(1):33-41
    Chung H, Park M, Madhaiyan M, Seshadri S, Song J, et al.(2005) Isolation andcharacterization of phosphate solubilizing bacteria from the rhizosphere of crop plants ofKorea. Soil Biology and Biochemistry,37(10):1970–1974
    Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitrosolubilization activity of diverse phosphate-solubilizing bacteria native to acid soil andtheir ability to promote Phaseolus vulgaris growth. Biology Fertility of Soils,46.7:727–738
    Cordell D, Drangert JO, White S (2009) The story of phosphorus: Global food security andfood for thought. Global environmental change,19(2):292-305
    Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization ofcalcium phosphate by Penicillium bilaji, Appl Env Microbiol,58:1451–1458
    Delvasto P, Valverde A, Ballester A, Igual JM, Mu oz JA, et al.(2006) Characterization ofbrushite as a recrystallization product formed during bacterial solubilization ofhydroxyapatite in batch cultures. Soil Biology and Biochemisty38(9):2645–2654
    Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodeposits byrhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. JPlant Nutr Soil Sci163:387–392
    El-Tarabily KA, Youssef T (2010) Enhancement of morphological, anatomical andphysiological characteristics of seedlings of the mangrove Avicennia marina inoculatedwith a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouseconditions. Plant and Soil,332(1-2):147–162
    Enebak SA, Carey WA (2000) Evidence for induced systemic protection to fusiform rust inloblolly pine by plant growth-promoting rhizobacteria. Plant Disease84:306–308
    Fernández LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activityof bacterial strains in soil and their effect on soybean growth under greenhouse conditions.Biology and Fertility of Soils43(6):805–809
    Foyer CH (1987) The basis for source-sink interaction in leaves. Plant Physiology andBiochemistry,25(5):649-657
    Foyer CH (1988) Feedback inhibition of photosynthesis through source-sink regulation inleaves [photoinhibition]. Plant Physiology and Biochemistry (France),26(4):483-492
    Gandeza AT, Shoji S, Yamada I (1991) Simulation of crop response to polyolefin-coated urea:I. Field dissolution. Soil Science Society of America Journal,55(5):1462-1467
    Gaur AC (1990) Phosphate Solubilizing Microorganisms As Biofertilizers. New Delhi:Omega Scientific, p.176
    Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectiveand future prospects. American Journal of Biochemistry and Biotechnology,1:51-57
    Goldstein AH (1995) Recent progress in understanding the molecular genetics andbiochemistry of calcium phosphate solubilization by Gram-negative bacteria. BiologicalAgriculture and Horticulture12(2):185–193
    Gupta RR, Singal R, Shanker A, Kuhad RC, Saxena RK (1994) A modified plate assay forscreening phosphate solubilizing microorganisms, Gen Appl Microbiol,40:255–260
    Gyaneshwar P, Kumar GN, Parekh LJ (1998) Effect of buffering on the phosphatesolubilization ability of microorganisms. World Journal of Microbiology andBiotechnology,14(5):669–673
    Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms inimproving P nutrition of plants. In: Adu-Gyamfi JJ, editor. Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities. Netherlands: Springer.pp.133-143
    Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium.Folia. Microbiologica,38(4):325–330
    Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize byphosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiologicalresearch,163(2):234-242
    Han Y, Wang C, Li X, Cao X, Cao A, Zhao N (2014, January). Isolation and identification ofsaline tolerance phosphate-solubilizing bacteria derived from salt-affected soils and theirmechanisms of p-solubilizing. Springer Berlin Heidelberg: In Proceedings of the2012International Conference on Applied Biotechnology (ICAB2012). pp.1259-1266
    Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soilphosphorus fractions induced by cultivation practices and by laboratory incubations. SoilScience Society of America Journal,46(5):970-976.
    Holford ICR (1997) Soil phosphorus: Its measurement and its uptake by plants. AustralianJournal of Soil Research35(2):227–240
    Hoon H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Such JS, Kim KY (2003)2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium,Curr Microbiol.47:87–92
    Hopkins CG, Whiting AL (1916) Soil bacteria and phosphates (No.190). University ofIllinois Agricultural Experiment Station.
    IFA (2006) Production and International Trade Statistics, International Fertilizer IndustryAssociation Paris, accessed20August2007. http://www.fertilizer.org/ifa/statistics/pit_public/pit_public_statistics.asp
    Illmer PA, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4with P-solubilizing microorganisms, Soil Biol Biochem,27:260–270
    Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganismsisolated from forest soils. Soil Biology and Biochemistry,24(4):389-395
    Jetiyanon K (1997) Interaction between PGPR and cucumber during induced systemicresistance: recognition and early host defense responses. Ph.D. Dissertation, AuburnUniversity of Auburn, AL. p.134
    Johnston HW, Bureau S (1952) The solubilization of phosphate: the action of various organiccompounds on dicalcium and tricalcium phosphate. New Zealand Journal of Science andTechnology,33:436–444
    Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant,phosphate-solubilizing bacteria in alkaline soils. Current Microbiology39(2):89–93
    Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, et al.(2009) Gibberellin production andphosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and itseffect on plant growth. Biotechnology Letters31(2):277–281
    Katznelson H, Peterson EA, Rouatt JW (1962) Phosphate-dissolving microorganisms on seedand in the root zone of plants. Canadian Journal of Botany,40(9):1181-1186
    Khan M, Zaidi A, Wani P (2009) Role of phosphate solubilizing microorganisms insustainable agriculture-A review. Sustainable Agriculture,27(2007):29–43
    Kloth B (1996) Aglukon Spezialdünger GmbH: Reply to the request on controlled-releasefertilizers. Personal communication.
    Kucey RMN, Janzen HH, Leggett ME (1989) microbially mediated increases in plantavailable phosphorus. Adv Agron,42:199–221
    Kuhad RC, Singh S, Singh A (2011) Phosphate-solubilizing microorganisms. Springer BerlinHeidelberg: In bioaugmentation, Biostimulation and Biocontrol, pp.65-84
    Lamont GP, Worrall RJ, O'Connell MA (1987) The effects of temperature and time on thesolubility of resin-coated controlled-release fertilizers under laboratory and fieldconditions. Scientia horticulturae,32(3):265-273
    Lane DJ (1991)16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors.Nucleic acid techniques in bacterial systematics. Chichester: John Wiley&Sons. pp.125–175
    Li Y (2001) Calcareous Soils in Miami-Dade County. University of Florida CooperativeExtension Service, Institute of Food and Agriculture Sciences, Gainesville, FL.
    Liu FP, Liu HQ, Zhou HL, Dong ZG, Bai XH et al.(2014) Isolation and characterization ofphosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plantgrowth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils doi:10.1007/s00374-014-0913-z
    Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual Review ofMicrobiology,63:541–556
    Mahler, Richard J, Richard L Maples (1987) Effect of sulfur additions on soil and thenutrition of wheat. Communications in Soil Science&Plant Analysis,18(6):653-673
    Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production andphosphate solubilization by phosphate solubilizing microorganisms under in vitroconditions, Pak J Biol Sci,7:187–196
    Matsushita K, Toyama H, Yamada M, Adachi O (2002) Quinoproteins: structure, function,and biotechnological applications. Applied Microbiology and Biotechnology,58.1:13–22
    Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology,43(1):51-56
    Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current microbiology,43(1):51-56
    Mikkelsen R, Wan H (1990) The effect of selenium on sulfur uptake by barley and rice. Plantand Soil,121(1):151-153
    Murphy J, Riley JP (1962) A modified single solution method for the determination ofphosphate in natural waters. Analytica Chimica Acta,27:31–36
    Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plantgrowth-promoting rhizobacterial mediated protection in tomato against tomato mottlevirus. Plant Disease,84:779–784
    Nair VD, Graetz DA, Portier KM (1995) Forms of phosphorus in soil profiles from dairies ofsouth Florida. Soil Science Society America Journal,59(5):1244-1249
    Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphatesolubilizing microorganisms. FEMS Microbiology Letters,170(1):265–270
    Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress inducedphosphate solubilization in bacteria isolated from alkaline soils. FEMS microbiologyletters,182(2):291-296
    Nguyen C, Yan W, Le Tacon F, Lapeyrie F (1992) Genetic variability of phosphatesolubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizalfungus Laccaria bicolor (Maire) P.D. Orton. Plant Soil,143(2):193–199
    Oertli JJ, Lunt OR (1962) Controlled release of fertilizer minerals by incapsulatingmembranes: I. Factors influencing the rate of release. Soil Science Society of AmericaJournal,26(6):579-583
    Paramasivam S, Alva AK (1997) Nitrogen Recovery From Controlled-Release FertilizersUnder Intermittent Leaching and Dry Cycles1. Soil science,162(6):447-453
    Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that inducesystemic resistance in tobacco against Pseudomonas syringae pv. tabaci. BiologicalControl,18:2–9
    Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performanceliquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by afungus. Journal of industrial microbiology,5(2-3):183-189
    Paul NB, Rao WS (1971) Phosphate-dissolving bacteria in the rhizosphere of some cultivatedlegumes. Plant and soil,35(1-3):127-132
    Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineralphosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-easternVenezuelan region. Soil Biology and Biochemistry,39(11):2905-2914
    Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity ofsome microbial species. Mikrobiologiya,17:362-370
    Raj SN, Shetty HS, Reddy MS (2006) Plant growth promoting rhizobacteria: potential greenalter native for plant productivity. In: Siddiqui ZA, editor. PGPR: Biocontrol andBiofertilization. Netherlands: Springer. pp.197–216
    Raj SN, Shetty HS, Reddy MS (2006) Plant growth promoting rhizobacteria: potential greenalternative for plant productivity. In: Siddiqui ZA, editor. PGPR: Biocontrol andBiofertilization. Netherlands: Springer. pp.197–216
    Rajan SSS (1987) Partially acidulated phosphate rock as fertilizer and dissolution in soil ofthe residual rock phosphate. New Zealand journal of experimental agriculture,15(2):177-184
    Rao IM, Abadia J, Terry N (1987) The role of orthophosphate in the regulation ofphotosynthesis in vivo. Progress in photosynthesis research. Springer Netherlands, pp.325-328
    Rao PU, Deosthale YG (1988) In vitro availability of iron and zinc in white and coloured ragi(Eleusine coracana): role of tannin and phytate. Plant Foods for Human Nutrition,38(1):35-41
    Rashid MT, Salim M (1992) Relative efficiency of different nitrogen sources and levels forwheat crop under rainfed conditions. Pakistan Journal of Agricultural Research,13(3):227-231
    Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhancebiological control of multiple cucumber pathogens. Phytopathology,88:1158–1164
    Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on thesolubilization of different inorganic phosphates by an isolate of Penicillium rugulosumand two UV induced mutants, FEMS Micobiol Ecol,28:281–290
    Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition ofphosphorus by plants. Functional Plant Biology,28(9):897–906
    Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growthpromotion. Biotechnology Advances,17.4:319–339
    Rodriguez D, Goudriaan J, Oyarzabal M, Pomar MC (1996) Phosphorus nutrition and waterstress tolerance in wheat plants. Journal of plant nutrition,19(1):29-39
    Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growthpromotion. Biotechnology advances,17(4):319-339
    Rodriguez-Suarez RJ, Mora-Garc a S, Wolosiuk RA (1997) Characterization of cysteineresidues involved in the reductive activation and the structural stability of rapeseed(Brassica napus) chloroplast fructose-1,6-bisphosphatase. Biochemical and biophysicalresearch communications,232(2):388-393
    Rubio S, Lacaze-Masmonteil T, Chailley-Heu B, Kahn A, Bourbon JR, Ducroc R (1995)Pulmonary surfactant protein A (SP-A) is expressed by epithelial cells of small and largeintestine. Journal of Biological Chemistry,270(20):12162-12169
    Sackett WG, Patten AJ, Brown CV (1908) The solvent action of soil bacteria upon theinsoluble phosphates of raw bone meal and natural raw rock phosphate. Central Bacterial,20:688-703
    Sahachtman DP, Reid RJ, Ayling SM (1998) Phosphate uptake by plants from soil to cell.Plant Physiol,116:447–453ahin F., akmak i R, Kantar F (2004) Sugar beet and barley yields in relation to inoculationwith N2-fixing and phosphate solubilizing bacteria. Plant and Soil,265(1-2):123-129
    Savant NK, Clemmons JR, James AF (1982) A technique for predicting urea release fromcoated urea in wetland soil. Communications in Soil Science&Plant Analysis,13(9):793-802
    Shaviv A, Mikkelsen RL (1993) Controlled-release fertilizers to increase efficiency ofnutrient use and minimize environmental degradation–A review. Fertilizer Research,(35):1-12
    Shen JB, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang F (2011) Phosphorus dynamics: fromsoil to plant. Plant physiology,156(3):997-1005
    Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter. Proceedings of the national academy ofsciences,97(12),6896-6901
    Shi WM, Yao J, Yan F (2009) Vegetable cultivation under greenhouse conditions leads torapid accumulation of nutrients, acidification and salinity of soils and groundwatercontamination in South-Eastern China. Nutrient cycling in agroecosystems,83(1):73-84
    Shoji S, Kanno H (1994) Use of polyolefin-coated fertilizer for increasing fertilizer efficiencyand reducing nitrate leaching and nitrous oxide emission. Fertilizer Research,39(2):147-152
    Shoji S, Gandeza AT, Kimura K (1991) Simulation of crop response to polyolefin-coated urea:II. Nitrogen uptake by corn. Soil Science Society of America Journal,55(5):1468-1473
    Singal R, Gupta R, Saxena RK (1994) Rock phosphate solubilization under alkalineconditions by Aspergillus japonicus and A. foetidus, Folia microbiologica,39(1):33–36
    Smil V (2000) Phosphorus in the environment: natural flows and human interferences. AnnualReview of Energy and the Environment,25:53–88
    Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphatesby a novel salt-and pH-tolerant Pantoea agglomerans R-42isolated from soybeanrhizosphere. Bioresource Technology,97(2):204–210
    Stalstrom VA (1903) Boitrag zur kennturs der ein-wisking steriler und in ganrungboflndlicher organischer stroffe auf dil loslichkeit der phosphorsen des tricalciurnphosphate. Zel Bakt,11:724-732
    Sundara-Rao WVB, Sinha MK (1963) Phosphate dissolving microorganisms in the soil andrhizosphere. Indian J Agric Sci,33(4):272-278
    Swain MR, Ray RC (2009) Biocontrol and other beneficial activities of Bacillus subtilisisolated from cowdung microflora. Microbiological Research,164(2):121–130
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Molecular Biology and Evolution,24(8):1596-1599
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Molecular Biology and Evolution,24(8):1596-1599
    Tandon HLS (1987) Phosphorus research and agricultural production in India. New Delhi:Fertilizer Development and Consultation Organization, p.172
    Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludue a L, et al.(2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities.Plant and Soil,329(1-2):421–431
    Thakkar J, Narsian V, Patel HH (1993) I. Inorganic P solubilization by certain soil bacteria. II.Solubilization of natural rock phosphate and pure insoluble inorganic P by Aspergillusawamori. Indian J Expt Biol,31:743–747
    Tiessen H, Stewart JWB, Moir JO (1983) Changes in organic and inorganic phosphoruscomposition of two grassland soils and their particle size fractions during60–90years ofcultivation. Journal of Soil Science,34(4):815-823
    UK Environment Agency, Enviromental ISSUES series-aquatic eutrophicationin EnglandandWales [R]. UK Enviromental Agency Consultative Report, December1998
    USDA (1958) Soil survey of Dade County area, Florida. Washington, DC: USDA-NRCS. P.56
    USDA (1996) Soil survey of Dade County area, Florida. Washington, DC: USDA-NRCS.P.184
    Vaccari DA (2009) Phosphorus: a looming crisis. Scientific American,300(6):54-59
    Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acidproduced by immobilized Penicillium variable P16, Biotech Tech,20:585–588
    Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiaridcoastal lagoon. Biology and Fertility of Soils,30(5-6):460–468
    Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorussolubilization by microorganisms isolated from arid soil, J Ind Soc Soil Sci,32:273–277
    Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases andincreased plant growth by plant growth-promoting rhizobacteria under field conditions.Phytopathology,86:221–224
    Weisburg WG, Barns SM, Pelletier DA, Lane, DJ (1991)16S ribosomal DNA amplificationfor phylogenetic studies. Journal of bacteriology,173(2):697–703
    Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizingfungi. Advances in Agronomy,69:99–151
    Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture bythe soil fungus Penicillium radicum. Soil Biol Biochem,32:655–665
    Wu JJ, Phan H, Salmon SE, Lam KS (1996) Development of a selective pseudo substrate-based peptide inhibitor of pp60c-src protein tyrosine kinase. Letters in Peptide Science,3(5):309-316
    Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemicresistance against tomato late blight elicited by plant growth-promoting rhizobacteria.Phytopathology,92:1329–1333
    Yu X, Liu X, Zhu TH, Liu GH, Mao C (2011) Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization.Biology and Fertility of Soils,47(4):437–446
    Zehnder G, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria forinduced resistance. European Journal of Plant Pathology,107:39–50
    Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000a) Induction of resistance intomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria.BioControl,45:127–137
    Zehnder GW, Yao C, Wei G, Kloepper JW (2000b) Influence of methyl bromide fumigationon microbe-induced resistance in cucumber. Biocontrol Science and Technology,10:687–693
    Zhang S, Reddy MS, Kloepper JW (2002) Development of assays for assessing induced
    systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco.
    Biological Control,23:79–86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700