人参榕贮运过程中落叶的原因及改善措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贮运过程是人参榕(Ficus microcarpa L.f.)出口的必要环节,期间贮运措施的优劣直接影响人参榕的观赏特性和商品品质。针对人参榕在贮运过程中落叶损伤其观赏价值的问题,本试验以嫁接人参榕为试材,运用逆境胁迫影响植物生长代谢理论,观察了叶片超微结构,筛选出了人参榕贮运中的最低临界温度和有效保鲜药剂。并选择了温度、药剂、包装方式3因素作为考察因子,每个因子又分别设3个水平,温度选择10℃、13℃和16℃;药剂选择筛选出的有效药剂:5 mg/LKT和600 mg/L 0.1%芸苔素内酯、500 mg/L阿司匹林;包装方式选择1%仙亮、0.03mm聚乙烯膜、不加包装作对照进行了正交试验,用DPS软件进行数据分析,研究人参榕在贮运过程中的落叶和失重情况以及光合色素、抗氧化系统、碳水化合物和内源激素等一系列生理生化指标的变化规律,最后筛选出了能改善人参榕贮后商品品质的最优组合,找出了影响人参榕贮后商品品质的主要因子,为人参榕生产上实施贮运保鲜技术提供参考依据。主要研究结果如下:
     1扫描电镜观察得到,人参榕新叶的上下表皮都有气孔分布,而老叶只观察到下表皮有气孔分布,对比新叶和老叶的下表皮发现,新叶下表皮的气孔小而多,老叶下表皮的气孔大而少。这些结构上的差异都会使新叶和老叶在贮运过程中的呼吸、蒸腾等生理代谢上有很大不同。
     2以叶柄制作石蜡切片光学显微镜观察得到,新叶叶柄的薄壁组织细胞比较大,而老叶叶柄的薄壁组织细胞比较小且层数增多,这些差异可能是由于老叶叶柄衰老产生的离区造成的。新叶叶柄的维管束排列整齐紧密,老叶叶柄的维管束多呈游离状,比较松散。这些差异表明老叶叶柄的支持力比新叶大大减弱,从而也更容易脱落。这些结果说明新叶结构更能适应人参榕的不良贮运环境。
     3人参榕在6℃、8℃、10℃下模拟贮运试验表明,6℃条件下贮运会发生冷害,8℃贮运后的长势恢复不如10℃,故10℃是人参榕贮运保鲜的最低临界温度。在目前生产上采用的贮运条件的基础上添加药剂处理进行试验,结果显示,5 mg/L KT和600 mg/L 0.1%芸苔素内酯对防止贮运过程中落叶的效果最好,落叶率分别为20.96%、35.48%,分别比对照的降低了59.80%、31.97%,10 mg/L 6-BA和500 mg/L阿司匹林的效果次之,5~20 mmol/L亚精胺的效果不明显。
     4正交试验的贮运过程中,人参榕的落叶率不断升高,且贮运14d后落叶率开始大幅上升,人参榕叶片的含水量、Chl a、Chl b、Chl、Car含量都在下降,Chl a/b比值显著下降,Car/Chl比值升高;叶片的CAT活性显著下降,SOD活性先上升后下降,POD活性一直上升,且贮运14 d后,叶片中的MDA含量和REC值迅速上升,电解质渗漏,造成细胞膜透性迅速增强。淀粉、蔗糖、果糖含量持续下降,可溶性糖含量先小幅上升,贮运14 d后迅速下降。人参榕叶片的ABA含量呈上升趋势、GA_3含量呈下降趋势。这一系列生理生化指标的变化都表明人参榕叶片正处于衰老的过程中,衰老是引起落叶的直接原因。
     5正交试验得出结论,13℃、1%仙亮、5 mg/L KT或13℃、1%仙亮、600 mg/L 0.1%芸苔素内酯为最优组合。这两组组合都能明显降低人参榕贮运过程中落叶率,减弱贮运过程中人参榕叶片的叶绿素含量和保护酶活性下降,延迟MDA含量和REC值的升高,延缓和减少贮运过程中人参榕叶片的碳水化合物含量的下降,减小ABA和GA_3含量变化幅度,较好的改善了贮后人参榕的商品品质。试验还发现,药剂处理是影响人参榕贮运过程中落叶率的主要因子,温度次之,其中,以13℃和5mg/LKT药剂的效果最佳;包装方式是影响人参榕贮运过程中失重率的主要因子,0.03mm聚乙烯膜的效果最佳;温度是影响人参榕贮运过程中光合色素、保护酶、碳水化合物及内源激素变化的主要因子,都是以13℃的效果最好。
Storage and transportation is a necessary period for exporting Ficus microcarpa L.f.,and it can impact Ficus microcarpa′s ornamental value exactly whether measures of storage and transportation is good or bad.According to the problem that the leaves of Ficus microcarpa shed during storage and transportation,which effects its ornamental value.This experiment chose grafted Ficus microcarpa as test material,used theory of environment stress impacting plants' growing and metabolism,having observed leaves' ultrastructure and chosen lowest critical temperature and antistaling agent,designed orthogonal tests considering factors of temperature, antistaling agent,packaging methods,and Chose 10℃,13℃and 16℃;Chose 5mg/L KT,600mg/L 0.1 %brassinolides,500mg/L aspirin as antistaling agent factor;Chose 1%Xian-liang wax,0.03mm polyethylene film,no packaging as packaging methods factor.Analyzed data with DPS software,studied the defoliation and weight loss rate and the changing rule of physiological and biochemical metabolism including antioxidant system,carbohydrates,endogenous hormone and so on during storage and transportation,and chose the optimum combination of improving Ficus microcarpa′s ornamental value after storage and transportation,and found the principal factor that effected Ficus microcarpa′s commodity quality,so it would as reference basis for implementing the technology of storage and transportation.The main results were as follows:
     1 Observed with optics microscope,there were stomas in both the upside and downside epidermises of young leaf,but only in downside epidermis of old leaf.Compared the down side epidermises of young and old leaf,we found that stomas in downside epidermises of young leaf were smaller and more,and that in old leaf were bigger and fewer.These differences of structure could make young and old leaves differ in respiration and transpiration and so on physiological metabolism during storage and transportation.
     2 Made olefin slice using leafstalk and scanned by electron microscope,we found that the cells in parenchyma of young leafstalk were bigger,but that of old leafstalk smaller and more.It is maybe caused by that old leafstalks senescence and generate abscission zone.The vascular bundle in young leafstalk was more regular and closer than that in old leafstalk.These differences indicated that the supporting force of old leafstalk weakened more than that of young leafstalk and exfoliated more easily. So the structure of young leaf could be more adaptive for the bad storage and transportation condition.
     3 The simulation test under 6℃,8℃,10℃condition showed that Ficus microcarpa could be injured by chilling during storage and transportation at 6℃,and the recovery speed of growth vigor at 8℃was less than at 10℃,so 10℃was the lowest critical temperature for Ficus microcarpa during storage and transportation.Using reagents to Ficus microcarpa based on the production storage and transportation condition,We found that effect of 5mg/L KT and 600mg/L 0.1%brassinolides are best, their defoliation rate were 20.96%、35.48%,and reduced 59.80%、31.97%than CK,and the 10mg/L 6-BA and 500mg/L aspirin were better,but the effect of spermidine was not obvious.The changes of these physiological and biochemical indexs showed that Ficus microcarpa was aging,so senescence was the direct cause of defoliation.
     4 During storage and transportation of the orthogonal experiment,the defoliation rate was increasing gradually,the content of water,chla,chlb,chl and Car of the leaf in Ficus microcarpa fell, and so fell the ratio between Chla and chlb,however,the ratio of Car and Chl went up.the activity of CAT of Ficus microcarpa′s leaf fell rapidly,the activity of SOD went up first and then fell,the activity of POD went up all the time.Meanwhile,after storage and transportation 14days the content of MDA and REC went up rapidly,electrolytic leaks,and enhanced the cell membrane.The content of starch, sucrose,fructose fell all along,but the content of total soluble sugar went up first,after storage and transportation it began to fall.The content of ABA of the leaf in Ficus microcarpa showed rising trend, and the GA_3 decreasing tendency.
     5 It was found from orthogonal experiment that 13℃,1%Xian-liang wax,5mg/L KT or 13℃, 1%Xian-liang wax,600mg/L 0.1%brassinolides were optimum combination.They could reduce the activity of protective enzyme' falling speed,delay and reduce the falling of carbohydrates content,and delay the content of MDA and REC to go up and delay and reduce the falling of content of ABA and GA_3,improve Ficus microcarpa′s ornamental value obviously.We obtained conclusion that reagent was the principal factor that effected Ficus microcarpa′s defoliation rate,and temperature was second,0.03mm polyethylene film was the principal factor that effected Ficus microcarpa′s water loss rate,and temperature was the principal factor that effected Ficus microcarpa′s changes of photosynthetic pigments,protective enzyme,carbohydrates,ABA and GA_3.
引文
[1]程士国.中国花卉出口日本现状透视[J].中国花卉园艺,2006,23:7-9.
    [2]白燕枫.走马观花在东瀛[J].中国花卉园艺,2006,23:10-15.
    [3]陈璋.人参榕标准化生产技术[J].中国花卉园艺,2005,18:30-34.
    [4]Harman D.The flee-radical theory of ageing,In:Prypr WA ed,Free Radicals in Biology Vol.V[M].Lonon:Academic Press,1982:255-266.
    [5]姚允聪,张大鹏,王有年,等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究[J].果树科学,2000,17:1-6.
    [6]陈立松,刘星辉.渗透胁迫下Ca~(2+)对龙眼叶片光合色素及膜脂过氧化的影响[J].园艺学报,1998,25:87-88.
    [7]王爱国.植物的氧代谢.见:余叔文,汤章成主编.植物生理与分子生物学.第二版.[M].北京:科学出版社,1999:
    [8]陈立松,刘星辉.果树逆境生理[M].北京:中国农业出版社,2003:56.
    [9]Navari-Izzo F R N.Plant responses to water-deficit conditions.In:M Pessarakli ed.Handbook of Plant and Crop Stress[M].New York:Marcel Dekker,1999:231-269.
    [10]Bowler C V M M,Inze D.Superoxide dismutase and stress tolerance[J].Molecule Biology,1992,43:83-116.
    [11]Alscher R G D J L,Cramer C L.Reactive oxygen species and antioxidants:relationships in green cells[J].Physiol Plant,1997,100:224-233.
    [12]郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005:260.
    [13]曹慧,王孝威,曹琴,等.水分胁迫下新红星苹果超氧物自由基累积和膜脂过氧化作用[J].果树学报,2001,18(4):196-199.
    [14]李延.龙眼缺镁胁迫生理及调控技术研究.福州:福建农林大学;1999.
    [15]廖祥儒,贺普超.玉米素对盐渍下葡萄叶片H_2O_2清除系统的影响[J].植物学报,1997,39:841-846.
    [16]削颐元,赵大中.柑橘叶片耐热性生理生化指标初探[J].果树科学,1990,7:217-220.
    [17]陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25:241-246
    [18]Macrae E A F I B.Changes activity and Hydrogen peroxide concentration in plants in response to lowtemperature[J].Physiol Plant,1985,65:51-56.
    [19]陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系[J].植物生理学通讯,2005,41(3):279-285.
    [20]叶珍.杂交水稻蔗糖淀粉代谢与产量关系的研究[博士论文].成都:四川农业大学;2005.
    [21]Molisch H,Der L d p.In the longevity of plants[M].Newyork:Translated and published by H.Fulling 1978:
    [22]E W R.Sinks as determinants of assimilate partitioning:possible sites for regulation.In Phloem Transport[M].New York:Alan R Liss,1986:197-209.
    [23]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001:166-167.
    [24]Erik T.Nilsen D M O.The physiology of plant under stress[M].New York:John Wiley and Sons,1996:21-46.
    [25]Vogt KA V D,Moore EE.et al.Estimating Douglas-fir fine root biomass and production flora living bark and starch[J].Can J For Res,1985,15:177-179.
    [26]Vogt KA D R,Ugolini F et al.Aluminum,Fe,Ca,Mg,K,Mn,Zn and P in above-and below ground biomass.I.Abies amabilis adn Tsuga mertensiana[J].Biogeochemistry,1987,4:277-294.
    [27]罗云波.果蔬采后生物技术研究进展,见:园艺学年评[M].北京:科学出版社,1995:39-56.
    [28]Kelly MO D P.The control of whole plant senescence[J].CRC Crit Rev Plant Sci,1988,7:139-173.
    [29]Nooden L.Abscisic acid,auxin and other regulators of senescence,In:Nooden LD,Leopold AC eds,Senescence and Aging in Plants[M].San Diego:Academic Press,1988:329-368.
    [30]宋纯鹏.植物衰老生物学[M].北京:北京大学出版社,1998:71.
    [31]Cramer G R.Is an oncrease in ABA concentration the cause of growth inhibition in salt-stressed plants?[J].Plant Physiol,1994,105:107.
    [32]Dodd I C,Davies W J.The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone[J].J Exp Bot,1996,45:1471-1478.
    [33]Munns R,Sharp R E.Involvment of abscisic acid in controlling plant growth in soils of low water potential[J].Aust J Plant Physiol,1993,20:425-437.
    [34]Jackson G E,Irvine J,Grace J,et al.Abscisic acid concentrations and fluxes in drought conifer samplings[J].Plant Cell Environ,1995,18:13-22.
    [35]Jackson M B.Are plant hormones in volved in the root to shoot communication?[J].Adv Bit Res,1993,19:103-187.
    [36]刘丹,姜中珠,陈祥伟.水分胁迫下脱落酸的产生、作用机制及应用研究进展[J].东北林业大学学报,2003,31(1):34-38.
    [37]江月玲,潘瑞炽.茉莉酸类物质与脱落酸生理作用的比较研究[J].植物学通报,1996,13(4):38-41.
    [38]胡哲森.6-BA对油茶离体叶片衰老的延缓作用[J].福建林学院学报,1998,18(1):14.
    [39]李顺文.6-BA对草莓叶片衰老的调节作用[J].落叶果树,2003,35(5):5-6.
    [40]王宁宁,张韧.6-BA延缓大豆叶片衰老的作用与膜蛋白磷酸化状态的关系[J].植物生理学报,1998,24(3):305-308.
    [41]Staden J V,Cook E,Nooden L.Cytokinins and senescence.In:Senescence and aging in plants[M].San Diego:Academic Press,1988:
    [42]Brown JH P G,Thompson JE.Physiological mechanisms of plant senescence,In:Treaties ed,Plant Physiology Vol X:Growth and Development[M].London:Academic Press,1992:227-275.
    [43]RA Fletcher D M.Cytokinin-induced chlorophyll formation on cucumber cotyledons[J].planta,1971,101:88-90.
    [44]董建国,余叔文.细胞分裂素对渍水小麦衰老的影响[J].植物生理学报,1984,10:55-62.
    [45]EW Hewett P W.Cytokinins in Populus robusta(schneid):Light effects on endogenous levels[J],planta,1973,114:119-129.
    [46]Larry D.Nooden S S,D.Stuart Letham.Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean[J].Plant Physiology,1990,93:33-39.
    [47]LD Nooden D L.Cytokinin metabolism and signalling in the soybean plant[J].Plant Physiology,1993,20(5):639-653.
    [48]刘奕清,王大平,熊运海.人参榕播种育苗技术关键[J].种子,2006,25(4):101-103.
    [49]李影,蓝炎阳,程志明,等.富贵竹出口贮运栽培基质的研究[J].福建热作科技,2005,30(1):11-12.
    [50]鲍桐,宁伟.刘延吉.黄腐酸对番茄秧苗运贮过程中内源激素的影响[J].安徽农业科学,2006,34(3):405-406
    [51]宁伟,葛晓光,李天来,等.富里酸处理对番茄幼苗运贮中生理效应及激素水平的影响[J].园艺学报,2005,32(4):704-706.
    [52]高俊平,王子华.采后保鲜-提升我国花卉产业整体水平的关键[J].中国花卉园艺,2004,7:10-11.
    [53]盛爱武,乔爱民,高飞,等.富贵竹切口保鲜及贮运研究[J].中国农学通报,2005,21(9):329-331
    [54]GD F,TD S.Stomatal conductance and photosynthesis[J].Annual Review of plant Physiology and Plant Molecylar Biology,1982,33:317-345.
    [55]DQ X,DY L,GX O,et al.Stomatal limitation of photosynthesis in the bambll(phu\yllostachys pubescens)leaf.[J].Acta Phytophysiologica Sinica,1987,13:154-160.
    [56]DQ X.Non-uniform stomatal closure and non-stomatal limitation of photosynthesis[J].Plant Physiology Communications,1995,31:246-252.
    [57]王国英.葡萄叶片气孔与霜霉病抗性[J].果树科学,1988,5(1):120-121.
    [58]张谷雄,胡国谦,王宇,等.柑橘矮生和砧木矮化效应预选指标的研究[J].南京农业大学学报,1987,3 37-42.
    [59]张延龙,牛立新.中国葡萄属植物叶片气孔特征的研究[J].植物研究,1997,17(3):315-319.
    [60]曹冬梅,康黎芳,王云山,等.根外施钾对苹果幼树气孔特征及光合速率的影响[J].山西农业科学,2002,30(1):57-60.
    [61]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社,2006:100-155.
    [62]李正理.植物制片技术(第二版)[M].北京:科学出版社,1987:1-55.
    [63]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989:11.
    [64]DX C,TD W.Adaptation of leaf mesophyll structure to environmental light condition and its effect on leaf photosynthesis[J].Chinese Journa of Applied Ecology,1990,1:142-148.
    [65]Raschke K,Zeevart J A D.Abscisic acid content transpiration,and stomatal conductance as related to leafage in plants of Xanthium strumarium L.[J].Plant Physiol,1976,58:169-174.
    [66]Atkinson C J,Davies W J,Mansfield T A.Changes in stomatal conductance in intact ageing wheat leaves in response to abscisic acid[J].J Exp Bot,1989,40:1021-1028.
    [67]Zeevart J A D,Boyer G L.Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium[J].Plant Physiol,1984,74:934-939.
    [68]胡文海,黄黎锋,肖宜安,等.夜间低温对2种光强下榕树叶绿素荧光的影响[J].浙江林学院学报,2005,22(1):20-23.
    [69]赵世杰.植物生理学实验指导[M].北京:中国农业科技出版社,2002:
    [70]王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报,2006,28(1):32-38.
    [71]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:371-372.
    [72]McCord J M,Fridovich I.Superoxide dismutase.An enzyme function for erythrocuprein (hemocuprein)[J].Journal of Biological Chemistry,1969,244(22):6049-6055.
    [73]华东师范大学生物系.植物生理学实验指导[M].北京:人民教育出版社,1980:143-144.
    [74]Rao M V,Paliyath G,Ormrod D P.Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of arabidopsis thaliana[J].Plant Physiology,1996,110(1):125-136
    [75]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-165.
    [76]孙治强,张强,张惠梅.低温弱光对番茄叶绿素含量变化的影响[J].华北农学报,2005,20(1):82-85.
    [77]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    [78]Asadak.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons.[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639.
    [79]西北农林科技大学植物生化教研组.植物生理学实验指导[M].西安:陕西科学技术出版社,1987:114-116.
    [80]上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社出版,1985:136-137.
    [81]车建美.荔枝体细胞胚胎发生的早期生化事件.福州:福建农林大学硕士学位论文;2002.
    [82]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草叶学报,1998,7(1):75-80.
    [83]Klessing D F,ale.The salicylic acid signal in plant[J].Plant mol Biol,1994,26:14-39.
    [84]Liu D H.The senescence of plant leaves[J].Plant Physiology Communications,1983,2:14-19.
    [85]艾希珍,郭延奎,马兴庄,等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004,37(2):268-273.
    [86]唐韦华,李天来,张秀美,等.苗期弱光胁迫对番茄生长和叶绿素含量的影响及其恢复效应[J].沈阳农业大学学报,2007,38(3):278-282.
    [87]张亚川,郑冬梅,贾艳宇.贮藏温度对马铃薯品质的影响[J].马铃薯杂志,1999,13(2):120-123.
    [88]寇晓红.鲜枣冷藏过程中生理生化变化的研究[J].中国农业科全,2000,33(6):44-49.
    [89]高晓辰.百合鳞茎发育和冷藏期间生理生化变化的研究[硕士论文].杭州:浙江大学;2002.
    [90]Dhindsa R S,Dhindsa P P,Reid D M.leat senescence and lipid peroxidation:Effects of some phytohormones,and scavengers of free radicals and singlet oxygen[J].Physiol Plant,1982,56:453.
    [91]王根轩,杨成德,梁厚果.蚕豆叶片衰老过程中SOD和MDA的变化[J].植物生理学报,1989,15(1):13-17.
    [92]聂先舟,刘道宏.水稻离体叶片衰老过程中膜脂组分的变化[J].植物生理学通讯,1989,4:30-33.
    [93]Calatayud A,Barreno E.Chlorophyll a fluoresence,antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl[J].Environ Pollut,,2001,115:283-289.
    [94]魏道智,戴新宾,许晓明,等.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96.
    [95]Silva J M,Arrabaca M C.Contributions of soluble carbohydrates to the osmotic adjustment in the C_4 grassSetaria sphacelata:a comparison between rapidly and slowly imposed water stress[J].J Plant Physiol,2004,161:551-555.
    [96]刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展[J].植物学通报,2002,19(6):666-674.
    [97]司怀军.贮藏温度对马铃薯块茎还原糖含量的影响[J].西北农业学报,2001,10(1):22-24.
    [98]高武军,李书粉,常生辉,等.植物抵御非生物胁迫的内源性保护物质及其作用机制[J].植物生理学通讯,2006,42(2):337-342.
    [99]李木英,石庆华,潘晓华.等腰三角形.影响两系杂交稻结实期茎鞘贮藏碳水化合物转运的生理因素研究[J].江西农业大学学报,1999,21(3):329-332.
    [100]齐红岩,李天来,张洁.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响[J].中国农业科学,2004,37(7):1045-1049.
    [101]鲍桐,宁伟,刘延吉.黄腐酸对番茄秧苗运贮过程中内源激素的影响[J].安徽农业科学,2006,34(3):405-406.
    [102]陆小川.桑树休眠与激素关系的研究[J].江苏蚕业,1996,2:5-9
    [103]Liang J,Zhang J,Wong M H.How do roots control xylem sap ABA concentration in response to soil drying[J].Plant Cell Environ 1997,12:73-81.
    [104]Gowing D J,Davies W J,Johes H G.A positive root-sourced signal as an "indicator" of soil drying in apple.Malus × dornestica Borkh[J].Exp Bot,1990,41:1535-1540.
    [105]Passioura J B.Root signals control leaf expansion in wheat seedlings growing in drying soil[J].Aust J Plant Physiol,1988,15:687-693.
    [106]Dorffling K,Tietz D,Streich J.Studies on the role of abscisic acid in stomatal movements[M].Berlin:Springer-Verlag Press,1980:274-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700