高温贮运对矮牵牛(Petunia hybrida)穴盘苗生理生化特性及其质量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工厂化育苗已成为现代化农业以及工厂化农业的重要组成部分,由此导致种苗贮运及贮运技术的产生和发展,也催生了各种适宜种苗贮运的方法和手段。国外种苗生产中已有专门的调温、调湿设备,使种苗适宜条件下贮运,而国内很多种苗企业缺少此类设备,夏季种苗通常在常温下进行短期贮运。
     本文以上海地区为背景,矮牵牛梦幻系列红色穴盘苗为试验材料,采用模拟贮运方法,进行双因子随机区组设计,两个模拟贮运温度:25℃(上海地区7、8月份的平均气温)和35℃(上海7、8月份的平均最高气温),两个基质含水量50 %和80 %,研究在夏季无调温和光照设备的情况下,不同贮运温度和基质含水量对矮牵牛种苗形态、物质代谢、抗氧化系统、叶绿素荧光、种苗定植后叶绿素的恢复及对其花期等的影响,初步了解高温贮运对种苗质量的影响。主要研究结果如下:
     1.在温度分别为25℃、35℃和基质含水量分别为80%、50%的不同处理下,矮牵牛种苗出现徒长、干重下降、叶绿素总量下降等质量劣变问题。较低的基质含水量处理,可以减缓种苗质量劣变的程度。矮牵牛贮运6d定植后,成活率显著下降。随着贮运时间的增加,平均花数减少,现蕾时间推迟,花期缩短,与不贮运的种苗相比,贮运4d后差异显著。
     2.各处理的淀粉、可溶性糖、可溶性蛋白质含量均随着贮运天数的增加而下降,游离氨基酸含量增高。到贮运第6d,处理50% 25℃、50% 35℃、80% 25℃、80% 35℃淀粉含量分别比第0d下降了84.3%、85.1%、91.6%、85.1%;可溶性糖含量分别下降69.2%、73.5%、76.2%、79.5%;可溶性蛋白质含量分别下降27.4%、39.8%、40.4%、42.9%;游离氨基酸含量分别增加96.5%、405.6%、547.9%、615.9%。基质含水量低、温度低的处理种苗物质消耗少,基质含水量高、温度高的处理种苗物质消耗最严重。
     3.随着贮运天数的增加,各处理SOD活性下降而其比活力升高,POD和CAT活性先上升后下降,比活性均上升,H_2O_2和MDA累积逐渐增大。贮运4 d后,各处理差异显著,基质含水量低和温度高的处理受活性氧伤害严重。
     4.叶绿素荧光参数Fv/Fm、Fv/Fo均随着贮运天数的增加而下降,处理35℃比25℃的种苗各荧光参数下降量大,在35℃条件下,贮运2 d时各荧光参数与第0 d差异显著;25℃条件时,各参数在贮运4 d时才显著下降,差异与第0d显著;同一温度下基质含水量50%、80%差异不显著。定植后,贮运天数越短,恢复速度越快,且温度高、基质含水量少的处理恢复时间慢。
Industrial seedling nursery is an important part of modern agriculture, which promotes developement of seedling storage and transportation technique. The special air and humidity conditioning equipments which guarantees feasible environment for seedling storage are used abroad. However, domestic seedling enterprises lack these equipments, so plug seedlings are stored and transported under normal temperature in summer.
     This paper investigated the effects of different storage temperature and water content in substrate on seedling quality, antioxidant enzyme, chlorophyll fluorescence, substance metabolism, recovery after transplanting and flower quality of petunia seedlings. Double factors design was carried out. 2 temperature levels were 25℃(average temperature between July and August in Shanghai) and 35℃(average highest temperature between July and August in Shanghai), and 2 water content in substrate levels were 50% and 80%. Main result is:
     1. Height of Petunia seedling increased, weight and chlorophyll content decreased under 4 treatments. Compared with 0 days, Low water content in substrate benefited seedling storage quality at 2, 4 days storage, but after 6 days, survival percentage of petunia seedlings dropped distinctly. Average flower number and florescence decreased, first bud time delayed with storage days, and each treatment has distinct difference with 0 days after 4 days storage.
     2. Starch, soluble sugar and soluble protein content decreased with storage days, but free amino acid content increased quickly. After 6 days storage, starch content decreased by 84.3%, 85.1%, 91.6%, 85.1%, soluble sugar content decreased 69.2%, 73.5%, 76.2%, 79.5%, soluble protein content decrease 27.4%, 39.8%, 40.4%, 42.9% and free amino acid content increased 96.5%, 405.6%, 547.9%, 615.9% under treatment of 50% 25℃, 50% 35℃, 80% 25℃, 80% 35℃. The results indicated that substances in seedlings were consumed fewer under lower temperature and lower water content in substrate.
     3. SOD, POD and CAT specific activity increased with storage time. SOD activity decreased, but POD and CAT activity increased at the beginning and decreased at the end. H_2O_2 and MDA content increased. After 4 days storage, each treatment has distinct difference. Seedlings under treatments of higher temperature and lower water content in substrate were damaged by active oxygen more badly, which was consistent with the result of the chlorophyll fluorescence.
     4. Chlorophyll fluorescence parameter Fv/Fm, Fv/Fo decreased with storage days. Treatment of 35℃decreased more quickly than 25℃. Chlorophyll fluorescence parameter distinctly decreased after 2 days storage under 35℃, but 4 days storage under 25℃. Water content in substrate has no distinct effect on chlorophyll fluorescence parameter under same storage temperature. After transplanting, shorter storage days, petunia seedlings recovered more quickly.
引文
1. Heins, RD., Kaczperski MP., Wallace IF. Low temperature storage of bedding plant plugs[J]. Acta Hort. 1995, 396: 285-296.
    2. Heins RD., Wallace IF. Systems for storage of bedding-plants plugs. Bedding plants[M]. Foundation, INC. 1996, 71: 383-388.
    3.何益霞.中国花卉消费市场前景看好-需求量每年增长20%.中国商品网.
    4.王玲.北京奥运水果蔬菜需求将达5000吨.千龙网.
    5.取代传统育苗技术-工厂化穴盘育苗前景看好.中国商务网.
    6.卓根.瓜类蔬菜商品育苗前景看好[J].中国农业信息. 2006, 12: 9-10.
    7.魏智龙.邹志荣,吴正景.蔬菜与花卉的工厂化育苗技术[J].北京农业科学, 2000(6): 17-19.
    8.高丽红,李良俊.蔬菜设施育苗技术问答[M].中国农业大学出版社. 1998, 111-130.
    9.穴盘育苗:省工效高成本低[N].四川农村日报. 2007.
    10.陈殿奎.国内外蔬菜穴盘育苗发展综述[J].中国蔬菜. 2000(增刊): 7-11.
    11.国内外穴盘育苗的发展状况.中国温室网.
    12.陈振德,何金明,黄俊杰,翟光辉等.蔬菜穴盘育苗基质的选配及其理化特性研究[J].农业工程学报. 1998, 2(14): 192-197.
    13.崔秀敏,王秀峰.黄瓜穴盘育苗基质特性及育苗效果的研究[J].山东农业大学学报. 2001, 32(2):124-128.
    14.潘静娴,黄丹枫,王世平,贾志宽.育苗基质pH对甜瓜穴盘苗营养特性的影响[J].植物营养与肥料学报. 2002(2): 251-253.
    15.卜崇兴,博士后出站报告[D], 2005.
    16.黄丹枫,孙伟锋,牛庆良.育苗基质中专用肥配方对甜瓜幼苗生长的影响[J].上海农学院学报. 2000, 18(1): 14-19.
    17.潘静娴,黄丹枫,王世平,贾志宽.甜瓜幼苗生长及生理特性与根域体积相关关系研究[J].上海交通大学学报(农业科学版). 2001, 19(1): 24-29.
    18.尹波,黄丹枫,申广荣.水分胁迫下香葱穴盘苗的生理效应[J].北方园艺. 2007, (1): 11-17.
    19.王淑琴,黄丹枫,邹志荣.网纹甜瓜工厂化育苗灌溉指标的研究[J].华中农业大学学报. 2004, 12(35): 236-239.
    20.唐雅莹,黄丹枫.不同灌水上限对番茄穴盘苗生长的影响[J].上海农业学报. 2005, 21(2): 33-36.
    21.王艳,黄丹枫.芹菜工厂化育苗部分关键技术及穴盘苗水分生理研究[D].吉林农业大学硕士学位论文. 2006.
    22.何伟明,陈殿奎.不同施肥水平对番茄穴盘育苗生长的影响[J].北京农业科学. 1996, 14(2): 22-24.
    23.费素娥,王秀峰,刘吉刚.育苗基质中氮磷养分量和氮磷比例对辣椒穴盘苗质量的影响[J].安徽农业科学. 2006, 34(4): 657-660.
    24.张红梅,黄丹枫,丁明,薛万新.不同苗龄接穗的西瓜嫁接体愈合过程中的3种酶活性变化[J].植物生理学通讯. 2005, 41(3): 302-304.
    25.霍国琴,侯丹英,王敏珍.黄瓜嫁接苗工厂化穴盘生产技术[J].西北园艺, 2005, (9): 12-13
    26.黄丹枫等,蔬菜、花卉穴盘苗生产操作规程[S].上海市企业标准. 2006
    27. Ming Ding, Danfeng Huang, Shenglian Lu, Beibei Bie, Jun Wang. JDS: a Web-Based Seedling Production Management System and Decision Support System[J], ISIITA(ISTP), 2007: 259-264
    28.宁伟,葛晓光,李天来.模拟运贮条件下番茄秧苗质量保持指标研究[J].中国蔬菜, 2005(4): 6-9.
    29.朱海生,宁伟.不同贮运温度对番茄秧苗产后质量保持的影响[J].江西农业大学学报,2003, 35(10): 9-13.
    30.李晓慧,孙治强,张惠梅.不同贮藏温度对番茄穴盘秧苗品质的影响[J].沈阳农业大学学报, 2006, 37(3): 498-501.
    31. Jaworski, C.A., C.A. Webb, D. j. Morton. Efects of storage and nutrition on tomato transplant quality, survival and fruit yield[J]. J. Amer.Soc. Hort.Sci. 1984, 7(l): 261-265.
    32.吴志行.我国蔬菜育苗方式的利弊及发展前景[J].长江蔬菜. 1993, ( 6): 3-4.
    33.温泳.苗龄、定植期对番茄生育及产量的影响[J].辽宁农业科学. 1983, (2): 20-24。
    34. Wolfgang Brüggemann, Thomas.A.W . Van der Kooij, Philip. R. van Hasselt. Long-term chilling of young tomato plants under low light and subsequent recovery[J]. Planta. 1992, 186(2): 179-187
    35. C. Y. Wang. Chilling injury of horticultural crops[M]. CRC Press. USA: 1990.
    36. Fumio Sato, Hiroshi Yoshioka, Takahiro Fujiwara. Effects of storage temperature on carbohydrate content and seedling quality of cabbage plug seedlings. Environ. Control Biol.1999, 37:249-255.
    37. Fumio Sato, Hiroshi Yoshioka, Takahiro Fujiwara, Hisao Higashio, Atsuko Uragami, Shinichi Tokuda. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness[J]. Scientia Horticulturae. 2004, 101: 349–357.
    38.王瑞霞.贮藏期间不同控制条件对穴盘苗生长和质量的影响及其机理[D].上海交通大学. 2005.
    39.宁伟.番茄秧苗运贮中生理变化和质量保持技术研究[D]. 2005.
    40. Heins, R.D., Lange, N., Wallace Jr., T.F., Carlson, W., Plug Storage: Cold Storage of Plug Seedlings[J]. Greenhouse Grower, Willoughby, OH. 1994.
    41. Kubota, C., Kozai, T., Low-temperature storage of transplants at the light compensation point: air temperature and light intensity for growth suppression and quality preservation[J]. Sci. Hortic. 1995, 61:193-204.
    42. Dorion, N., Kadri, M. and Bogot, C., In vitro preservation at low temperature of rose plantlets usable for direct acclimatization[J]. Acta Hortic., 1991, 198: 335-343.
    43. Marino, G., Posati, P. and Sagrati, F., Storage of in vitro cultures of Prunus rootstocks[J]. Plant Cell Tissue Organ Cult. 1985, 5:73-78.
    44. Van Hasselt P H R. Photo-oxidation of leaf pigment in cucumber leaf discs during chilling[J]. Acta Bot.Neerl. 1972, 21: 539
    45. Niek Bakker, Philip R. Van Hasselt. Photooxidative inhibition of nitrate reductase during chilling[J]. Physiologia Plantarum. 1982, 54(4): 414-418
    46.王以柔,刘鸿先,李平.在光和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化物作用的影响[J].植物生理学报. 1986. 12(3): 244-251.
    47. Kubota, C., Rajapakse, N.C., Young, R.E., Carbohydrate status and transplant quality of micropropagtes broccoli plantlets stored under different light environments[J]. Postharvest Biol. Tech.1997, 12: 165-173.
    48. Kozai, T., Kubota, C., Sakami, K., Fujiwara, K., Kitaya, Y. Growth suppression and quality preservation of eggplant plug seedlings by low-temperature storage under dim light[J]. Environ. Control Biol. 1996, 34: 135-139.
    49. Kubota, C., S. Seiyama, T. Kozai. Manipulation of photoperiod and light intensity in low-temperature storage of eggplant plug seedlings[J], Scientia Horticulturae. 2002, 94: 13-20.
    50. Leskovar, D.I., Cantliffe, D.J. Tomato transplant morphology affected by handling and storage[J]. HortScience. 1991, 26: 1377-1379.
    51. Kaczperski, M.P., Armitage, A.M., Short-term storage of plug-grown bedding plant seedlings[J]. HortScience. 1992, 27: 798-800.
    52. Kaczperski, M.P., Armitage, A.M., Lewis, P.M. Performance of plug-grown geranium seedlings preconditioned with nitrogen fertilizer or low-temperature storage[J]. HortScience 1996, 31: 361-363.
    53. Wilson, S.B., Iwabuchi, K., Rajapakse, N. C., Young, R, E. Responses of broccoli seedlings to light quality during low-temperature storage in vitro: II. Sugar content and photosynthetic efficiency[J]. HortScience. 1998, 33: 1258-1261.
    54. Davis T.D., Potter J.R. Carbohydrates water potential and subsequent rooting of stored rhododendron cuttings[J]. HortScience. 1985, 20: 292-293.
    55.草花的穴盘育苗技术.花卉无土栽培资料网. 2005.
    56. Brainerd E, Fuchigamin L H. Acclimatization of aseptically cultured apple plant to low relative humidity[J]. J. Amer. Soc. Hort. Sci. 1981, 106: 515-518.
    57. Michel Havaux, Florence Tardy. Loss of chlorophyll with limited reduction of photosynthesis as an adaptative response of Syrian barley landraces to high-light and heat stress[J]. Australian Journal of Plant Physiology. 1999, 26: 569-578.
    58.温晓刚,林世青,匡廷云.高温胁迫对光系统异质性的影响[J].生物物理学报. 1996, 12(4): 714-718.
    59.马德华.黄瓜对不同温度逆境的抗性研究[J].中国农业科学. 1999, 32(5): 28-35.
    60. Mehdiladjal, Daniel Epron, Miche lDucrey. Effects of drought precondition in geothermal tolerance of photosystem and susceptibility of photosynthesis to heat stress in cedar seedlings[J]. Tree Physiology. 2000, 20: 1235-1241.
    61. Martinean J R, Specht J E. Temperature tolerance in soybean[J]. Crops science. 1979, (19): 75-81.
    62. Bowler C, Montagu MV, InzéD. Superoxide dismutaseand stress tolerance[J]. Annu Rev Plant Physiol Plant MolBiol. 1992, 43:83–116
    63. Arriqoni O, Garal D E, Tommasi F. Changes in the ascorbate system during seed development of Viciafaba L[J]. Plant Physiology. 1992, (99): 235-238.
    64.郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报. 1999, 42: 673-677.
    65.何亚丽,刘友良,陈权.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化关系[J].植物生理与分子生物学. 2002, 28(2): 89-95.
    66.吴国胜,曹婉虹.细胞膜热稳定性及保护酶和大白菜耐热性的关系[J].园艺学报. 1995, 22(4): 353-358.
    67.司家钢.高温胁迫对大白菜耐热性相关生理指标的影响[J].中国蔬菜. 1995, 4: 4-6.
    68.马德华.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J].园艺学报. 1998, 25(4): 350-355.
    69.许大权,沈允钢.光合作用限制因子[M].植物生理与分子生物学.北京:北京科学出版社, 1998.
    70.马德华,庞金安,李淑菊.高温对辣椒幼苗叶片某些生理作用的影响[J].天津农业科学. 1999, 5 (3): 8–10
    71.吴韩英,寿森炎,朱祝军.高温胁迫对甜椒光合作用合叶绿素荧光的影响[J].园艺学报. 2001, 28(6): 517-521
    72.陈立松,刘星辉.高温胁迫对桃和柚细胞膜透性和光合色素的影响[J].武汉植物学研究. 1997, 15(3): 233-237.
    73.罗少波,李智军,飞弹健.大白菜品种耐热性的鉴定方法[J].中国蔬菜. 1996, (2): 16-18.
    74. Abar Tsur, Rudich J, Bravdo B. High temperature effects on CO2 gas exchange in heat tolerance and sensitive tomatoes[J]. Tamer Soc Sci. 1985, 110(4): 582-586.
    75.苗琛,利客千,王建波.甘蓝热胁迫叶片细胞的超微结构研究[J].植物学报. 1994, 36(9): 730-732.
    76.蒋明义,荆家海,王漪唐.渗透胁迫对水稻光合色素和膜脂过氧化的影响[J].西北农业大学学报. 1991, 19(1): 79-84
    77.沈征言,朱海山.高温对菜豆生育影响及菜豆不同基因型的耐热性差异[J].中国农业科学. 1993, 26(3): 50 - 55.
    78. Claudia Pastene. Effect to high temperature on photosynthesis in beansⅡ. CO2, Assimilation and metabolite contents[J]. Plant Physiol. 1996, 112: 1253-1260.
    79.黄翠平,孙治强,王贞.不同贮藏温度对黄瓜秧苗质量的影响[J].江西农业学报. 2007, 19 (7): 60-62
    80.赵增煜主编.常用农业科学试验法[M].北京:农业出版社. 1986.
    81.中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法[M].北京:科学出版社. 1983.
    82.白宝璋,孔祥生,王玉昆等.植物生理学实验指导[M].北京:中国农业科技出版社, 1996.
    83. Fukuchi N., Yoshioka H., Ichimura K., Shimizu E., Fujiwara T., Aoyagi S. Effects of cold storage of cabbage plug seedlings on the quality of seedlings and growth after transplanting. Bull. Chiba Agric. Exp. Stn. 1997, 38: 27-33.
    84. Lange N, Heins R, Carlson. Another look at storing plug[J]. Greenhouse grower. 1991, 9(2): 18-24.
    85. Conover. C.A., Postharvest handling of rooted and unrooted cuttings of tropic ornamentals. HortScience.1976, 11:127-128
    86.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    87.赵世杰.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.
    88.沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001.
    89.肖凯,王殿武,张荣铣.小麦叶片衰老生理变化的研究.[J].国外农学-麦类作物. 1994, (1): 46-49.
    90.杨淑慎,高俊凤,李学俊.高等植物叶片的衰老.西北植物学报. 2001, 21(6): 1271-1277.
    91.李向东,万勇善,于振文.花生叶片衰老过程中氮素代谢指标变化植物生态学报[J]. 2001, 25(5): 549-553.
    92. Ben David H., Nelson N., Gepstein S. Differential changes in the amount of protein complexs in the chloroplast membrane during senescence of oat and bean[J]. Plant Physiol. 1983,73: 507-510.
    93. Wittenbach V A., Ackerson R C., Giaquinta R T. Changes in photosynthesis, ribulose bisphosphatecarboxylase, proteolytic activity and ultrastructure of soybean leaves during senescence[J]. Crop Sci. 1980,20(2): 225-231.
    94.王忠.植物生理学[M].北京:中国农业出版社,2000.
    95. Robert D R., Thompson J E., Drnberff E B. Differential changes in the synthesis and steady-levels of thylokoid protein during bean leaf senescence[J].Plant Mol Biol. 1987, 9: 343-353.
    96.崔秀敏,王秀峰.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响[J].园艺学报. 2004, 31(4): 477-481.
    97.李建建.高温胁迫对黄瓜幼苗生理生化特性影响及其生理机制的研究[D].甘肃农业大学硕士论文. 2006.
    98.孙学成,胡承孝,谭启玲.施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响[J].华中农业大学学报. 2001, 21(1): 40-43.
    99. Markino A., Mac T., Ohiro K. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence[J]. Plant Cell Physiol. 1984, 25: 429-437.
    100. Prichard, M. K., Hew, C. S., Wang, H., Low-temperature storage effects on sugar content, respiration and quality of Anthurium flowers[J]. J. Hort. Sci. 1991, 66: 209-214.
    101.刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.
    102. Willekens H, Vancamp W , Lnze D, et al. Ozone, sulfurdioxide, and ozone ultravio let-B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plum bag inifolial[J]. Plant Physiol. 1994, 106: 1007 -1014.
    103. Mea J F. Free radical mechanism of lipid damage ,a consequence or cellular membranes[M]. In: Pryor WA(ed) . Free Radical in Biology Chapter 2. New York :Academic Press, 1986.
    104. Mccord J M, Fridovich I. Superoxide dismutase :An enzymic function for erythrocuprein [J]. J Bilo Chem ,1969, 224: 6049-6055
    105.赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社, 1995.
    106.许长成,邹琦.干旱诱导大豆叶片加速衰老及其与膜脂过氧化的关系[J].作物学报. 1993. 19(4): 359-364.
    107. Datj. Van Denabeeles, Vranovae. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci. 2000, 57: 779-795.
    108. Fridovich I. The biology of oxygen radicals[J]. Science, 1978, 201: 875-880.
    109.强继业,陈宗瑜,李佛琳. 60Co-γ射线辐照对球根海棠、蝴蝶兰生长及SOD和CAT活性的影响[J].种子. 2004, 23(4): 8-11.
    110.李宪利,高东升.铵态和硝态氮对苹果SOD和POD活性的影响[J].应用与生物学报. 1997, 33(4): 254-256.
    111.徐晓昀.高温胁迫对黄瓜叶片光合特性的影响[D].甘肃农业大学2007.
    112.王爱国,罗广华,邵从本.高浓度氧对水稻幼苗的伤害与活性氧的防御[J].中国科学院华南植物研究所集刊. 1989,(4): 169-176.
    113. Zhang J X., Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species[J]. Plant Cell Physio1. 1994,35(5): 785-791.
    114.闫成仕.水分胁迫下植物叶片抗氧化响应[J].烟台师范学院学报(自然科学版). 2002, 18(2): 220-225.
    115. Richard AE. Tilney - Bassett Plant chimeras[M]. London :Edward Anold, 1986.
    116.冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究, 2002, 20 (4) : 14 - 18, 30.
    117.陈贻竹,李晓萍,夏丽,郭俊彦.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报, 1995, 4:78 - 79.
    118. Ball M C, Butterworth J A, Roden J S, Christian R, EgertonJ G. Applications of chlorophyll fluorescence to forest ecology[J]. Aust J Plant Physiol. 1994, 22: 311-319.
    119.赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报. 2000, 34(3) : 248-251.
    120.徐晓昀,郁继华,颉建明.高温胁迫对黄瓜叶片叶绿素荧光猝灭的效应[J].甘肃农业大学学报. 2007, 42(2): 60-63.
    121.亚和甫?木沙,王泽浩,席万鹏.水分胁迫对葡萄叶绿素荧光参数的影响[J].安徽农学通报. 2007, 13(6): 26-28.
    122.刘慧英,朱祝军,史庆华.低温胁迫下嫁接对西瓜光合特性及叶绿素荧光参数影响的研究[J].石河子大学学报(自然科学版). 2007, 25(2): 163-167.
    123.吴月燕,杨祚胜,丁伟红.高湿弱光对葡萄叶片光合生理生化指标的影响[J].浙江农业学报. 2005, 17(1): 7~10
    124.梁新华,许兴,徐兆,裘志新,时海娟.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J], 2001, 19(3): 72-77.
    125. Bjokman O, Demming B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins[J]. Planta. 1987, 170: 489-504. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700