蝴蝶兰栽培基质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在研究四种常用基质理化性质的基础上,初步探讨了树皮和椰壳分别以不同比例与泥炭混合后的理化性质,并就此类混合基质应用于蝴蝶兰规模化生产的可行性,进行了蝴蝶兰的栽培试验,研究结果表明:
     1.水苔、树皮、椰壳、泥炭的理化性质有较大差异。水苔的持水孔隙度为60.2%,泥炭的持水孔隙度为52.6%,两者均显著高于树皮、椰壳基质;水苔和泥炭基质的CEC值较高,显著高于树皮和椰壳,表明水苔具有较高的保水和保肥性能。相应地,树皮和椰壳保水保肥能力较差,但是树皮的通气孔隙度最高,为53.6%,其次为椰壳,均显著高于水苔和泥炭,表明树皮和椰壳具有较好的透气性。
     2.树皮类混合基质中泥炭所占体积比例为10-50%时,持水孔隙度较100%树皮提高4.6-13.0个百分点且差异显著,各混合基质的持水孔隙度显著低于水苔;泥炭所占体积比例为10-40%时,各混合基质的气/水比均显著高于水苔,泥炭所占比例为50%时,混合基质的气/水比仍高于水苔但差异不显著。树皮类混合基质的pH值在5.67-6.16之间,EC值在0.12-0.19之间。
     3.椰壳类混合基质中泥炭所占体积比例为10-50%时,持水孔隙度较100%椰壳提高3.1-12.7个百分点且差异显著,各混合基质的持水孔隙度均显著低于水苔;泥炭所占体积比例为10-50%时,各混合基质的气/水比均显著高于水苔。椰壳类混合基质的pH值在5.73-6.23之间,EC值在0.31-0.44之间。
     4.不同基质处理对蝴蝶兰生长速率和最终生物量的影响差异显著。在11种处理中,在B70(树皮和泥炭以70:30体积比混合)和B70S(树皮和碎水苔以70:30体积比混合)基质中生长的蝴蝶兰在叶面积生长速率、植株鲜重、植株体积、植株干重、根系生长状况上均优于水苔和其它处理,C50(椰壳和泥炭以50:50体积比混合)与水苔有相近的栽培效果。
     5.综合考虑植株生长状况、环保因素、生产成本,B70(树皮和泥炭以70:30体积比混合)为蝴蝶兰规模化生产中首选基质,其次是C50(椰壳和泥炭以50:50体积比混合),应用此两种基质可使基质的成本较使用水苔降低86%。
The physical and chemical properties of sphagnum moss, composted bark, coconut chunks and sphagnum peat were studied; in addition, the physical and chemical properties of bark mixed with sphagnum peat by different ratio and coconut chunks mixed with sphagnum peat by different ratio were also studied. In order to test the feasibility of these mixed media used in Phalaenopsis production, a study was conducted to access the effect of mixed media on growth of Phalaenopsis. A series of studies indicate that:
     1. The water-filled porosity in sphagnum moss was 60.2%, and it was 52.6% in sphagnum peat, the water-filled porosity in sphagnum moss and sphagnum peat were both significant higher than that in bark or coconut chunks. Cation exchange capacity (CEC) in sphagnum moss and sphagnum peat were higher than that in bark or coconut chunks, which indicated that sphagnum moss retained too much water and mineral nutrients when used in Phalaenopsis production. Accordingly, bark and coconut chunks retained less water and mineral nutrients. The air-filled porosity in bark was 53.6%, and it was the highest among the four media concerned in this study. The second is coconut chunks. They were both significant higher than that in sphagnum moss and sphagnum peat, which suggests that bark and coconut chunks have favorable air capacity.
     2. By adding 10-50% proportion (by volume) of sphagnum peat to bark, the value of water-filled porosity can be elevated by 4.6-13.0 percent, but still significant lower than that in sphagnum moss. When the proportion of sphagnum peat was 10-40%, the ratio of W/A (water-filled porosity/ air-filled porosity) in bark-peat media was significant higher than that in sphagnum moss. While the proportion of sphagnum peat rised to 50%, this ratio was lower than it in sphagnum moss, but not significantly. The pH of bark-peat media was5.67-6.16, EC was 0.12-0.19.
     3. By adding 10-50% proportion (by volume) of sphagnum peat moss to coconut chunks, the value of water-filled porosity can be elevated by 3.1-12.7 percent, but still significant lower than that in sphagnum moss. When the proportion of sphagnum peat was 10-50%, the ratio of W/A in bark-peat media was significant higher than that in sphagnum moss. The pH of coconut chunks -peat media was 5.73-6.23, and EC was 0.31-0.44.
     4. There were significant difference in dry weight and growing rate in different media. Plants grown in a mixture of 70 bark with 30 sphagnum peat or a mixture of 70 bark with 30 cutted sphagnum moss attained higher growth rate and produced more plant volume, fresh weight and dry weight than those in sphagnum moss or other media. Plants grown in a mixture of 50 coconut chunks with 50 sphagnum peat were similar with those in sphagnum moss.
     5. Based on an overall consideration of plante growth, environmental factor and costs, a principal media of 70 bark with 30 peatmoss (volume) was recommended to use in Phalaenopsis production. The next media recommended is a mixture of 50 coconut chunks with 50 peatmoss. The cost of media can be reduced 86% when these two mixed media were used in Phalaenopsis mass production.
引文
[1] 成绍鑫. 泥炭物理-化学及生物学研究进展[J].腐殖酸, 2003, (2): 1-4.
    [2] 官顺恊. 介质种类及施肥浓度对蝴蝶兰生长之影响[D]. 国立台湾大学. 台北: 国立台湾大学, 2006.
    [3] 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, (21):1-4.
    [4] 河田弘, 陈喜军. 树皮堆肥制造方法[J]. 国外林业, 1990, (1):13-16.
    [5] 胡松华.热带兰花[M]. 北京:中国林业出版社,2002:69-71.
    [6] 黄少锋, 洪生标. 水苔在兰花生产中的应用及合理开发[J]. 中国花卉盆景, 2005,(8):21.
    [7] 金波. 台湾蝴蝶兰的生产技术-I 栽培管理[J].台湾农业情况,1993(4): 24-25,23.
    [8] 金勲, 市桥正一. 植え込み材料からのイオン放出と培養液からのイオン吸収ならびにドテノプシスの生育について[J]. 園学雑, 2002, (71):434-440.
    [9] 雷华德. 建构蝴蝶兰栽培环境与介质含水率无线监控系统[D] 生物产业机电工程学研究所. 台北: 国立台湾大学, 2006.
    [10] 李建华. 台湾蝴蝶兰产业优势与现状分析. 海峡科技与产业 2002:20.
    [11] 李哖. 蝴蝶兰之生长与开花生理[G]. 台东农业改良.场兰花研讨会专集,1998:21-32.
    [12] 李嘉慧, 李哖. 台湾蝴蝶兰根和叶的形态解剖的特性[J]. 中国园艺, 1991,(37):237-248.
    [13] 李谦盛,郭世荣,李式军. 基质 EC 值与作物生长的关系及其测定方法比较[J]. 中国蔬菜, 2004,(1):70-71.
    [14] 李天林,沈兵,李红霞. 无土栽培中基质培选料的参考因素与发展趋势[J].石河子大学学报(自然科学版),1999,(3):250-258.
    [15] 李向英. 蝴蝶兰的快速繁殖及栽培管理研究[J ]. 山东农业科学, 2000, (4): 13-14.
    [16] 林菁敏. 温度、无机养分与栽培介质对蝴蝶兰生长与开花之影响[D]. 园艺学研究所. 台北: 国立台湾大学, 1983.
    [17] 林立航. 不同栽培介质对蝴蝶兰生长及模拟贮运之影响[D]. 园艺学系: 国立中兴大学, 2006.
    [18] 刘昌存. 蝴蝶兰栽培漫谈[J]. 园林, 2006, (11):36-37.
    [19] 楼建华. 温度、光照及栽培基质对蝴蝶兰生长发育的影响[J]. 浙江农业学报, 1995, 7 (6) : 464-467.
    [20] 马子俊. 蝴蝶兰工厂化生产技术研究[J ]. 浙江林学院学报, 1998, 15 (2): 192-196.
    [21] 孟宪民. 我国泥炭资源概况与园艺种苗基质解决方案[J]. 中国花卉园艺, 2004, (22): 14-17.
    [22] 孙正平.水藓泥炭的生产与应用[J].中国花卉园艺, 2004, (22):42-43.
    [23] 市桥正一.介质与肥料管理[J]. 农耕と园艺,2002,57:166-169.
    [24] 佟小刚, 蒋卫杰, 尹明安, 余宏军. 无土栽培基质中的微生物及其对作物生长发育的影响. 园艺学报 2005;32:544.
    [25] 窪田 聡, 加藤哲郎, 米田和夫. ファレノプシスの生育におよぼす施肥ならびに ミズゴケと素焼鉢の理化学性の影響 [J]. 園学雑, 1993, (62):601-609.
    [26] 王春沐. 无土栽培基质-水藓泥炭[J]. 中国花卉盆景, 2004, (6):30-31.
    [27] 王曙光, 林先贵. VA 菌根与植物的抗逆性. 生态学杂志 2001:56.
    [28] 小原廣幸, 中川忠治, 山崎旬. ファレノプシス(Phalaenopsis Hybrid)栽培における数種培地資材の理化学的特性と生育に及ぼす影響[J]. Japanese Journal of Tropical Agriculture, 2004,(48):40-48.
    [29] 徐祥生, 龟背竹气生根的形态解剖学研究[J]. 南京师大学报(自然科学版), 1991,(14):55-59.
    [30] 游富铃. 水苔、椰纤混合介质及添加缓效性肥料对蝴蝶兰生育之影响[D]. 园艺学研究所. 台北: 国立台湾大学, 2004.
    [31] 颜容. 兰科植物菌根真菌的分类及其与共生植物间的营养关系. 西部林业科学 2004;33:50.
    [32] 么焕英. 应用 Pour-through 介质溶液测定法于以水草栽培之蝴蝶兰[D]. 园艺学研究所. 台北: 国立台湾大学, 2007.
    [33] 曾宋君. 洋兰的栽培基质[J]. 花卉.2004,(2):34.
    [34] 赵九洲, 陈松笔.基质与氮磷钾比例对蝴蝶兰(Phalaenopsis hybridium)生长发育的影响[J]. 园艺学报, 2000, (27):383-384.
    [35] A.Poole H(著), 王中强, 孟宪民(译). 椰糠与加拿大藓类泥炭作为园艺栽培基质的比较[J]. 腐植酸, 2003, (1):35-38.
    [36] Nacy Laws(著), 李易(译). 世界热带兰贸易近况[J]. 中国花卉园艺,2003,(1):24-25.
    [37] Buamscha MG, E.Altland J, M.sullivan D, et al. Micronutrient availablity in Fresh and aged Douglas Fir bark[J]. HortScience, 2007, (42):152-156.
    [38] Burg Cvd. Make Phalaenopsis feel more at home [J]. Flower TECH, 2006, (9):16-17.
    [39] C.Chen, R-S. Lin. Nondestructive Estimation of Dry Weight and Leaf Area of Phalaenipsis Leaves [J]. Applied Engineering in Agriculture, 2004, 20 (4):467-472.
    [40] Caron J, Beeson R, Haydu J, et al. Saving water with Sphagnum peat in nursery growing media[J]. Acta Horticulturae, 2004, (664):119-124.
    [41] David Wm. Reed. A Grower’s Guide to Water, media, and Nutrition for Greenhouse Crops[M].Ball publishing, 1996: 107-109.
    [42] Drury S. Growing media [J]. Horticulture Week, 2007,(4):43-45.
    [43] Heiskanen J. Water Status of sphagnum peat and a peat-perlite mixture in containers subjected to irrigation regimes [J]. HortScience, 1995, (30):281-284.
    [44] JBGM V, AP P. CEC and the saturation of the adsorption complex of coir dust [J]. Acta Horticulturae, 1999, (481):151-155.
    [45] Konduru S, Evaa MR, Stamps RH. Coconut chunks and processing effects on chemical and physical properties of coconut coir dust [J]. HortScience, 1999, (134):88-90.
    [46] Konow EA. The effects of in vitro and greenhous irradiance, fertility, and media on the grow of a hybrid Phalaenopsis orchid [D]. Deparment of Horticultural: Texas AM University 1998.
    [47] Ma Y-B, Nichols DG. Phytotoxicity and detoxification of fresh coir dust and coconut shell [J]. Communicatioa in Soil Science and Plant Analysis, 2004, (35):205-218.
    [48] Newman J. Core facts about coir [J]. Greenhouse Management & Production, 2007, 27(2):57.
    [49] Noguera P, Abad M, Puchades R, et al. Influence of particle size on physical and chemical properties of coconutcoir dust as container medium[J]. Communicatioa in Soil Science and Plant Analysis, 2003, (34):593-605.
    [50] Poole HA, J.G.Seelev. Effect of artificial light sources, inteaity, watering frequency and fertilization practice on growth of Cattleya, Cymbidum and Phalaenopsis orchids [J]. Amerorchid Soc bul, 1977,(46):923-928.
    [51] Pridgeon. Orchid biology: reviews and perspectives [M]. Ithaca New York: Cornell University Press, 1987.134.
    [52] R.Evaa M, Konduru S. source variation in physical and chemical properties of coconut coir dust [J]. HortScience, 1996, (31):965-967.
    [53] Runkle E, Wang YT, Blanchard M, Lopez R. Growing the Best Phalaenopsis: Part 2: Media, Traaplanting, Water and Nutrient Requirements [J]. Orchids, 2007,(76):106-111.
    [54] SeungJae H, JongIl HM, ByoungRyong J. Growth of Phalaenopsis in a recirculating ebb and flood hydroponic system asaffected by ionic strength of solution and medium composition [J]. Acta Horticulturae, 2004, (659):637-645.
    [55] Takasaki s. Recent Phalaenopsis breeding in the Hawaiian islands [J]. Amer orchid Soc bul, 1989, (58):8-15.
    [56] Toyohide Tanaka, Takatoshi Matsuno, Masaharu Masuda. Effects of Concentration of Nutrient Solution and Potting Media on Growth and Chemical Composition of a Phalaenopsis Hybrid [J]. Japan.Soc. Hort. Sci, 1988, 57(1): 78-84.
    [57] V.Nkongolo N, Caron J. Bark particle sizes and the modificaaton of the physical properties of peat substrates [J]. Canadian JOURNAL OF SOIL SCIENCE, 1999, 79(1): 111-116.
    [58] Wang Y-T, and N. Lee. A new look for an old crop: Potted blooming orchids[J].Greenhouse Gower, 1994a, 12(1):79-80.
    [59] Wang Y-T, and N. Lee. A new look for an old crop: Potted blooming orchids-part 2[J].Greenhouse Gower, 1994b, 12(1):79-80.
    [60] Wang Y-T, Konow EA. Fertilizer Source and Medium Composition Affect Vegetative Growth and Mineral Nutrition of a Hybrid Moth Orchid [J]. J AMER SOC HORT SCI, 2002, (127):442-447.
    [61] Wang Y-T. Impact of Salinity and Media on Growth and Flowering of a Hybrid Phalaenopsis Orchid [J]. HortScience, 1998, (33):247-250.
    [62] Wang Y-T. Looking for an exotic pot crop? [J]. GMPRO, 2003, (November):40-42.
    [63] Wang Y-T, BARNES LW. Bark and Water Molds: Sudden Oak Death Could Affect Orchid Production [J]. Orchids, 2004, 73 (5):378,380-381.
    [64] Wang Y-T. Effects of six fertilizers on vegetative growth and flowering of phalaenopsis orchids [J]. Scientia Horticulturae 1996.(65):191-197.
    [65] Yeager, T.H., R.D. Wright, and S.J.Donahue. Comparision of pour-through and saturated pine bark extract N, P, K, and pH levels[J]. J. Amer. Soc. Hortic. Sci.1983(108):112-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700